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Abstract: Plant growth-promoting rhizobacteria represent a promising solution to enhancing
agricultural productivity. Here, we screened phosphate solubilizing bacteria from the rhizospheric
soil of Chenopodium quinoa Willd and assessed their plant-growth promoting rhizobacteria (PGPR)
properties including production of indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN),
ammonia and extracellular enzymes. We also investigated their tolerance to salt stress and their
capacity to form biofilms. Two isolated strains, named QA1 and QF11, solubilized phosphate up
to 346 mg/L, produced IAA up to 795.31 µg/mL, and tolerated up to 2 M NaCl in vitro. 16S rRNA
and Cpn60 gene sequencing revealed that QA1 and QF11 belong to the genus Bacillus licheniformis
and Enterobacter asburiae, respectively. In vivo, early plant growth potential showed that quinoa
seeds inoculated either with QA1 or QF11 displayed higher germination rates and increased seedling
growth. Under saline irrigation conditions, QA1 enhanced plant development/growth. Inoculation
with QA1 increased leaf chlorophyll content index, enhanced P and K+ uptake and decreased plant
Na+ uptake. Likewise, plants inoculated with QF11 strain accumulated more K+ and had reduced
Na+ content. Collectively, our findings support the use of QA1 and QF11 as potential biofertilizers.

Keywords: phosphate solubilizing bacteria; Chenopodium quinoa; salt stress; IAA; seedling growth;
germination; plant growth promotion

1. Introduction

Soil microbiome, vegetation, and soil fauna are strongly affected by climate change which causes
progressive increased land salinization and desertification [1]. Salinity is a limiting factor for crop
production in semi-arid and arid soils, mainly due to the accumulation of sodium chloride (NaCl) [2].
Salt stress changes the physicochemical characteristics of soils and disrupts the growth of both plants
and soil microflora [3]. Thus, there is a selection pressure for stress-adapted and extremophilic plants [1].
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The use of salt-tolerant plants and microorganisms is a promising strategy to alleviate salt-induced
effects on crops.

Through root exudates, plants secrete organic compounds having selective effects on associated
microbes. They attract beneficial bacteria, known as plant growth promoting bacteria (PGPB) which
subsequently boost agricultural productivity. Indeed, the use of PGPB as biofertilizers improves the
availability of phosphorus and nutrients to crops, ameliorates soil structure and promotes the health
and the fertility of arable soils [4–6].

Phosphorus (P) is one of the undeniable elements in plant nutrition alongside nitrogen (N) and
potassium (K). Therefore, acquisition of sufficient P concentration is a critical process for plant growth [7].
Soil contains a substantial reserve of P in both inorganic and organic forms. Indeed, it has been
estimated that accumulated P in arable lands would be sufficient to sustain maximum crop production
worldwide for about 100 years [8]. However, plants are only able to assimilate P in its soluble forms
i.e., orthophosphates (HPO4

2−, H2PO4
−), which represent only 0.1 to 0.5% of the total soil’s P [9]. P is

found in soils mainly in mineral complexes such as tricalcium phosphate (Ca3 (PO4)2), iron phosphate
(FePO4), aluminum phosphate (AlPO4) [10], and in phytate form which constitutes the majority of soil
organic P [11]. To tackle this issue, P-fertilizers are generally recommended. Nevertheless, according to
their forms and methods of application, more than 80% of P in applied fertilizers is instantly fixed via
immobilization, sorption or precipitation reactions leading to low P uptake and reduced fertilization
efficiency [9]. Soil PGPB constitute very important components in the global cycling of soil nutrients,
including P [12]. They are involved in maintaining the fertility of soils, optimizing plant nutrition
and strengthening the root system [13,14]. Natural solubilization of unavailable P is an enthralling
phenomenon exhibited by various soil microorganisms, commonly known as phosphate solubilizing
microorganisms (PSM). Among these P-solubilizers, bacteria (PSB) represent the predominant group as
compared to other microbes [15]. Indeed, diverse bacterial species, particularly rhizosphere colonizing
bacteria, have the ability to mineralize organic P and solubilize inorganic P compounds such as
hydroxyapatite, rock phosphate and tricalcium phosphate [16]. Several strategies, mainly genetic
engineering and the use of PGPB [17], have been used to attempt to reduce the damaging effect of salt
stress on plant growth.

Besides their role in making P available to plants, PSB are useful in mitigating abiotic stresses
such as salinity and drought via the release of different phytohormones, antioxidant metabolites and
enzymes as well as regulation of ion uptake [18]. It has been reported that salt stress will reduce
arable lands by 50% in 2050 [19]. This is mainly due to the high level of soluble salt ions in the soil
such as sodium (Na+), bicarbonate (HCO3−), chloride (Cl−), calcium (Ca2+) and carbonate (CO3

2−).
Indeed, the high level of NaCl is the most toxic for plants [2]. Saline soils are defined as soils in which
the exchangeable Na+ rate is 15% and the electrical conductivity of the saturated extract in the soil
surpasses 40 mM NaCl [3]. In fact, the rate of saline soil is increasing because of multiple factors such as
saline irrigation, ground water salinity and low precipitation [20]. In terms of abiotic stresses, salinity is
the most devastating stress affecting soil quality, plants and microorganism bio-diversity [18].

Using halotolerant PSB to increase soluble P concentrations in P-poor agricultural soils and
to mitigate the harmful effects of salinity has considerable potential for modern agriculture.
Quinoa (Chenopodium quinoa Willd), a herbaceous plant species belonging to the Amaranthaceae
family, is renowned for its ability to withstand drought and salinity [21] and for its remarkable
nutritional value [22]. Quinoa has been recently introduced in Morocco for its revenue-generating
potential, its adaptability to different soil and climatic conditions and for its potential to improve
cropping systems [23].

The characterization of halotolerant PSB-colonizing quinoa plant rhizospheres and their effects on
plant growth have not yet been reported in Morocco. In the present study, we isolated two bacterial
strains from the rhizosphere of Chenopodium quinoa endowed with P solubilization and additional
plant-growth promoting rhizobacteria (PGPR) properties. We also investigated the effect of their
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inoculation on quinoa grown under salinity stress. Together, our data support the potential use of QA1
and QF11 strains as biofertilizers.

2. Materials and Methods

2.1. Soil Sampling

Twelve rhizospheric soil samples of 3-month-old quinoa plants were collected from quinoa fields
of an experimental farm (32.219731E, −7.892268N) at Mohammed VI Polytechnic University-Benguerir,
Morocco. Sampling was carried out in June 2018, peak growing season for quinoa. The soil samples
were taken within 20–30 cm of quinoa plants. Samples including roots and soil aggregates weighing
approximately 50 g were collected from each site, placed individually in sterile plastic bags, stored at
4 ◦C and immediately transported to the laboratory. All samples were stored at 4 ◦C until use [24].

2.2. Isolation and Screening of Phosphate Solubilizing Bacteria on Plates

One g of soil from each sample was aseptically transferred to a tube containing 9 mL of sterile
distilled water and then shaken for 30 min. Afterwards, a series of decimal dilutions (10−1 to 10−6)
of the soil suspensions were carried out in Eppendorf tubes. To isolate potential PSB, 100 µL of each
dilution was plated on TSA (EMD Millipore, Berlin, Germany) nutrient agar following the standard
spread plating technique. A total of 79 bacterial isolates exhibiting different morphological aspects
were spot inoculated on NBRIP (National Botanical Research Institute’s phosphate) agar medium
plates [25] consisting of (g/L) dextrose 10; hydroxyapatite 5 (purum p.a., ≥ 90% (as Ca3(PO4)2,KT);
ammonium sulphate 0.5; potassium chloride 0.2; sodium chloride 0.2; magnesium sulphate 0.1;
ferrous sulphate trace; manganese sulphate trace; and agar 15. The pH was adjusted to 6.75 ± 0.25
before autoclaving [16]. Plates were incubated at 30 ◦C and checked daily over 7 days for the appearance
of transparent halos indicating P-solubilizing ability. Colonies showing discrete halo zones were
purified on the same medium and stored at −80 ◦C in cryotubes using 10% dimethyl sulfoxide (DMSO)
as a cryoprotective agent.

2.3. Quantitative Assay of Phosphate Solubilization in Liquid Medium

The plate assay is a relative efficiency test and is not a precise method to identify whether or not a
strain is a P solubilizer [26]. Thus, P solubilization activity was then quantified using hydroxyapatite as a
sole source of insoluble P in NBRIP broth medium [25]. The isolates were individually grown overnight
in TSB broth medium and the optical density (OD600nm) was adjusted to 0.8. The bacterial suspension
(100 µL) was inoculated in 250 mL Erlenmeyer flasks containing 50 mL of NBRIP broth. The resulting
media was incubated for 5 days at 30 ◦C under 150 rpm shaking and centrifuged at 12,000 rpm for
10 min [16]. The supernatants were filtered through 0.22 µm sterile syringe filters to remove insoluble
materials [14]. The cell-free supernatants were diluted (1/50) and used to colorimetrically measure the
soluble P content using a Continuous Flow Analyzer (SKALAR SAN++ SYSTEM). Uninoculated NBRIP
medium served as a control. The final pH of the supernatants was also recorded. The experiment was
performed in triplicate.

2.4. DNA Amplification and Sequences Analysis

The taxonomic identification of selected PSB was carried out using the 16S rRNA and the
chaperonin-60 (Cpn60) genes sequencing. Primers pA (5′-AGAGTTTGATCCTGG CTCAG-3′) and
926R_Quince (5′-CCGYCAATTYMTTTRAGTTT-3′) [27] were used to amplify the 16S rRNA gene,
while degenerated primers H279 (5′-GAIIIIGCIGGIGAYGGIACIACIAC-3′) and H280 (5′-YKIYKITCI
CCRAAICCIGGIGCYTT-3′) were used for Cpn60 gene amplification [28]. All PCR reactions were
carried out in 50 µL final volume containing 23 µL DNAase free water, 25 µL MyTaq Mix (Thermo
Fisher, Casablanca, Morocco), 1 µL of forward and reverse primers at 20 µM final concentration,
and 1 µL of fresh overnight bacterial cultures as DNA matrix. The PCR cycling for both 16S rRNA and
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Cpn60 was performed, using the VWR® thermal cycler, as follows: initial denaturation at 94 ◦C for
5 min, followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing at 54 ◦C for 30 s and elongation
at 72 ◦C for 1 min, with the final extension programmed at 72 ◦C for 10 min. Used primers for 16S rRNA
gene target variable regions V1–V5. The PCR products (~1000 bp for 16S rRNA sequences, and ~600 bp
cpn60 amplicons) were commercially sequenced. Generated DNA sequences were analyzed using
SILVA program [29] (for 16S rRNA sequences) and alignment search using BLAST tool on NCBI
(for 16S rRNA and Cpn60 sequences) database [30]. The 16S rRNA sequences were deposited to
NCBI GenBank and the accession numbers were provided. The phylogenetic tree was built using the
neighbor-joining method using UGENE software [31].

2.5. In Vitro Screening for PGP Activities

2.5.1. Indole-3-Acetic Acid (IAA) Production Assay

Quantification of IAA (indole-3-acetic acid) produced by PSB strains was estimated by growing
them in TSB broth amended with 0.1% L-tryptophan as a precursor of IAA [32]. Selected PSB were
cultured in 50 mL of prepared medium and incubated at 28 ± 2 ◦C and 150 rpm shaking for 7 days [33].
The bacterial cultures were next centrifuged at 12,000 rpm for 10 min at 4 ◦C and the supernatants were
filtered through 0.22 µm sterile syringe filters. Two mL of Van Urk Salkowski reagent consisting of 1 mL
of 0.5 M FeCl3 and 50 mL of 35% HClO4 was mixed with 1 mL of each filtrate. Following incubation
in a dark space for 30 min at room temperature, the development of a pinkish color indicated the
production of IAA. Absorbance was then measured at 535 nm. The concentrations of IAA produced
were estimated according to a standard curve using pure IAA (Sigma Aldrich, Overijse, Belgium) for
concentrations in 0–100 µg/mL range.

2.5.2. Bacterial Salinity and Heat Stress Monitoring

To assess the salinity tolerance of selected PSB, each isolate was streaked on TSA plates
supplemented with different NaCl concentrations ranging from 0 to 2400 mM and incubated at
30 ◦C for 48 h. Bacteria were further tested in TSB broth using 48-well microtiter microplates to
determine the maximal growth and minimal inhibitory salt concentrations. Briefly, 2 µL of each
bacterial culture (OD600nm = 0.8) was inoculated in 500 µL TSB supplemented with various NaCl
concentrations (0 to 2700 mM) and incubated at 30 ◦C under shaking of 150 rpm. Growth patterns after
48 h incubation were measured at 600 nm using the VICTOR NivoTM Multimode Plate Reader (Perkin
Elmer, Casablanca, Morocco). [34]. Selected PSB were also examined for their ability to tolerate heat
stress. In brief, we streaked each bacterium on TSA medium and the plates were incubated at different
temperatures ranging from 30 to 60 ◦C. Post 24 h of incubation, thermotolerance were determined by
observing bacterial growth on plates [35].

2.5.3. Biofilm Formation Assay

Biofilm formation was assessed using the colorimetric assay [36]. Fresh overnight culture of each
bacterium was diluted to 1/100 in TSB broth and 200 µL of each bacterial suspension (OD600nm = 0.8)
was inoculated in triplicate into a 48-well microtiter microplate. Uninoculated media was used as
a negative control. The microplate was incubated at 30 ◦C for 24 h. Next, the supernatants were
aspirated using VACUSIP system and the bacterial pellets were washed three times with 200 µL of
the phosphate-buffered saline (PBS) to remove planktonic bacteria. Biofilm formation was monitored
by adding of 2% crystal violet for 15 min at room temperature. The excess dye was removed by
washing with distilled water. The bacterial biofilm was solubilized using 200 µL of 95% ethanol and
the OD600nm was measured using the VICTOR NivoTM Multimode Plate Reader. The OD values were
taken as an index of biofilm formation.
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2.5.4. Siderophores Production Assay

Qualitative assessment of siderophore-producing capacity of selected PSB was performed using
agar CAS (Chrome Azurol S) assay [37]. Four solutions were used: Fe-CAS indicator solution (1),
buffer solution (2), mixing salt solution (3) and casamino acid solution (4). To prepare solution (1),
0.06 g CAS was dissolved in 50 mL distilled water and mixed with 10 mL iron solution (1 mM
FeCl3.6H2O, 10 mM HCl). Under shaking condition, this solution was added to 0.073 g HDTMA
(hexadecyltrimethylammonium bromide) dissolved in 40 mL distilled water. The blue solution
was autoclaved and cooled to 55 ◦C. To prepare solution (2), 32.24 g PIPES (Pipérazine-N, N’-bis
(2-éthanesulfonique)) was dissolved in 7.5% of solution (3) containing (in 100 mL distilled water) 3 g
KH2PO4, 5 g NaCl and 10 g NH4Cl. The pH of the PIPES solution was adjusted to 6.8. Solution (2)
was autoclaved after adding 15 g agar to solution (4), 3 g of casamino acid was dissolved in 27 mL
of distilled water and sterilized using 0.22 µm filters. The four solutions were mixed and poured on
plates. After solidifying, plates were spot inoculated with each isolate and incubated for 7 days at
30 ◦C. Siderophore-producing bacteria form a halo around colonies due to iron chelation. Results were
visually analyzed in terms of halo width against the blue medium. The experiment was performed
in triplicate.

2.5.5. Ammonia Production Assay

Ammonia production activity of selected PSB was performed as described by Cappuccino JC et al.,
(1992) [38]. Briefly, 100 µL (OD600nm = 0.8) of each bacterial suspension was inoculated into tubes
containing 10 mL of peptone water, incubated at 30 ◦C and shaken at 150 rpm for 96 h. Uninoculated
medium served as the negative control. Afterwards, 1 mL aliquots were taken and centrifuged at
10,000 rpm for 10 min. Next, 0.5 mL of Nessler’s reagent was added to each supernatant. The ammonia
production was considered positive following the development of a brownish coloration and absorbance
was measured at 450 nm. The concentrations of ammonia were estimated using a standard curve of
ammonium sulphate for concentrations in 0–0.3 µmol/mL range [39].

2.5.6. HCN Production Assay

The PSB isolates were tested for hydrogen cyanide (HCN) production by adapting the method
of Lorck et al. (1948) [40]. Briefly, TSA medium was amended with 0.44% glycine and 100 µL
(OD600nm = 0.6) of each strain was flooded on poured agar plates using a sterilized glass spreader.
A Whatman filter paper was soaked in 0.5% picric acid in 2% sodium carbonate for 1 min and stuck
below the plates’ lids. The Petri dishes were sealed with parafilm and incubated at 30 ◦C for 96 h.
HCN production was monitored on Whatman paper following color shift from yellow (conferred by
sodium picrate solution) to orange or brown. The experiment was performed in triplicate.

2.5.7. Extracellular Enzymes Production

Selected PSB were qualitatively assessed for protease and cellulase production. Proteolytic activity
was analyzed according to the method of Kavitha et al. (2013) [41] using a medium containing (in 1 L
of distilled water): 5 g pancreatic casein, 2.5 g yeast extract, 1 g glucose and 15 g agar. The pH of the
medium was adjusted to 6.75 ± 0.25 and then autoclaved. After cooling, 100 mL of a 10% sterilized
skim milk solution was added to the medium which was then seeded by spot inoculation method.
The clear zones around colonies appearing after 48 h indicate positive proteolytic activity. To check
cellulase activity, bacteria were incubated on mineral salt agar plates containing 0.4% (NH4)2SO4,
0.6% NaCl, 0.1% K2HPO4, 0.01% MgSO4, 0.01% CaCl2, 0.5% carboxymethyl cellulose sodium salt
(CMC) and 2% agar. At the end of the incubation, 1% Congo Red solution was poured on the surface
of grown culturesduring 20 min. Next, plate surfaces were flooded with 1 M NaCl solution and left to
stand for 30 min. The appearance of halos around colonies indicates the degradation of CMC and
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reflects cellulase production [42]. The experiments were carried out in triplicate and the diameters of
the halos were measured in centimeters.

2.6. In Vivo Assessment of Selected PSB Strains

2.6.1. Seed Germination Assay

Quinoa (Chenopodium quinoa Willd.) seeds were firstly sorted to eliminate those with damageable
aspects. Next, seeds were surface sterilized with 2% sodium hypochlorite solution for 1 min, shaken in
70% ethanol for 1 min and washed 5 times in sterilized distilled water followed by air-drying under
laminar flow hood. The bacterial pellets (OD600nm = 0.8) were obtained from fresh cultures by
centrifugation at 10,000 rpm for 5 min. Each bacterial pellet was resuspended in 10 mL of sterile
distilled water, vortexed for 10 s and used for seed treatment. Bacterial suspensions were applied
as seed drenches with a ratio of 10 mL per 90 seeds for 1 h [43]. Afterwards, seeds were air-dried
and placed on plates containing 0.7% sterilized agar [44]. Thirty seeds were placed on each plate.
Triplicates of each treatment were maintained and seeds treated with sterilized distilled water were
used as negative control [34]. The plates were maintained at 25 ◦C for 48 h in the dark [43] and
germination rates were monitored 24 h and 48 h post-incubation. After three days, the plates were
maintained at room temperature in a day/night cycle (~12/12 h) for an additional 72 h and the total
length and fresh and dry weight were measured. The germination rate and vigor index were computed
according to the following equations [45]:

Germination rate (%) = (Number of germinated seeds ÷ Total number of seeds) × 100 (1)

Vigor index = Germination rate (%) × Total seedling length (cm) (2)

2.6.2. In Vivo Experiment under Saline Conditions

An experimental pot study was conducted under shade house conditions using selected bacteria
as bioinoculants. Quinoa (Chenopodium quinoa Willd.) seeds were inoculated with individual strains as
outlined for the seed germination essay. We used plastic pots (height 18 cm, diameter 20 cm) containing
5 kg of substrate composed of mixture of sterilized sand and agricultural soil (3:1). Fifteen inoculated
quinoa seeds were sown at ~2 cm depth in each pot with four replications per treatment arranged in
complete randomized design (CRD). Ten days after sowing, the number of seedlings were reduced to
two per pot. At the two-leaf stage, each pot was inoculated with 20 mL of corresponding bacterial
suspension (OD600nm = 0.8). Pots were watered once a day with tap water until the start of saline
irrigation. Bacterial and irrigation treatments performed in this experiment are described in Table 1.

Table 1. Pot study work plan.

0 mM NaCl 400 mM NaCl

Symbol Treatment Symbol Treatment

C- Seeds and plants treated with sterilized
distilled water (Negative control) C- Seeds and plants treated with sterilized

distilled water (Negative control)
QA1 Seeds and plants treated with QA1 strain QA1 Seeds and plants treated with QA1 strain
QF11 Seeds and plants treated with QF11 strain QF11 Seeds and plants treated with QF11 strain

At the five-leaf stage, quinoa plants were watered daily with two irrigation treatments. The first
set of pots was exposed to non-saline irrigation (0 Mm NaCl) with tap water, while the second was
irrigated by saline solution of 400 mM NaCl [46], corresponding to 2.32% NaCl. The concentration of
saline irrigation solution was progressively increased [46] in 100 mM increments reaching 400 mM
NaCl, maintained until plant harvesting. To avoid drought stress, watering was done so as not to
exceed the water ooze from the pots’ bottoms [47].
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Plant Harvest and Phenotypes Monitoring

Following 45 days of growth, leaf chlorophyll content index (CCI) was recorded using a chlorophyll
content meter (Hansatech instruments, Model CL-01). At day 46, plants were harvested, and the soil was
rinsed off from the roots under tap water. Length and weight of the roots and shoots were determined
as well as leaf area using Petiole mobile application [48]. Dry weights of samples were recorded post
oven-drying at 70 ◦C for 48 h.

Plant Nutrient and Ionic Analysis

The oven-dried plants were separately ground and used as matrices for determination of P,
K, Na+, K+ and Ca2+ contents. The concentration of each element was determined using optical
emission spectrometry coupled with inductively coupled plasma (Agilent 5110 ICP-OES). The results are
expressed as percentage of dry matter (% DM). Quadruplicate sets were performed for each treatment.

2.7. Statistical Analysis

All obtained data were statistically analyzed using IBM SPSS Statistics 20 software. Comparison
between treatments were performed using one-way analysis of variance (ANOVA) followed by post-hoc
analysis with Tukey test. The level of statistical significance was set at p < 0.05.

3. Results

3.1. QA1 and QF11 Are Strains Exhibiting High Phosphate Solubilization Activities

Bacteria isolated from the Quinoa rhizosphere were diluted and plated on TSA. Seventy-nine
single colonies were screened for P solubilization following spot inoculation on NBRIP agar medium
plates containing TCP as the sole source of phosphate. Based on the appearance of surrounding
solubilization halos, two isolates named QA1 and QF11 were selected for further studies. To quantify
P solubilization, the two strains were grown in liquid NBRIP broth supplemented with TCP for 5
days (see Material and Methods: M&M). The two QA1 and QF11 strains showed high capacities
to solubilize P: 346 ± 8.71 mg/L and 220 ± 8.71 mg/L, respectively (Figure 1A). Additionally, the P
solubilization efficiency of QA1 and QF11 correlated negatively with decreased pH of the culture
supernatants (Figure 1A).
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3.2. QF11 Strain Overproduces Indole-3-Acetic Acid (IAA) 

Figure 1. (A) Phosphate solubilization by selected PSB (phosphate solubilizing bacteria) in the presence
of 0.5% hydroxyapatite in NBRIP broth. Drop in pH is indicated by the red line. (B) IAA (indole-3-acetic
acid) production by selected PSB in the presence of 0.1% L-tryptophan. Uninoculated media were
used as a negative control (C-). The values represent means of replicates (n = 3) ± standard deviations.
The different letters in superscript (a, b, c . . . ) indicate the statistically significant difference at 95%
between treatments.
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3.2. QF11 Strain Overproduces Indole-3-Acetic Acid (IAA)

Production of IAA by bacteria is considered one of the remarkable PGPR features. QA1 and QF11
strains were assessed, in vitro, for their capacity to produce IAA in TSB medium supplemented with
0.1% L-tryptophan as a metabolic precursor for IAA synthesis (see Materials and Methods). Seven days
post incubation, both tested strains were able to produce IAA with significantly various concentrations
as illustrated in Figure 1B. The highest amount was obtained in QF11, 795.31 ± 80.06 µg/mL, while QA1
produced 180.5 ± 2.22 µg/mL.

3.3. Strain QA1 Tolerates High Salt Concentrations

Salinity is an abiotic stress that affects bacterial development. To assess the ability of QA1 and QF11
to tolerate salt stress conditions, bacteria were first grown with increasing NaCl concentrations in TSA.
We found that the growth of QF11 was inhibited at 900 mM NaCl while QA1 tolerated 2000 mM NaCl
final concentration (Table 2). Subsequently, salt stress tolerance was tested in liquid medium. Bacteria
grown in TSB containing increasing NaCl concentrations were quantified by measuring the OD600nm

following 48 h of incubation. We found that QF11 showed low salt stress tolerance, with a maximum
growth observed at 0 mM NaCl and decreasing bacterial mass with increasing salt concentrations,
until a total growth inhibition at 1800 mM NaCl. Comparatively, the maximal growth of QA1 strain
was seen at 300 mM NaCl, while its total growth arrest was detected at 2400 mM NaCl (Figure 2B).
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Table 2. Summary of relevant phenotypic traits observed with selected PSB strains using plate assay.

Bacterial Strain Bacterial Treatment QA1 QF11

Extreme properties NaCl tolerance on plates 2 M <0.9 M
Temperature tolerance 55 ◦C 37 ◦C

Siderophore production +++ ++
HCN production +++ +

Extracellular enzymes (Halo Colony diameter) Protease
Cellulase

1.07 ± 0.08
4.21 ± 0.24

−

−

The ‘+’ and ‘−’ signs indicate efficiencies as follow: −, negative result; +, weakly positive; ++, moderately positive;
+++, highly positive.

3.4. QA1 Strain Overproduces Siderophores And QF11 Enhances Biofilm Formation

Siderophores are iron chelators of dual interest; they are an important source of assimilable iron
for plants and participate in spatial colonization against phytopathogens. Thereby, we investigated
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the ability of our two strains to produce siderophores on the CAS-Agar medium (see Materials and
Methods). We found that the amount of siderophores was remarkably higher in QA1 compared to
QF11 strain (Table 2 and Figure 3D).

Biofilm formation by bacteria is an important phenomenon that plays numerous roles in many
physiological processes [49]. Here, using the crystal violet binding assay (see Materials and Methods),
we demonstrated that both QA1 and QF11 strains produce high amounts of biofilm (Figure 2A).
The OD600nm of the negative control did not exceed 0.03.
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Figure 3. Illustration of tests performed on plates for the assessment of PGP (plant growth promoting)
traits of selected PSB. (A) Phosphate solubilization, (B) cellulase production, (C) protease production,
(D) siderophores production.

3.5. Strain QA1 Overproduces Ammonia and Hydrogen Cyanide (HCN)

Ammonia and HCN are chemical compounds exerting various benefits on plant health mainly by
acting as metabolic inhibitors against phytopathogens. The two isolates were able to produce ammonia
but the highest amount (0.7 µmol/mL) was detected using the QA1 strain (Figure 2A). Similarly,
QA1 produced higher amounts of HCN compared to QF11 (Table 2).

3.6. Strain QA1 Overproduces Extracellular Enzymes

Bacterial extracellular enzymes such as proteases and cellulases are involved in soil fertilization
and the biocontrol of phytopathogens through microbial membrane degradation [50]. Therefore,
we monitored protease and cellulase production by the two strains (Figure 3B,C). In the cellulase
production assay, the ratio “halo diameter/colony diameter” was 4.21 for QA1. Protease was also
produced by QA1 (Figure 3C) with a diameter rate of 1.07 (Table 2). Neither protease nor cellulase
activities were detected using QF11 strain.

3.7. QA1 and QF11 Belong to the Genus of Bacillus Licheniformis and Enterobacter Asburiae, Respectively

Phylogenetic analysis of generated DNA sequences of the two strains by 16S rRNA gene sequencing
using NCBI and SILVA databases revealed that QA1 correspond to Bacillus licheniformis (MN810040)
with degrees of 99% proximity, while QF11 is closely related to Enterobacter asburiae (MN810041) with
99.8% similarity (Figure 4). Further cpn60 gene sequencing allowed us to confirm QA1 strain as
B. licheniformis.
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Figure 4. Phylogenetic tree of selected P-solubilizing bacteria, (QA1) Bacillus licheniformis (MN810040)
and (QF11) Enterobacter asburiae (MN810041), based on PHYLIP Neighbor-Joining method of the 16S
rRNA gene sequences using UGENE. The 16S rRNA gene sequences and tree of related species were
downloaded from SILVA database.

3.8. Strain QF11 Increases Seed Germination

Inoculation of seeds, soil or plants by PGPRs, such as PSBs, is a promising approach to improve
global agricultural production and enhance nutrient use efficiency [51]. The bacterial treatment of
quinoa seeds showed that our two strains exerted a significant positive influence on early plant growth,
namely on germination rate, total length and fresh and dry weights (Table 3 and Figure 5A). However,
these effects varied with the two isolates. Synoptically, coated seeds with bacterial suspensions showed
a significant increase in germination rate especially after 24 h of incubation, ranging from 153% to 305%
as compared to control seeds (surface sterilized and then treated with sterile distilled water). The same
effect was recorded on the total length of seedlings, with a significant increase ranging from 50.5% to
211%. Likewise, germinated Quinoa seeds showed 14%–38% and 10%–75.7% increase in fresh and
dry weights, respectively. The significant differences among isolated strains on seedling vigor index
are graphically schematized in Figure 5B. The performances were classified in the following order:
QF11> QA1 > C- (Table 3 and Figure 5B).

Table 3. Effect of strains QA1 and QF11 on quinoa seed germination parameters.

Parameter Incubation Time C- QF11 QA1

Germination rate (%) 24 h 16.6 ± 6.65 c 67.3 ± 12.5 a 43.2 ± 6.7 b

48 h 58.6 ± 5.13 c 77.6 ± 6.8 a 67.7 ± 5.09 b

Total length (cm) 1.7 ± 0.55 c 5.3 ± 0.32 a 2.56 ± 0.94 bc

Fresh weight (mg) 36 ± 10.5 c 50 ± 10.8 a 41.3 ± 3.51 bc

Dry weight (mg) 6.6 ± 1.52 b 11.6 ± 2.51 a 7.3 ± 1.52 ab

C- (Negative control), seeds treated with sterile distilled water; QA1, seeds treated with PSB QA1; QF11, seeds treated
with PSB QF11. The numerical values represent means of replicates (n = 3) ± standard deviations. The different
letters in superscript (a, b, c . . . ) indicate the statistically significant difference at 95% between treatments.
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3.9. B. licheniformis QA1 Improves Shoot Biomass while E. asburiae QF11 Enhances Root Development

Interactions of bacteria within the tripartite “plant–soil–microbes” microcosm are determinants for
their functional diversity. Therefore, an in vivo test is of considerable importance as it simulates field
conditions. As expected, inoculated quinoa plants showed a higher growth capacity compared
to uninoculated plants which produced a lower quantity of biomass (Figure 6). Interestingly,
QF11 significantly promoted root development and weight under non-saline irrigation (Figures 6
and 7A,C,F) by 381.48% for root fresh weight and 61.22% for root length. Moreover, saline irrigation
negatively affected plant growth compared to sets irrigated by non-saline water (Figure 7C,F).Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 23 
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(0 mM NaCl) and saline (400 mM NaCl) irrigations. (A) Root length, (B) shoot length, (C) root fresh
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chlorophyll content index. The values represent means of replicates (n = 4) ± standard deviations.
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3.10. B. licheniformis QA1 Strain Increases Leaf CCI, P and K+ and Decreases Na+ Uptake

To further characterize the effect of bacterial inoculation under salt or free salt treatments,
we monitored leaf CCI. QA1 significantly affected the CCI of leaves. Under the first salt-free treatment,
the QA1 was performant with an improvement of 60% in CCI. Following saline irrigation, a significant
increase was recorded using QA1 (110.37%), but this difference was however not statistically significant
(Figure 7H).

The level of P in plants is a critical growth parameter. Thus, we analyzed its content and revealed,
that under free-saline treatment, bacterial inoculation improved P mobilization to plants. P uptake was
higher, 41.17%, upon inoculation with QA1 compared to uninoculated plants. In contrast, no significant
differences were observed under saline irrigation compared to control plants (Figure 8A).Microorganisms 2020, 8, x FOR PEER REVIEW 15 of 23 
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(P) and salt ions by quinoa plants. (A) P (B) Na+ (C) K+ (D) Ca2+. The values represent means of
replicates (n = 4) ± standard deviations. The different letters in superscript (a, b, c . . . ) indicate the
statistically significant difference at 95% between treatments.

To evaluate the effect of our bacteria in the mitigation of salt impact, we next studied the ionic
balance in Na+, K+ and Ca2+ ions within inoculated quinoa plants. There was no observed difference
in Na+ and K+ uptake under non-saline irrigation compared to control plants (Figure 8B,C). However,
under saline irrigation, bacterial inoculation induced a significant effect on Na+ and K+ content. In fact,
Na+ concentration decreased by 63.63% using QA1 and 28.57% using QF11, but for QF11 this difference
was not statistically significant. Conversely, the K+ content significantly increased especially in the
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QA1 isolate (32.55%) (Figure 8C). As for Ca2+ accumulation, no significant differences were detected
between the two treatments (Figure 8).

4. Discussion

Plants develop strategies to reduce adverse environmental effects by attracting diverse beneficial
microbes in their rhizosphere [52]. Bidirectional interactions between the plants and their rhizosphere
can mitigate the effect of stressful conditions [53–55]. A bulk of studies have suggested that the
presence of PSBs can increase a plant’s tolerance to various abiotic stresses (e.g., drought, salinity,
and nutrient deficiency) [56,57]. PSB have been isolated from the rhizosphere of several plants,
including wheat [58], corn [59] and rice [60]. However, only few studies have reported on the PSB
associated with quinoa roots [46,61]. Here, for the first time, we isolated native PSB associated with
quinoa roots from Moroccan soils and assessed their role in quinoa plant growth under variable
soil salinity conditions. Out of 79 isolates, two strains (QA1 and QF11) have been characterized for
their potential PGBR properties and genotyping analysis revealed that QA1 and QF11 correspond to
B. licheniformis, and E. asburiae, respectively.

To reduce abiotic stresses such as salinity, plants naturally trigger several physiological
responses including phytohormone synthesis, antioxidant production and nutrient uptake regulation.
Increased soil salinity induces Na+ accumulation in the plant tissues, which negatively affects
plant growth by increasing the level of reactive oxygen species (ROS) that inhibit photosynthesis.
Plant salinity stress is underpinned by the adverse effect of ROS on cellular protein oxidation and
DNA mutation, leading to alterations of either cellular integrity, gene expression or toxic reactions [62].
Previous experimental findings indicated that PGPR could assist plants to tolerate increased salinity [4].
PGPR are known to aid the maintenance of a propitious equilibrium between Na+ and K+ ions and
therefore protect plants from salt stress damage. To counter the effect of salinity on the plant, PGPR also
produce protective molecules (e.g., auxins, gibberellins, cytokinins, proline and pyrroquinoline quinone
(PQQ)) [63]. Increased production of these protective molecules by PGPR can result in an accentuated
nutrient uptake by host plant grown in salt-exposed soils [64].

We have shown, in this study, that QA1 and QF11 exhibited PGPR properties. Inoculating quinoa
plants with QA1 or QF11, under non-saline conditions, enhanced plant growth (Figure 7A–H).
The PGPR properties of QA1 and QF11 strains are translated by their capacity to increase P availability
to the plant (Figure 8A). The highest level of soluble P was detected in the culture supernatant
of B. licheniformis QA1. Not surprisingly, P solubilization was reflected by medium acidification,
most likely due to a low amount of organic acids release by bacteria [65].

QA1 and QF11 both produced siderophores. However, QA1 showed a higher performance
in producing siderophores compared to QF11 (Figure 3). Siderophores are known to enhance P
availability [9], as they solubilize minerals and chelate heavy metals, which in turn increases nutrient
uptake and plant growth [66]. Whipps in 2001 reported that the low iron availability in soil would
suppress plant pathogenic fungi [67]. In agriculture, iron chelation through bacterial siderophores is
a desired trait of dual interest: on one hand, it represents an important source of iron for the plants;
on the other hand, it represents a competitive trait for spatial colonization against phytopathogens [68].
Jetiyanon et al. (2015) have shown that the catechol siderophore enterobactin produced by Enterobacter
asburiae strain RS83 enhances plant growth [69]. Plant growth is also promoted by nitrogen (N)
derivatives, especially ammonia, as they provide a direct source of N to the plant [70]. In line
with this, Enterobacter species have been previously reported to fix nitrogen [71,72]. In our study,
we found that QA1 and QF11 both produced HCN and ammonia, which counteract a wide range of
fungi-causing diseases in plants [73,74]. Pathogenic diseases also control involved bacterial production
of proteases and cellulases. We showed that B. licheniformis QA1, but not QF11, produce both enzymes,
suggesting that it counteracts plant soil salinity by transforming soil composition at both biological
and chemical levels [75], likely via microbial metabolites actions [50].
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As previously reported, PGPR inoculation of seeds, soil or plants is considered as an innovative
method to enhance agricultural yield [51]. We demonstrated here that QA1 and QF11 grew on plates
up to 2000 mM and 900 mM of NaCl, respectively. However, in liquid media, the maximal growth was
reached at 300 mM NaCl for QA1 while the growth arrest was observed at 2400 mM NaCl. A recent
report showed that optimum growth conditions for Bacillus megaterium, Staphylococcus haemolyticus and
Bacillus licheniformis occurred at 300 mM of NaCl concentration, while 1500 mM NaCl led to growth
arrest [34]. Comparatively, it appears clearly that QA1 strain looks more tolerant to salinity stress.

Given that QA1 and QF11 are halotolerant and exhibit PGPR traits, we investigated their role on
quinoa plant growth under saline conditions. Indeed, PGPR could be a considerable boost to plant
growth under harsh conditions (e.g., soil salinity) via the release of growth-promoting substances and
regulators [18]. We have not observed a significant difference in plant growth and yield parameters
under 400 mM NaCl treatment, except on the root system, P assimilation and Na+ and K+ absorption.
(Figures 7B and 8). Salt accumulation in the rhizosphere induces negative water potential in the
root system by reducing water absorption [76]. In accordance with this, significantly lowered root
fresh and dry weights (Figure 7C,F), were seen in quinoa plants. QA1-inoculated plants displayed
higher CCI of leaves, suggesting a stronger photosynthetic capacity. The maintenance of growth
efficiency of inoculated plants strongly suggests that, despite the saline treatment, the photosynthetic
apparatus is not substantially damaged [77]. Salt stress is generally reflected by an increased ionic
toxicity, which in turn induces protein conformational changes owing to K+ replacement by Na+.
Several enzymes require high concentration of K+ as a cofactor. In addition, K+ is also involved in
protein synthesis by promoting tRNA interaction to ribosome [78]. We highlighted the increased levels
of K+ in the DM under saline stress compared to non-saline treatment (Figure 8C) and such a finding
is consistent with previous studies on quinoa and wheat [79–81]. Another study has suggested that
quinoa plants use Na+ for osmotic adjustment to maintain a favorable K+/Na+ ratio content in the
plant [82]. It is also known that halotolerant bacteria can accumulate osmolytes under stress conditions.
Indeed, Qurashi and Sabri (2013) [83] reported that the halotolerant bacterial strains, S. haemolyticus
and B. subtilis, isolated from saline rhizosphere of chickpea can moderately accumulate endogenous
osmolytes, such as betaine, glycine and proline, and enhance plant growth by reducing salt stress.

Salt stress also causes hormonal dysregulation. Our two strains have the capacity to produce IAA
(e.g., strains QA1 and QF11 produced 795.31 µg/mL and 180.5 µg/mL of IAA, respectively) leading to
root elongation. Zhao et al. (2011) [84] have shown that Enterobacter asburiae HPP16 strain produced
170 mg/L of IAA in culture suspension post 35 h incubation [69]. The level of IAA produced by QA1 is
also consistent with reported data in Bacillus licheniformis ML3 (e.g., 174.72 µg/mL) [85]. IAA, being the
first class of phytohormones to be identified, virtually regulate all physiological aspects of plant
development and are used as a marker to select beneficial bacteria [86]. Furthermore, auxin production
is known to stimulate root development, which results in better absorption of water and nutrients
from the soil [87]. Interestingly, QF11 significantly promotes quinoa root development and weight
under non-saline irrigation by 381.48%, 79.64% and 61.22% for root fresh weight, dry weight and root
length, respectively. The remarkable effect of QF11 on root development is likely attributed to the
increased IAA production (Figures 6 and 7A,C,F). Comparatively, our results support the role of IAA
in inducing morphological changes, increased length of the root as well as number of root hairs/laterals,
which are crucial for nutrient uptake [88]. In addition, Bacillus, Pseudomonas and Enterobacter applied
as bioinoculants promote plant growth and biomass through production of phytohormones (e.g.,
auxins and cytokinins) [66,89]. In this aspect, growth and grain yield improvement of wheat plants
were associated with PSB inoculation and phytohormone-producing strains such as Azospirillum,
Bacillus and Enterobacter [90].

In the present study, reducing the effect of Na+ accumulation in quinoa plants post inoculation with
QA1 and QF11 could be also attributed to Na+ chelation by exopolysaccharides (EPS), which therefore
restrict uptake by the plants [91]. Consequently, the reduced Na+ availability increased K+ absorption
and improved water acquisition. In the rhizosphere, PGPR are often organized into biofilms [49].
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Accordingly, we showed that QA1 and QF11 form biofilms that are mainly composed of EPS,
suggesting that this may engender plant resistance to salinity [92]. Such a body of evidence clearly
suggests that QA1 is the most effective strain in promoting plant biomass, reducing Na+ accumulation
and enhancing K+ uptake. Comparatively, our data are in-line with previous findings [93] whereby
wheat inoculation with Bacillus licheniformis HSW-16 showed a significant tolerance reaching up to
200 mM NaCl.

5. Conclusions

To the best of our knowledge, the present study reports the first isolation, identification and
characterization of PSB strains from the rhizosphere of quinoa isolated from Moroccan soil. PSB strains
were tested for their multiple PGPR activities and were identified as B. licheniformis and E. asburiae.
The two identified halotolerant strains showed promising results in terms of phyto-benefic properties.
Treated quinoa seeds with the two strains (B. licheniformis and E. asburiae) did significantly improve
germination rate and seedling height and weight. E. asburiae QF11 was found here to be the most
efficient strain for promoting early plant growth. QA1 also improved quinoa growth and reduced
Na+ uptake. Nevertheless, more in-depth studies would elucidate the impact of bacterial inoculation
on the phytohormonal profile, antioxidant activity and soil properties. Further investigations would
shed light on the role of B. licheniformis and E. asburiae in halotolerance. Bacterial transcriptional
analysis might lead to the identification of regulated genes associated with growth-promoting effects.
Translating our laboratory findings on QA1 and QF11 using not-sterilized soils on pots and into field
experiments upon quinoa plant inoculation is paramount. Finally, our findings strongly suggest the
use of B. licheniformis QA1 and E. asburiae QF11 strains as suitable biofertilizers.
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