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a b s t r a c t 

The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids 

and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) 

installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE 

can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible 

or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, 

through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of 

fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation 

measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version 

of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. 

Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration 

of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor 

extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids. 

• We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of 

seafloor fixation, through ROV- or submersible assisted mobile pumping systems. 
• We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid 

sampling, suspended particle filtration, and organic matter extraction on the seafloor. 
• We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM. 
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4 , 15 , 20] . Opportunities to study the sedimented ridge-flank basement are provided by Circulation

bviation Retrofit Kit (CORK) observatories installed in selected sealed boreholes drilled by Ocean

rilling Program (ODP; [9] ) and Integrated Ocean Drilling Program (IODP, [10] ). 

In the early deployments, CORKs were designed as “instrumented borehole seal,” and used to

rovide the opportunity for long-term hydrogeological or seismic monitoring [6] . Later, fluids flowing

hrough a spigot of an over-pressured CORK observatory at borehole 1026B (ODP 168) allowed the

ollection of suspended particles and organics with a custom-build BioColumn device for probing the

ub-basement biosphere [4 , 5] . However, as fluids flow through the interior of the CORK, they can

ome in contact with the low alloy steel casing and casing cement, which may impact the chemical

nd biological integrity of the fluids. In fact, extensive biofilms have been observed on scrapings from

he CORK steel after removal from borehole 1026B [21] . After Cowen et al. [4] revealed the existence

f a diverse basement community, new advanced designs of CORKs provided samples with reduced

ontamination suitable for biogeochemistry and biological studies [1 , 8 , 25] . Critical improvements

elated to the subbasement microbial biosphere studies include the installation of fluid delivery lines

FDLs) made of stainless steel and Tefzel (i.e., ethylene tetrafluoroethylene, ETFE), intake gratings, and

asings adjacent to FDL intake gratings with titanium screens at the fluid intake in the basement [3] .

owever, the FDLs created significant drag of the fluid flow, and pumping was required to draw fluid

hrough the 260-400 m long pipes. 

Seafloor sampling systems were, subsequently, designed, and developed to collect high-quality

arge-volume basement fluid and suspended particles via CORK FDLs [3] . The advanced GeoMICROBE

nstrument provides an autonomous fluid and particle sample collection capability in a time-series

anner [3] . A standard GeoMICROBE instrumented sled composed of a primary three-to-one solenoid

alve system, a positive displacement primary pump, an Optode oxygen sensor, a temperature sensor,

 flow sensor, and two McLane 25-port valve manifold systems for fluid sampling and filtration,

 custom-build computerized controller (Rabbit Controller), seven 24 V-40 A Deep Sea Power and

ight batteries, a battery splice controller, and a wet-mateable (ODI) communication system with

ubmersibles. The custom-built primary pump (named Mega Pump) consists of titanium and Teflon

etted parts manufactured by Micropump®, now a unit of IDEX Corporation, USA. The GeoMICROBE

ad been deployed for one year along the Juan de Fuca Ridge flank [3] and for 1.5 years at North

ond CORKs in the Atlantic Ocean [20] , collecting valuable samples for subbasement microbial and

eochemical research. Major components of the GeoMICROBE system, including the pump, sensors,

nd the controller, were transformed into a mobile pumping system (MPS). The MPS was installed on

he front basket of a submersible or a remotely-operated-vehicle (ROV). The versatile MPS system

s able to supply crustal fluids into medium volume bag samplers (MVBS; 15L), large volume

ag samplers (LVBS; 60L), or direct filtration of fluids, providing samples for microbiological and

iogeochemical research [15 , 16] . 

In this work, we focus on a modification to the MPS for dissolved gas sampling. Gastight

amplers [7] permit precise sampling of hydrothermal fluids for dissolved gas analyses. The gastight is

articularly suitable for holding dissolved gas under pressure for up to a month [17 , 18] . However, the

ptake rate of the gastight sampler is > 100 mL/s, whereas the fastest fluid delivery rate of our MPS

ump is 83 ml/s (5 L/min). Previously, the highest quality gastight sample we were able to collect

rom a CORK FDL for dissolved gas analyses in 2010 contained only 40% hydrothermal end-member

uid, with background seawater constituting the remaining 60% [16] . A hydrothermal-fluid trap was

hus designed to significantly improve the sample quality to 94-100% end-member fluid [17] . Here, we

escribe the details of the evolving designs of the hydrothermal-fluid-trap that have lead to successful

tudies of dissolved methane, hydrogen [17] , and primordial gas helium-3 ( 3 He) [18] . 

We also describe the application of the MPS to in situ experiments. With the MPS-bag system,

ven when the sampling bags were pre-evacuated, the plumbing materials allowed trace amounts of

xygen to diffuse into the sampling bags, leading to an increase in dissolved oxygen of up to 4 μM

hen the sample bags were recovered shipboard (Lin et al., unpublished). This amount of oxygen is

ufficient to oxidize reduced compounds such as dissolved iron and dissolved hydrogen sulfide present

n the system, leading to difficulty in evaluating the redox status and the energy available for the

eep-subsurface microbial biosphere. To circumvent this issue, we demonstrate a mean to pre-charge
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Fig. 1. Schematic illustration of flow diagram of the advanced Mobile Pumping System (MPS) coupled to a hydrothermal-fluid- 

trap on the front basket. A 25-port McLane valve system, a medium volume bag sampler (MVBS), 500 mL pre-chargeable bag, 

filter holders on the back basket. Purple cable provides power and communication to MPS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sample bags with fixatives in order to preserve a reduced compound (in this case, dissolved Fe 2 + ) in
situ. 

Lastly, we provide descriptions on a versatile miniature Mobile GeoMICROBE (MGM) modified from 

a standard GeoMICROBE, and demonstrate its utility for investigating dissolved organic matter in the 

deep subseafloor [19] . The MGM minimizes the idle time of a submersible or a ROV on the seafloor

to accommodate the slow pump rates for successful filtration and organic matter extraction. Typical 

filtration and extraction rates were 80–100 mL/min to avoid the backpressure created by the filter and

lead to biased results on the recovery of microbial biomass. The minimum sample size for organic

characterization is 20 L, which took at least 200 mins. An entire submersible dive of 8 hours only

allows the collection of three samples. Thus, the MGM significantly increases our filtration and organic

extraction capability. 

Method 

Mobile pumping system (MPS) 

Overview 

Submarine ridge flank hydrothermal fluids were drawn from the basement through a CORK FDL 

by the MPS secured on the front basket of the ROV Jason ( Figs. 1 and 2 ). A matching Aeroquip or

Jannasch connector [25] connected the MPS to the outlet of the CORK FDL located on the CORK head.

The Mega Pump pushed the hydrothermal fluid past an Aanderaa oxygen Optode (Xylem Analytics, 

U.S.A), an SBE 38 temperature sensor (SEA 

•BIRD Scientific, U.S.A), and an FCH-mini-PVDF flow sensor

(Biotech, Germany). A three-way ball-valve then directed the sample fluid either to the hydrothermal- 

fluid-trap or to a 25-port valve system (McLane, U.S.A.), and then into sampling bags (MVBS, or 500

mL bags) or filters located at the back basket of the ROV Jason ( Fig. 2 ). 

Flushing 

The Mega Pump pulled basement fluids at a flow rate of 5 L/min through the FDL. A sufficient

pumping time allowed the flush of at least six times of the FDL volume to remove stagnant fluids in

the FDL. Table 1 provides the flush time calculated from the pumping rate, the inner diameter of the

FDL, and the lengths of the FDLs. For example, pumping at 5L/min for forty-four minutes flushed a
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Fig. 2. Photos of sampling systems. (a) The mobile pumping system (MPS) on a remotely operated vehicle (ROV). (b) In situ 

experiment demonstrating the importance of fixative addition for preserving the redox sensitive chemical species. (c) Valve 

system and medium volume bag sampler (MVBS) located on the back basket of an ROV. 

Table 1 

Flushing time calculated based on the inner diameters of the fluid delivery lines of a few selected 

CORKs installed in IODP boreholes 1362A and 1362B. 

1362B 1362A Shallow 1362A Deep 

Length of Line 290 320 450 

Inside Diam (in) 0.5 0.5 0.5 

Inside Diam (mm) 12.7 12.7 12.7 

Inside Diam (m) 0.013 0.013 0.013 

Radius (m) 0.0064 0.0064 0.0064 

FDL Volume (m 

3 ) 0.037 0.041 0.057 

FDL Volume (L) 37 41 57 

6 times FDL Volume (L) 220 243 342 

Pumping rate (L/min) 5 5 5 

Time to flush (min) 44 49 68 
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90 m-long FDL with 0.5-inch diameter six times. During flushing, the basement fluids also flushed

he “fluid-trap” reservoir ( Fig. 1 ). 

ower and communication 

The MPS required a 48 V power supply from ROV Jason to the MPS controller, which operated the

ega Pump and sensors. The McLane valve system in the ROV back basket required a 24 V power

upply from ROV Jason. The control van powered the MPS control box, which communicated between

he MPS controller in the front basket to a custom-build computer program. The Optode oxygen sensor

lso received power and communication through the ROV Jason junction box and the readout shown

n a screen in the control van. 

ag samplers 

The bag samplers were composed of custom-made bags inside protection boxes ( Figs. 2 and 3 ).

he bag materials were chosen depending on the purpose of the sample fluids and the pretreatment

rocesses [3] . For dissolved metal and dissolved organic carbon analysis, Tedlar bags (MiDan, Inc.)
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Fig. 3. Photos and a schematic drawing of a bag sampler assemblage. An interactive 3D version of the drawing to show the 

bag, fittings, and box assemblage is available in the supporting material. Drawing courtesy of Fan-Chieh Chuang. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with PVDF valves were chosen. For molecular biology and virus research, aluminum-foil with HDPE 

(high density polyethylene) inside liner bags (Jensen Inert Products) were used for that the foil

bags can sustain gamma irradiation (STERIS, U.S.A). The dimensions of the bags were flexible to

accommodate the volume required and the shape of the protection box (Fig. S1). A series of

compressional fittings, including bulkhead unions and bulkhead nuts, were used to connect the bag, 

the box, and to a PVDF three-way-valve. Details of the MVBS and LVBS are provided in the supporting

materials (Figs. S1 and S2). 

Hydrothermal fluid-trap 

The first version of a gastight sampling reservoir in 2010 was a custom-built polyvinyl chloride

(PVC) funnel that had a height of 20 cm and a largest cross-section of 20 cm ( Fig. 4 ). Without

a mechanism to prevent cold background bottom seawater from intruding into the slow-flowing 

hydrothermal fluid from CORK 1301A (1/8’’ FDL inner diameter), the fluid samples collected by the

gastight samplers had low sample integrity [16] . The second version of the fluid-trap used in 2011

was built from a half-inch-thick (~1.2 cm) PVC pipe with a height of 40 cm and a diameter of 15 cm,

holding approximately 4.5 L of fluid ( Fig. 5 ), more than sufficient to feed a gastight (150 mL). The

top of the reservoir was sealed by a 2 mm-thick rubber septum connected to the base of the guiding

funnel to prevent background seawater entering the fluid reservoir. The bottom of the reservoir had

an opening to a 7/8’’ Teflon tubing, with an inner diameter of 22.2 mm, that fits into the outlet of the

MPS fluid pump line. The MSP outlet was a solid PVDF tubing with an outer diameter of 21.34 mm,

which carried a custom-machined slot for a radial O-ring seal. The Viton O-ring (size no. 114) between

the MPS outlet tubing and the trap had a cross section of 2.52 mm, an inner diameter of 15.54 mm,

and an outer diameter of 20.78 mm. There was a small orifice at the bottom to expel cold seawater.

The self-seal septum created a significant drag when the ROV manipulator pulled the gastight sampler

out of the fluid-trap. Eventually, the funnel broke. During later expeditions, we improved the third

version of the fluid-trap by securing the base onto a heavy-duty milk crate, which was bolted into

the front basket of the ROV ( Fig. 6 ). The hard-plumbing proved to be robust and remained in good
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Fig. 4. Sample funnel to guide a gastight sampler for hydrothermal fluid sampling. 

Fig. 5. Fluid-trap version 2. (a) Schematic drawing of the trap design and the configuration on the front basket of the ROV. 

MVBS: medium volume bag sampler (on the back basket). P: positive displacement primary pump; O 2 : Optode oxygen sensor; 

T: temperature sensor; F: flow sensor. (b) Photo of the fluid-trap on the front basket. 
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ondition for future usage. The third version of the fluid-trap had a height of 25 cm and a diameter

f 12 cm, holding a small volume (1.8L), sufficient to provide the volume requirement by a gastight

ampler. 

witch between the fluid-trap and a large volume bag sampler (LVBS) 

A three-way-vale with 1/2 NPT fitting connected to 3/8’’ PVDF tubing allowed the flowing crustal

uid to be directed to a LVBS on the front basket next to the fluid-trap ( Fig. 6 c). This configuration

llowed a high pumping rate (5L/min) to shorten the time required to fill the 60–70L bag. The LVBS
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Fig. 6. Fluid-trap version 3. (a) Schematic drawing of the hydrothermal-fluid-trap design and the configuration on the front 

basket of the ROV. LVBS: large volume bag sampler; MVBS: medium volume bag sampler (on the back basket). P: positive 

displacement primary pump; O 2 : Optode oxygen sensor; T: temperature sensor; F: flow sensor. (b) Seafloor gastight sampling 

photo; (c) Large Volume Bag Sampler next to the fluid-trap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bags placed in the upright position as describe by Wommack et al. [26] have a 20% chance to be torn

upon recovery. We observed that the bags were pulled toward the rigid 3/4’’ Teflon fluid inlet tubing

and ripped due to the compression of air in the sampling system during sampler descending to the

deep ocean. To overcome the issue, we placed the LVBS bag sideways to increase our success rate of

sample recovery to 100%. 

Seafloor fixation of dissolved iron 

In order to minimize contact time between crustal fluid samples and background seawater, we 

used the MPS system to pump basement fluid and “fix” them at the seafloor for the measurement of

oxygen-sensitive ferrous iron. Two 500 mL sample bags contained 5 mL of ferrozine-acetate solution. 

One of the two bags also contained 5 mL of 4% ascorbic acid solution (w./v. in MQ) to reduce ferric ion

(Fe 3 + ) into ferrous ion (Fe 2 + ). The ferrozine-acetate solution was prepared by dissolving 0.4925 g of

Ferrozine in 100ml MQ and mixed with a buffer prepared by mixing 8.2 g sodium acetate with 5.7ml

acetic acid in 100ml MQ. A check valve installed in the fluid line before the sample bag prevented

the reagent flowing back to the 25-port valve system. Acrylic McLane remote access sampler (RAS)

tubes protected the 500 mL bags. Each of the bags was programmed to collect 400 mL of basement

fluid samples. Samples containing ferrous ion formed a pink iron-ferrozine complex ( Fig. 2 ). Ferrous

ion was measured directly by a Ferrozine colorimetry method [11 , 23] at a wavelength of 562 nm. For

total dissolved iron analysis, samples were first reduced with ascorbic acid and analyzed as ferrous

ion. The detection limit for both ferrous ion and total dissolved iron was 0.1 μM. 

Mobile GeoMICROBE (MGM): collection of fluid samples, filtration of suspended particles, and extraction 

of organic matter 

The MGM ( Fig. 7 ) is composed of a GeoMICROBE Rabbit controller, a Mega Pump, an oxygen

sensor, a temperature sensor, two McLane 25-port valve manifold systems, two deep 24 V-40 A sea

batteries, a battery splice controller, and an optional ODI communication system, depending on the 

operational requirement. The MGM is different from a standard GeoMICROBE in that the components 

were mounted on ROV Jason’s elevator system, not on our custom-build titanium frame. The Jason
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Fig. 7. Mobile GeoMICROBE (MGM). (a) Schematic drawing of the components of the MGM to show the fluid flow, 

communication, and power cable configurations. The positions of each components were adjusted to maintain a balance on the 

deployment platform. XAD stands for the column filled with hydrophobic XAD resin that absorbs dissolved organic compounds. 

RAS is the remote access sampler from McLane Research Laboratories, Inc.(b) Seafloor sampling photo. The MGM utilized an 

ROV Jason’s seafloor elevator, a platform designed to be deployed and recovered with weight and buoyancy adjustment. 
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levator is made of stainless steel and is thus suitable for a few-day-term deployment, whereas the

itanium GeoMICROBE frame is more suitable for a year-long deployment. The Jason elevator has a

uoyance package (90 kg buoyancy) mounted directed with the platform, facilitating easy shipboard

eployment and recovery. The MGM lacked the three-to-one solenoid valve system and employed only

wo batteries, as opposed to seven on the GeoMICROBE. The sampling time and pumping intervals

f the MGM were preprogrammed with the GeoMICROBE’s Rabbit control. In instances when an ODI

ommunication system was installed, we were able to test the MGM system on the seafloor by turning

n the pump and check sensor data, as well as the functionality of the two 25-port McLane valve

ystems, before the start of an autonomous sample collection sequence. 

On the MGM, the 500 mL Tedlar bags in McLane RAS bottles, MVBS, or LVBS, were optionally

onfigured into the 25-port valve systems to collect fluid samples. To apply MGM to filter suspended

articles, we used a variety of filters, including 47mm or 25 mm pre-combusted GF/F filters, 47 mm

olycarbonate filters (0.2 μm pore size), Sterivex (0.2 μm pore size). The MGM also coupled with

 custom-built Teflon column packed with hydrophobic XAD-8 or Bond Elut ENV resin to extract

rganics for characterization. The feed sample to the absorbent resin had passed pre-combusted 47

m GFF filter, i.e., to obtain the dissolved organic fraction. A McLane pump instead of the Mega pump

ontrolled the extraction flow rate of 50-125 mL/min to ensure a minimum contact time of 2 min

etween the hydrothermal fluid and the resin, provided a column size is of 125–500 mL (the large

ersion shown in Fig. 7 b). While the MVBS and LVBS have their custom-built frames, the RAS bottles,

lters, and the columns were secured either on a custom-built polyethylene (PE) rack or on a heavy-

uty milk crate mounted onto Jason’s elevator. Upon recovery of the filters and extraction columns,

he residual fluids in the filter holders, columns, or in the tubing were collected and analyzed for

heir Mg concentrations to ensure sample quality (e.g., [16] ). After sample recovery, the XAD column

as stored at -20 °C until thawed for elution in a shore-based laboratory. After thawed, the column

as first rinsed with three times volume size of Milli-Q water to remove salt, and then the absorbed

rganic compound was eluted with HPLC grade methanol, rotary evaporated dried, freeze-dried, then

edissolved in 50 mL ND 4 OD for characterization. 

ethod validation 

Throughout seven research cruises, the utilization of MPS and MGM has significantly improved

he sample fluid volume ( Fig. 8 ). In our early cruises, we utilized a pelagic pump but the pump
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Fig. 8. Basement fluid sample inventory based on the samples recovered during cruises AT15-35 (2008), AT15-51 (2009), AT15- 

66 (2010), AT18-07 (2011), AT26-03 (2013), and AT26-18 (2014) to the CORK clusters located on the eastern flank of the Juan de 

Fuca Ridges and during cruise MSM20-5 (2012) to the North Pond. Submersible Alvin or remotely-operated-vehicle ROV Jason 

were used to assist seafloor operation. Sampling methods included pumping with a pelagic pump, mobile pumping system 

(MPS), advanced instrumented GeoMICROBE sled, mini GeoMICROBE (MGM). 

Table 2 

Seafloor fixation experiment for ferrous ion and total iron measurement; cruise # AT18-07. 

Sample site Sample bag Treatment Total dissolved Fe (TdFe, μM) Fe 2 + ( μM) Fe 2 + /TdFe (%) 

MPS 

1362A 500 mL bag seafloor fixation 1.6 1.6 100 

1362B 500 mL bag seafloor fixation 1.5 1.4 95 

1362A MVBS - 0.6 0.04 7 

1362B MVBS - 1.0 0.00 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was not powerful enough to overcome the drag of the small inner diameter (1/8’’) of 1301A FDL.

Approximately only 4-8 L high quality basement fluid samples were collected. After the application

of the MPS, our sampling capacity greatly increased to 280-470 L of basement fluids and between

70-120L seafloor filtration (year 2010 & 2012). The deployment of a GeoMICROBE Sled or a MGM

system greatly enhanced the seafloor filtration capacity up to 480 L. The samples have been used

to study primordial gas [18] , dissolved methane and hydrogen [17] , dissolved organic carbon (e.g.,

[19 , 24] ), molecular microbiology (e.g., [2 , 13 , 14] ), and viruses [22] of the deep biosphere. 

Here, we focus on the results of the seafloor fixation experiment ( Table 2 ; Fig. 2 b). The ferrous ion

and the total dissolved iron in the basement fluid samples were fixed with Ferrozine once collected

into the 500 mL bag, leaving little time for the ferrous ion to react with oxygen that was initially in

the bag. Oxidation turns ferrous ion into ferric ion or iron oxyhydroxide precipitates. In the reducing

basement environment, the ferrous ion is the dominate dissolved iron species, and the ferrous/total 

dissolved iron ratios were near 100% in the two seafloor fixation samples. The total dissolved iron

and the ferrous ion concentrations in the corresponding MVBS samples decreased dramatically to less 

than 7%, indicating that iron precipitation and ferrous ion oxidation had occurred between the time

of fluid collection and sample analysis. Thus, we suggest conducting seafloor fixation for research that

requires precise and accurate quantification of reducing species. The versatile design of the MPS and

the MGM allows seafloor fixation. 

We demonstrated the characterization of a XAD extracted dissolved organic matter with nuclear 

magnetic resonance (NMR) spectrometry ( Fig. 9 ) of a sample collected with the MGM ( Fig. 7 ). The

XAD resin extracted a significant amount of hydrophobic dissolved organic matter from a total of 247

L of basement fluid samples. The NMR spectrum showed a continuous broad peak from 0.8 to 5.0

ppm, with a few pronounced peaks at 1.3, 3.3, and 3.5 ppm, which are regions typically assigned
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Fig. 9. NMR spectra of the XAD extracted hydrophobic dissolved organic compounds for basement fluid samples (blue line) 

and the XAD resin blank (deployed but not sampled) to investigate the functional group compositions. The red circle marks the 

proton chemical shifts between 5.3 and 8.3 ppm, which is indicative of aromatic compounds. 
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s the hydrogen-bonded to methyl, methylene, methine, respectively. The pronounced elevated broad

eaks between 5.3 and 8.3 ppm is indicative of aromatic compounds, which have also been described

ith basement fluid samples collescted with MVBS and LVBS and extracted shipboard with Bond Elut

PL resins [19] . While the NMR is a non-destructive analysis, the remaining samples can be used for

uorescence compound and other characterization analysis. 

uture applications 

eafloor incubation experiments 

The MGM can be applied to initiate incubation experiments by mixing stable isotope labels (e.g.,
3 C-HCO 3 

−, 15 N-NH 4 
+ , and 

15 N-NO 3 
−) with basement fluid samples collected in the 500 mL Tedlar

ags. A seafloor incubation is particularly plausible for a low-temperature system such as the North

ond basement fluids (e.g., 10 °C) whereas the heating components may take too much power to

aintain at an in situ hydrothermal temperature (e.g., 65 °C) for the warm ridge flank sites such as

he eastern flank of the Juan de Fuca Ridge. The seafloor incubation can also include deep seawater

amples as control. 

ydrothermal vent fluid sample from other geological settings 

The MPS and MGM can collect fluid, particles, and extract organics from diffuse vent fluids with

ow-particle and relatively low-gas content. An inverted funnel, instead of the Jannasch connector, acts

s the fluid intake port. To use the MPS and MGM for collecting samples from vent fluids with high

article contents, a large diameter, and large pore size (e.g., 2.0 μm pore size, hydrophilic glass fiber,

42 mm diameter) filter need to be installed. Otherwise, clogging inside the pump and the 25-port-

alve system may occur. 
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