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Abstract

RNA-protein interaction plays important roles in post-transcriptional regulation. Recent

advancements in cross-linking and immunoprecipitation followed by sequencing (CLIP-seq)

technologies make it possible to detect the binding peaks of a given RNA binding protein

(RBP) at transcriptome scale. However, it is still challenging to predict the functional conse-

quences of RBP binding peaks. In this study, we propose the Protein-RNA Association

Strength (PRAS), which integrates the intensities and positions of the binding peaks of RBPs

for functional mRNA targets prediction. We illustrate the superiority of PRAS over existing

approaches on predicting the functional targets of two related but divergent CELF (CUGBP,

ELAV-like factor) RBPs in mouse brain and muscle. We also demonstrate the potential of

PRAS for wide adoption by applying it to the enhanced CLIP-seq (eCLIP) datasets of 37 RNA

decay related RBPs in two human cell lines. PRAS can be utilized to investigate any RBPs

with available CLIP-seq peaks. PRAS is freely available at http://ouyanglab.jax.org/pras/.

Author summary

It is important to identify the functional targets of RBPs, which are essential regulators in

post-transcriptional processes. PRAS aims to predict RBP targets based on the intensities

and positions of the binding peaks obtained from CLIP-seq studies. We demonstrate that

PRAS score outperforms other existing methods not only in the prediction of the PCR-

validated targets of the RBP CELF4, but also in the correlation with the global expression

change induced by CELF proteins. The better performance of PRAS on a group of RBPs

associated with RNA decay in comparison to the existing methods indicates its potential

for large-scale applications in detecting functional targets. Leveraging the position infor-

mation of the binding peaks, PRAS is a bridge linking peak-calling methods and the inter-

pretation of RBPs’ biological functions, which strengthens the analysis of CLIP-seq data.
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This is a PLOS Computational Biology Software paper.

Introduction

RNA-binding proteins (RBPs) are essential in many post-transcriptional regulatory processes,

such as alternative splicing, stability, localization and editing [1]. For example, RBP Quaking plays

important roles in pre-mRNA splicing and mRNA export [2]; RBP HuR is an mRNA stability and

splicing regulator [3]; RBP Ataxin-2 promotes mRNA stability and protein expression [4]. RBPs

achieve their functions via binding to RNAs; therefore, it is of vital importance to study RNA-pro-

tein interaction. Cross-linking and immunoprecipitation followed by sequencing (CLIP-seq)

approaches have been widely used to detect the binding peaks of RBPs at the transcriptome scale

[5–9]. Thus, the examination of CLIP-seq peaks informs us of the functional targets of RBPs.

Existing computational approaches for analyzing CLIP-seq data focus on detecting RBP

binding peaks [10–19] or differential RBP binding peaks between two different conditions [11,

14, 15, 20]. Computational methods for predicting the functional consequence of RBP binding

peaks are less well-established [21–23]. Some studies suggest that the binding preferences of

RBPs are associated with their specific functions. For example, HuR binding preferentially

occurs close to the 3’ splicing site, which is consistent with its known function on alternative

splicing [3]; Ataxin-2, an mRNA stability regulator, has a tendency to bind close to the polya-

denylation site [4]. A recent study revealed that RBP TDP-43 regulates poly(A) site usage in a

position-dependent way [22].

In this paper, we develop a new approach named Protein-RNA Association Strength

(PRAS), which incorporates the intensity and positional information of CLIP-seq peaks to

quantitate the association between an RBP and its targets. We apply PRAS to study two

CUGBP ELAV-like family proteins, CELF4 and CELF1 with both CLIP and perturbation

RNA-seq data available. CELF4 (also known as Brunol4) is expressed as an mRNA regulator in

the central nervous system across species [24, 25]. The deficiency of CELF4 is associated with a

complex neurobehavioral disorder including seizures and autism-like features in human [26,

27] and in mice [28]. iCLIP studies revealed that CELF4 preferentially binds, almost exclu-

sively in 3’ untranslated regions (UTRs), to mRNAs encoding many important neurological

functions, [29]. CELF1 is implicated in myotonic dystrophy [30]. CELF1 is highly expressed in

early embryonic stages and are then down-regulated dramatically in skeletal muscle and the

heart during development [31, 32]. CELF1 has been reported to promote transcript deadenyla-

tion and the abnormal up-regulation of its protein level could contribute to the myotonic dys-

trophy pathology [33, 34]. A more refined understanding of the functional targets of CELF

RBPs is essential for understanding the impact of CELF in development and diseases, and may

provide clues as to the mechanisms by which CELF impacts mRNA function. In addition, to

demonstrate the robustness of PRAS, we examined its performance of detecting the functional

targets in a large-scale collection of eCLIP data of RBPs in the integrated encyclopedia of DNA

elements in the human genome (ENCODE). By applying PRAS to the eCLIP peaks of the

RNA decay regulators, we demonstrate that PRAS outperforms other existing methods and

also provide deeper understanding in the post-transcriptional regulation of these RBPs.

Design and implementation

The framework of PRAS

The basis of PRAS is to score a potential functional target of an RBP based on both the intensi-

ties and positions of its binding sites. Our pipeline of calculating PRAS is shown in Fig 1. First,

Predicting RBP functional targets from CLIP-seq peaks
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Fig 1. Flowchart of the PRAS pipeline. There are mainly three steps in calculating the PRAS scores. First, we merge the significant cross-linking sites

as the binding peaks. Then, we use user-provided or automatically selected reference position and score each transcript based on both the intensities

Predicting RBP functional targets from CLIP-seq peaks
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given a CLIP-seq dataset, the significant cross-linking sites that are within a small interval of

each other (default: 20 nt) are merged as RBP binding peaks. If the called binding peaks are

provided, we will use them directly. Second, if a reference position is provided by the user

based on known knowledge of the function of the RBP, PRAS will use it directly; if no refer-

ence position is given, PRAS will set it based on the RBP’s binding preference, e.g., the distal

end of the 3’ UTR of the transcript (aka polyadenylation site). Finally, each transcript is scored

as the sum of the intensities of the binding peaks weighted by the distances between the mid

points of the binding peaks and the preselected reference position. All mRNAs are then ranked

by the PRAS scores and can be tested for associations with functions.

PRAS score calculation

As described in Fig 1, the PRAS score is based on the weighted sum of the intensities of the

binding given detected CLIP-seq peaks. In the study that analyzed the interaction between

DNA and proteins with ChIP-seq datasets, the exponential decay function was used to charac-

terize the decreasing effects of a transcription factor binding peak on its targets with increasing

distances [35]. Therefore, we here construct the score to describe the regulatory effect of an

RBP on its targets in a similar way. Specifically, we define the PRAS score for an mRNA as:

S ¼
P

irie
� di=d0 ; ð1Þ

where ri is the intensity (CLIP-seq read counts) of the ith peak cluster of the RBP, di is the dis-

tance (number of nucleotides) between the reference position and the ith peak cluster, and d0

is a constant. For both CELF4 and CELF1 in mouse, we set the reference position as the distal

3’ UTR and the constant d0 = 1000 nt. Note that d0 = 1000 nt is the default setting, but not a

hard-set option in PRAS. For the RNA decay regulators in human, we set the constant d0 =

500 nt. The details of d0 estimation for RBPs in mouse and human are described in the Results

and Discussions sections.

PRAS implementation

PRAS is implemented in Python (version 2.7.14 or above) and R (version 3.3.2 or above)

scripts and has minimum requirements for the inputs. To reformat the annotation file, PRAS

takes use of gtfToGenePred, a toolkit from the UCSC Genome Browser [36]. PRAS also uses

BEDTools [37] to efficiently obtain the overlapping between the binding sites and the annota-

tion regions. The annotation file should be the Gene Transfer Format (GTF) format and the

peak file (no special requirement for the peak caller) should be the Browser Extensible Data

(BED) format as the required input files, which are both the standard file formats. Details of

usage can be found on the instruction page of our website: http://ouyanglab.jax.org/pras/.

Results and discussions

PRAS score is a strong predictor of PCR-validated mRNA targets of CELF4

CELF4 is expressed in excitatory neurons of the adult mouse brain, from which iCLIP data are

available [25, 28, 29]. We collected the significant cross-linking sites detected by iCount

(http://icount.fri.uni-lj.si) with false discovery rate (FDR) less than or equal to 0.05. We con-

ducted a metagene analysis involving all 9,193 mRNAs that are bound by CELF4 and noted an

and the positions of the binding peaks. Finally, we rank the targets by PRAS and test RBP functions by independent datasets. The details of the PRAS

calculation are described in the following section.

https://doi.org/10.1371/journal.pcbi.1007227.g001
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enrichment of iCLIP reads at the distal (3’ end) versus proximal (5’ end) 3’ UTR (S1 Fig). This

preference suggests a potentially functional role of CELF4 binding close to the polyadenylation

site.

We calculated the PRAS scores for CELF4 binding mRNAs with the polyadenylation site as

the reference position, which gives the binding sites closer to the polyadenylation site higher

weights. We estimated the decay parameter d0 in Eq (1) based on the strength of the peak

intensity decay shown in S1 Fig. In detail, we defined the weighting formula as w ¼ e� d=d0

according to Eq (1). The highest average peak density, 0.843, appears at 63 nt to the 3’ end of 3’

UTR and the average peak density at 1000 nt upstream to the 3’ end of the 3’ UTR is 0.285 (S1

Fig). We calculated w as the ratio between the average peak intensity at the 1000 nt upstream

to the 3’ UTR and that of the 3’ end of the 3’ UTR, which is 0.285/0.843 = 0.339. By plugging

d = 937 nt (which is 1000 nt– 63 nt) and w = 0.339 into the weighting formula, we obtained the

estimation of 866 nt for d0, which is approximately the default of 1000 nt. For comparison, we

applied the expressRNA procedure of Rot et al. [22], which sums the number of reads in CLIP

peaks within 200 nt upstream and downstream flanking the polyadenylation sites (Fig 2). We

also applied the procedure in Wang et al. [34], which calculated the score as the number of sig-

nificant CLIP peaks per kilobase (noted as PPK; Fig 2). Each of the three measurements ranks

CELF4 binding mRNAs from high to low scores.

We then evaluated the performance of PRAS, expressRNA, and PPK on a list of known

functional targets previously validated by qPCR in wild-type and Celf4 null mouse brain, total-

ing 23 mRNAs [29] (see details in S1 Text). To investigate the ability of the three measure-

ments to identify CELF4 functional targets, we performed receiver operating characteristic

(ROC) analysis. We extracted the log fold change (LFC) of the qPCR values in Celf4 null

mouse brain over wild-type. The mRNAs with positive and negative LFCs were labelled as

CELF4-degraded and CELF4-stabilized genes, respectively. The area under the curve (AUC)

of the ROC curve was used to measure the prediction performance of the methods. We found

that PRAS perfectly distinguished the PCR-validated CELF4-degraded and CELF4-stabilized

genes (AUC = 1), outperforming expressRNA (AUC = 0.867) and PPK (AUC = 0.7) (Fig 3A).

This result suggests that given CLIP peaks, PRAS has greater ability to capture the functional

Fig 2. Diagram of three ranking methods. The three diagram shows how the score of genes are calculated for PRAS, expressRNA, and PPK, respectively.

PRAS scores each transcript based on the sum of the intensities of the binding peaks weighted by an exponential decay function of the distances between the

binding peaks and the reference position. expressRNA scores genes based on the total number of reads within 200 nt to the reference position. PPK calculates

the number of peaks per kilobase.

https://doi.org/10.1371/journal.pcbi.1007227.g002
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Fig 3. The qPCR-validated targets of CELF4. (A) The plot of ROC curves for PRAS, expressRNA, and PPK in the qPCR validated targets. The ROC

analysis was done on the three methods’ scores and the expression change. The corresponding ROC curves for PRAS, expressRNA, and PPK are

indicated by red solid, blue dashed, and green dotted lines, respectively. The AUC of the corresponding ROC curves are listed at the bottom of the

plot. (B) The scatter plot of the PRAS score against the qPCR log fold change (LFC). The X-axis represents the log2 fold change in qPCR from the

wild-type to Celf4 null mouse brain. The Y-axis shows the log10 of PRAS score. Each black dot represents a validated target by the qPCR. The

regression line is highlighted in blue color. The Pearson’s correlation coefficient is indicated by the red text on the plot. (C) The heatmap of binding

signals of the qPCR-validated targets. The X-axis represents the distance to the 3’ end of the 3’ UTR, and the Y-axis shows the genes in the validated

list. The color shows the log2 of read counts of CELF4 iCLIP-seq within its significant peaks, where the warmer the color is the stronger the binding is.

The black bars in each row shows the distance from the 5’ end of the 3’ UTR to the 3’ end of the 3’ UTR, which indicates the length of each 3’ UTR.

https://doi.org/10.1371/journal.pcbi.1007227.g003

Predicting RBP functional targets from CLIP-seq peaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007227 August 19, 2019 6 / 17

https://doi.org/10.1371/journal.pcbi.1007227.g003
https://doi.org/10.1371/journal.pcbi.1007227


targets of CELF4 compared to expressRNA and PPK. In addition, we examined the quantita-

tive relationship between the PRAS scores and the qPCR LFCs of these known targets. A nega-

tive Pearson’s correlation coefficient (-0.60) was obtained, suggesting that the more negative

qPCR LFC a target has, the larger the PRAS score is (Fig 3B). The advantage of PRAS over

expressRNA and PPK can be attributed to two factors. First, PRAS utilizes the binding bias of

CELF4 towards the distal 3’ UTRs of its validated targets (Fig 3C). expressRNA partially uti-

lizes this bias by considering the 200 nt flanking region around the polyadenylation site,

whereas PPK does not consider the binding bias. Second, unlike expressRNA which only con-

siders a fixed flanking region, PRAS considers all binding peaks, which decreases loss of

important RBP binding sites. The analysis of the validated targets of CELF4 suggests the

importance of binding near the polyadenylation sites as a potential factor on how it regulates

gene expression. By applying different decay parameter d0 to PRAS, we found that PRAS

obtained equally good performance over a reasonable range of d0s (S2A and S2B Fig). A d0

that falls out of certain range will decrease the performance of PRAS (S2A and S2B Fig),

because a too small d0 can filter out the majority of iCLIP signals and a too large d0 approxi-

mates the uniform weighting. The stable performance of PRAS with d0 chosen around 1000nt

shows the robustness of PRAS (S2 Fig).

PRAS score correlates with global mRNA change induced by CELF RBPs

To assess the ability of PRAS to detect RBP functional targets in the entire transcriptome, we

extracted the top 500 genes ranked by permutation test p-values in the differential expression

test between the wild-type and Celf4 null mouse brain based on existing microarray datasets

[29]. We calculated the LFC for gene expression in Celf4 null over wild-type mouse brain. The

mRNAs have lower abundance (LFC < 0) in Celf4 null genotype are more likely to be

CELF4-stabilized targets, while the mRNAs with higher abundance (LFC > 0) in Celf4 null

brain were more likely to be CELF4-degraded targets. We sought to assess the ability of PRAS

on capturing CELF4-stabilized vs. CELF4-degraded targets. Specifically, we first set a sequence

of cutoffs as the quantiles (from 0.05 to 0.95 with step size as 0.05) of the distribution of the

absolute value of the expression LFCs. Second, for each cutoff, we extracted a subset of genes

whose absolute expression LFC is larger or equal to the cutoff. Finally, for each subset of poten-

tial CELF4 targets, we calculated the Spearman’s correlation coefficient between the expression

LFCs and the PRAS scores, in which the magnitude and sign of the correlation reflect the asso-

ciation between the two. For comparison, we also applied the same correlation analysis to

expressRNA and PPK ranking scores. Line-charts of the Spearman’s correlation coefficient of

the three methods are shown in Fig 4A. We observed that the more stringent the expression

LFC cutoff for the gene subset was set, the stronger the negative correlation between the PRAS

score and the expression LFC was obtained, which suggests that PRAS is more powerful in

capturing more reliable CELF4-stabilized targets. In addition, the expressRNA score is less

correlated with the expression LFC, and the direction of the correlation between the PPK

score and the expression LFC flips at different cutoffs. The results suggest that PRAS has

greater ability to select the regulated mRNA targets compared to expressRNA and PPK.

We also extracted the top 500 genes ranked by their adjusted p-values in the differential

expression test between the wild-type and Celf1 over-expression in mouse muscle based on

published RNA-seq datasets [34]. In this dataset, mRNAs that have higher abundance upon

Celf1 over-expression (LFC > 0) are more likely to be CELF1-stabilized targets while those

that have lower abundance upon Celf1 over-expression (LFC < 0) were more likely to be

CELF1-degraded targets. We evaluated the performance of the three aforementioned methods

using the same analysis as with CELF4. We used the 3’ end of the 3’ UTR as the reference site

Predicting RBP functional targets from CLIP-seq peaks
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Fig 4. Correlation analysis between PRAS score and gene expression change. (A) The line-chart of Spearman’s

correlation coefficient between the gene score and the gene expression LFC in the Celf4-regulated list. The lower X-axis

represents the different cutoffs applied to extract the subset of genes, the upper X-axis represents the number of genes

Predicting RBP functional targets from CLIP-seq peaks
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in PRAS to rank the mRNA targets based on the reported binding preference of CELF1 [34].

PRAS has a stronger negative correlation with the expression LFC compared to expressRNA

and PPK for each subset of the potential CELF1 targets (Fig 4B). These results suggest that

PRAS is more powerful in capturing the reliable CELF1-degraded targets, consistent with the

main regulatory function of CELF1 [34].

Next, we used different reference sites in PRAS for scoring functional targets of CELF4 and

CELF1 in order to examine the effect of the reference site selection. We scored the targets of

CELF4 using the 5’ end of the 3’UTR as the reference site in PRAS (PRAS 5’) and did a similar

correlation analysis as above. We observed that the PRAS 5’ score is also negatively correlated

with the expression LFC and the magnitude of correlation improves with increasingly strin-

gent cutoffs (S3A Fig). However, the magnitude of the correlation is not as high as that of

PRAS with the 3’ end of 3’ UTR as the reference site (PRAS 3’) (Fig 4A). We also similarly ana-

lyzed the targets of CELF1 using PRAS 5’. Again, the PRAS 3’ has stronger negative correlation

with the expression LFC than PRAS 5’ for the more reliable CELF1 targets (S3B Fig). The

results indicate that known biological knowledge can aid in reference site selection in PRAS

for identifying the functional targets of the CELF proteins. The results also suggest that both

the CELF4 and CELF1 proteins may regulate mRNAs via the distal 3’ UTRs while having

opposite effects on their targets. Indeed, this is plausible because CELF proteins play various

roles in both co-transcriptional and post-transcriptional RNA regulation, as well as translation

inhibition in different cellular contexts [38–40].

To examine the difference of taking the raw or the normalized read density of the CLIP

peaks as the input of PRAS, we then used the Celf4 null iCLIP-seq as the negative control for

the wild-type CELF4 iCLIP to score the functional targets of CELF4 with the 3’ end of the

3’UTR as the reference site. Specifically, we replaced the iCLIP-seq read counts ri in Eq (1) by

the enrichment ratio ri � log2

ri
ci

� �
as suggested by Van Nostrand et al. [41], where ci is the

Celf4 null iCLIP-seq read counts of the ith peak cluster. We noted the PRAS score using the

raw read intensity and the enrichment ratio of peaks as PRAS-raw and PRAS-norm, respec-

tively. By applying the correlation analysis as above, we found that PRAS-norm has achieved

stronger negative correlation with the expression LFC than PRAS-raw (S4 Fig). This improve-

ment of performance indicates the important role of the negative control in reducing the

noise, which is consistent with the results in [42]. Even though PRAS-raw cannot achieve as

good performance as PRAS-norm, the difference in the performance between them is small

(S4 Fig), which indicates that PRAS can handle the situation where the negative control of

CLIP-seq is not available, such as the CELF1 data in our study.

PRAS identified targets are strongly enriched in functional categories

To further compare the functional relevance of the targets identified by PRAS, expressRNA

and PPK, we performed gene ontology (GO) analysis on the top 500 mRNA targets of CELF4

ranked by each score (Fig 5A–5C), which is similar to the analysis shown in Wagnon et al.

[29]. There is much greater enrichment (5 to 40 orders based on p-values) of the categories

related to suspected CELF4 function in the targets identified by PRAS than those identified by

expressRNA and PPK. For example, in the class of “Biological Process”, most of the top 10

corresponding to the applied cutoffs, and the Y-axis shows the value of Spearman’s correlation coefficient. The

corresponding curves for PRAS, expressRNA, and PPK are indicated by red, blue, and green lines, respectively. Each

dot in the plot is for one subset of genes selected based on the absolute LFC cutoff. (B) Similar line-chart to A, but for

the Celf1-regulated list. These two line-charts show that the higher ranked targets by PRAS have higher enrichment in

the regulated lists comparing to the top ranked lists of expressRNA and PPK.

https://doi.org/10.1371/journal.pcbi.1007227.g004
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significant categories for PRAS top-ranked targets are related to neuron or synaptic functions

and ion transport, consistent with prior studies on CELF4 [29]. These results suggest that

PRAS captures CELF4 functional targets more precisely than the other methods being

compared.

Functional targets are identified in a large-scale PRAS application to

human RBPs

To demonstrate that PRAS has the potential for wide adoption, we further applied PRAS to the

eCLIP data [42] in two human cell lines, K562 and HepG2, from the ENCODE consortium

[43]. Specifically, we selected the RBPs that are related to the RNA decay function [41] because

this function can be clearly quantified at gene level in the differential expression (DE) analysis

between the RBP knockdown and the wild-type RNA-seq samples. We collected the DE analy-

sis results by DESeq [44] from ENCODE and obtained 37 distinct RBPs, which include 28 and

32 RBPs in HepG2 and K562 cell line, respectively. We then applied PRAS to the eCLIP data

using the enrichment ratio over the control sample described above as the peak intensities. In

the parameter settings in PRAS, we selected the reference site for each RBP from 4 candidates:

transcription start site, translation initiation site, translation termination site, and transcrip-

tion end site, based on eCLIP peak intensity distribution along the transcript. S5 Fig presents

four example RBPs assigned with 4 different reference sites. To simplify the analysis, we

applied d0 = 500 nt to all the selected RBPs according to the distribution (S6 Fig) of the esti-

mated decay parameters as described previously. This general selection of d0 may not achieve

the best performance of PRAS but is likely to be comparable with the best d0 selection as dis-

cussed in the CELF4 data. After obtaining the PRAS scores, we did the correlation analysis of

the DE (adjusted p-value < = 0.05) genes for each RBP. We found PRAS scores achieved sig-

nificantly stronger correlation with the LFC in gene expression in comparison to expressRNA

Fig 5. GO analysis of the top ranked targets in different methods and top differentially expressed genes. (A) “Biological Process” GO analysis line-chart. X-axis

represents the GO term and Y-axis is the–log10(p-value) from the David GO analysis tool (https://david.ncifcrf.gov/) for the top 500 targets ranked by each method.

PRAS is highlighted by red solid line, expressRNA is highlighted by blue dashed line, and PPK is highlighted by green dotted line. (B) Similar plot to A but for “Cell

Compartment” GO analysis. (C) Similar plot to A but for “Molecular Function” GO analysis.

https://doi.org/10.1371/journal.pcbi.1007227.g005
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and PPK, with p-value equal to 3.8e-9 and 4.4e-4, respectively (Fig 6A). We then separated the

RBPs by their reference site usage and found that the translation termination site and the tran-

scription end site, both of which are related to the 3’ UTR, constitute the majority of the RNA

decay regulators’ reference sites (Fig 6B). It suggests the essential association between the 3’

UTR of transcripts and the regulation of their fates by RBPs. In addition, we found that the

correlation can reflect important biological functions of RBPs. For example, the 5’ poly(A) site

(transcription end site) is used as the reference site for DDX6 in the HepG2 cell line (S5C Fig)

and the PRAS score is negatively correlated with the LFC of DDX6’s target gene expression

(Fig 6B), which indicates that DDX6 may stabilize its targets via binding near to the poly(A)

site. Interestingly, DDX6 is known to be an important regulator in mRNA decapping and deg-

radation [45, 46], which supports our claim that PRAS has the ability to identify the biologi-

cally functional targets of the RBP regulators. All these results demonstrate that PRAS has the

potential for wide adoption in RBP functional targets identification.

Discussions on biological insights from the use of PRAS

In this study, we developed PRAS, a position dependent scoring method for identifying and pri-

oritizing RBP functional targets. Weighting the proximity of RBP binding sites to a given refer-

ence position exponentially and combining the strengths of the binding signals, we obtained the

PRAS scores and the ranking of all the mRNAs that have reliable binding sites of the RBP. We

applied this approach to the iCLIP dataset of a neuronal disease-related RBP, CELF4 and to the

CLIP dataset of a DM disease-related RBP, CELF1 –both belonging to the CELF family of RBP.

We report a much stronger association between CELF4 and its targets at the distal 3’ UTRs

compared to internal 3’ UTR positions. We also demonstrate that PRAS performs much better

in predicting the mRNA targets stabilized by CELF4, compared to the other existing methods

such as expressRNA and PPK. We further observe that PRAS performs much better at predict-

ing the mRNA targets degraded by CELF1. These results not only suggest the importance of

incorporating the positional information of the binding sites into target identification, but also

suggest the important roles of the distal 3’ UTRs in CELF protein regulated mRNAs.

The binding preferences of RBPs have been noticed in previous studies [3, 29]. However,

the link between positional biases of RBP binding sites and their functional consequences has

not been well established. PRAS reveals that the distal end of 3’ UTR binding is predictive of

CELF4-stabilized targets. The distal end bias of CELF4-stabilized targets suggests possible

molecular mechanism(s) by which CELF4 regulates its mRNAs. It has been reported that poly

(A) tails enhance the stability of mRNAs [47]. The proximity between poly(A) tails and the dis-

tal 3’ UTRs suggests possible connections with poly(A) tail functions, such as mRNA stability,

polyadenylation itself or promotion of translational reinitiation–possibilities to be explored in

future experimental studies. CELF1 is known to recruit cytoplasmic deadenylases [48] and the

extent of mRNA degradation is positively correlated to CELF1’s binding magnitude to the 3’

UTRs [34]. Based on the finding in the previous study [34] that CELF1 binding is enriched in

the 3’ end of the 3’ UTR, we further found that this binding bias shows strong predictive ability

to CELF1-degraded targets (Fig 3B). We also demonstrated the potential of PRAS in the large-

scale applications by showing the better performance of PRAS than other methods in identify-

ing the targets of RNA decay related RBPs from ENCODE [43]. These results again strengthen

the relationship between the regulatory functions of the RBPs and their binding positions.

Availability and future directions

PRAS is implemented in Python and R and is freely available at http://ouyanglab.jax.org/pras/.

PRAS can be applied widely to identify the functional targets of any RBPs with CLIP-seq

Predicting RBP functional targets from CLIP-seq peaks
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Fig 6. PRAS applied to RNA decay related RBPs. (A) The CDF curve of the absolute correlation coefficient between

the gene score and LFC in gene expression. X-axis represents the absolute value of the Spearman’s correlation

Predicting RBP functional targets from CLIP-seq peaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007227 August 19, 2019 12 / 17

https://doi.org/10.1371/journal.pcbi.1007227


peaks. For RBPs with a known post-transcriptional function, the functional targets may be

identified with a corresponding reference position that is related to that function (e.g. splicing

sites for alternative splicing). PRAS can also be combined with other types of information,

such as sequence motifs, conservation, and perturbation data to predict RBP functional targets

using integrative approaches such as [49]. In addition, future versions of PRAS can be

extended to study the co-regulations of multiple RBPs by being applied to a set of interested

RBPs simultaneously and evaluating the importance of different reference sites on the targets.

Supporting information

S1 Text. Datasets collection.

(DOCX)

S1 Fig. CELF4 binding characteristics in 3’ UTRs. Shown are distributions of the distances

between the iCLIP reads and the proximal/distal end of 3’ UTRs in mRNAs. X-axis represents

the distance (number of nucleotide) to the proximal/distal end of 3’ UTRs. Y-axis represents

the average iCLIP read counts within the significant peaks at that position across all the genes.

The curve for the distal end is highlighted by red color and that for the proximal end is

highlighted by blue.

(TIF)

S2 Fig. Correlation coefficient curve and AUC curve of PRAS with different d0s. (A) The

line chart of Pearson’s correlation coefficient between the gene score and the gene expression

LFC in the qPCR-validated targets of CELF4. The X-axis represents the different d0s applied to

PRAS and the Y-axis shows the value of Pearson’s correlation coefficient. Each dot in the plot

is for one d0 usage in PRAS. (B) Similar to A, but for the AUC values of the ROC analysis.

These two line-charts show that the performance of PRAS is stable with the reasonable d0

selection around 1,000 nt.

(TIF)

S3 Fig. Correlation analysis of PRAS with different reference sites. (A) The line chart of

Spearman’s correlation coefficient between the gene score and the gene expression LFC in the

Celf4-regulated list. The X-axis represents the different cutoffs applied to extract the subset of

genes and the Y-axis shows the value of Spearman’s correlation coefficient. The corresponding

curves for distal PRAS and proximal PRAS are indicated by red and blue lines, respectively.

Each dot in the plot is for one subset of genes selected based on the absolute LFC cutoff. (B)

Similar to A, but for the Celf1-regulated list. These two line-charts show that the top ranked

targets by distal PRAS have higher enrichment in the regulated lists comparing to those of

proximal PRAS.

(TIF)

S4 Fig. Correlation analysis of PRAS with different peak intensity input. The line chart of

Spearman’s correlation coefficient between the gene score and the gene expression LFC in the

Celf4-regulated list. The X-axis represents the different cutoffs applied to extract the subset of

coefficient between the gene score and LFC in gene expression (KO over wild-type). PRAS, expressRNA, and PPK is

highlighted by red, blue and green line, respectively. The p-value of one-sided Mann-Whitney test is listed on the

figure. (B) Heatmap of the Spearman’s correlation coefficient. The Spearman’s correlation coefficient between the gene

score and LFC in gene expression for PRAS, expressRNA and PPK are listed from the left to the right. The values of the

correlation coefficient are indicated by the color, where red and blue color indicates the positive correlation and the

negative correlation, respectively. RBPs are grouped by their reference site usage and their ID and cell lines are listed at

the right side.

https://doi.org/10.1371/journal.pcbi.1007227.g006

Predicting RBP functional targets from CLIP-seq peaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007227 August 19, 2019 13 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007227.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007227.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007227.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007227.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007227.s005
https://doi.org/10.1371/journal.pcbi.1007227.g006
https://doi.org/10.1371/journal.pcbi.1007227


genes and the Y-axis shows the value of Spearman’s correlation coefficient. The corresponding

curves for PRAS-raw and PRAS-norm are indicated by red and blue lines, respectively. Each

dot in the plot is for one subset of genes selected based on the absolute LFC cutoff.

(TIF)

S5 Fig. RBP examples of eCLIP signal distribution around different reference sites. (A)

Shown are distributions of the distances between the HNRNPU eCLIP peaks and the tran-

scription start site (TSS) in the mRNAs of the HepG2 cell line. X-axis represents the distance

(number of nucleotide) to the TSS. Y-axis represents the average eCLIP enrichment ratio

within the significant peaks at that position across all the genes. (B) Similar to A, but around

the translation initiation site (TIS) for RBP ILF3 in K562 cell line. (C) Similar to A, but around

the translation termination site (TTS) for RBP DDX6 in HepG2 cell line. (D) Similar to A, but

around the transcription end site (TES) for RBP LARP4 in K562 cell line.

(TIF)

S6 Fig. Distribution of the estimated decay parameter for PRAS. Shown are the distribu-

tions of the estimated d0 for PRAS in K562 and HepG2 cell lines. The density curves are

highlighted by red and blue for RBPs in K562 and HepG2, respectively. The estimation is done

based on the eCLIP peak intensities around the selected reference sites as described in the sub-

section “PRAS score is a strong predictor of PCR-validated mRNA targets of CELF4”.

(TIF)
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