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ABSTRACT

All RNA sequences that fold into hairpins possess
the intrinsic potential to form intermolecular
duplexes because of their high self-complementar-
ity. The thermodynamically more stable duplex con-
formation is favored under high salt conditions and
at high RNA concentrations, posing a challenging
problem for structural studies of small RNA hairpin
conformations. We developed and applied a novel
approach to unambiguously distinguish RNA hairpin
and duplex conformations for the structural analysis
of a Xist RNA A-repeat. Using a combination of a
quantitative HNN-COSY experiment and an opti-
mized double isotope-filtered NOESY experiment
we could define the conformation of the 26-mer
A-repeat RNA. In contrast to a previous secondary
structure prediction of a double hairpin structure,
the NMR data show that only the first predicted hair-
pin is formed, while the second predicted hairpin
mediates dimerization of the A-repeat by duplex
formation with a second A-repeat. The strategy
employed here will be generally applicable to identify
and quantify populations of hairpin and duplex con-
formations and to define RNA folding topology from
inter- and intra-molecular base-pairing patterns.

INTRODUCTION

All RNA sequences that fold into hairpins possess the
intrinsic potential to form intermolecular duplexes
because of their high self-complementarity. The thermo-
dynamically more stable duplex conformation is favored

under high salt and high RNA concentrations. This is
a challenging problem for structural studies: crystalliza-
tion for X-ray crystallography often requires high salt
conditions and NMR structural studies require sample
concentrations in the millimolar range. Unambiguous
identification of sample stoichiometry under experimental
conditions is essential as early as possible in RNA struc-
tural studies to ensure that the RNA is present in a bio-
logically relevant conformation.

Xist (X inactivation specific transcript) RNA is a large
non-coding RNA essential for the initiation of X-inactiva-
tion in mammalian females (1). Early in embryonic devel-
opment it is expressed from the X-chromosome that will
be silenced and coats it in cis, which coincides with tran-
scriptional shutdown through an unknown mechanism
(2). The conserved so-called ‘A-repeats’ at the 50-end of
Xist are essential for its silencing function, while several
other regions are redundantly responsible for chromo-
some association (3) (Figure 1A). In humans, the
A-repeats are constituted of 7.5 copies of a 26 nt motif,
connected by long U-rich linkers. A Mfold secondary
structure prediction of a single A-repeat suggested a
double hairpin structure where the two hairpins possibly
stack on top of each other (3) (Figure 1B). As no struc-
tural information on the A-repeats is available, we started
NMR studies on a single A-repeat (Figure 1C) with the
goal to solve its atomic structure and to obtain molecular
insight into X-Inactivation. The construct used in our
study shown in Figure 1C is identical to the 5th human
A-repeat, apart from switching the positions of G and C in
the third G–C base-pair to facilitate chemical shift assign-
ments. Previous studies have shown that altering the
sequence of the stem in hairpin 1 does not influence
Xist activity as long as base pairing is not disrupted (3).
During our structural studies we encountered difficulties
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completing NMR assignments of the second predicted
hairpin. Signals from this hairpin were broad, and some-
times doubled (data not shown), which indicated possible
dynamics or sample heterogeneity, although native gel
analysis of the 26-mer A-repeat RNA suggested a homo-
genous monomeric population (Supplementary Material).
The strategy described in this article was essential to char-
acterize and distinguish the intramolecular and intermole-
cular base pairs in monomeric/dimeric forms of RNA
at sample conditions required for structural biology.
The approach provided valuable insight into the possible
architecture of the A-repeats.

NMR structures are determined from proton–proton
distance restraints derived from nuclear Overhauser effects
(NOEs), dihedral angle restrains derived from J-coupling
constants and Residual Dipolar Couplings (4–8). Since
chemical shifts and the pattern of NOEs in NMR spectra
of hairpin and duplex species of a given nucleic acid are
very similar, standard NMR techniques do not normally
suffice to distinguish between the two. Other methods to
determine the stoichiometry of nucleic acids include
native gel electrophoresis and UV melting (9). However,
these experiments are carried out at low concentrations.
Hydrodynamic measurements such as ultracentrifugation,
light scattering and NMR diffusion (10) are also available,
but can be difficult to interpret for elongated molecules
like RNA and for low molecular weight systems.

Several NMR methods have been developed to unam-
biguously distinguish between monomers and dimers of
nucleic acids under NMR conditions (11–14). All these
use an equimolar mixture of isotope labeled and unlabeled

RNA/DNA. In such a mixture, different populations will
exist for a RNA hairpin conformation with intramolecular
base-pairing or for a duplex involving intermolecular
base pairs. If the RNA folds into a hairpin, 50% of the
molecules will be labeled and 50% will be unlabeled
(Figure 2A). If the RNA adopts a duplex form, 25% of
the molecules will be labeled, 25% will be unlabeled and
50% of the duplexes will consist of one labeled and one
unlabeled strand (Figure 2B). Nucleic acid duplexes are
detected based on differences in NMR parameters such
as chemical shifts (11), cross-hydrogen bond h2JNN cou-
pling constants (12,13) or NOEs (14).
The chemical shift based method (11) requires the intro-

duction of a mutation that shifts a G imino signal to a
characteristic frequency in the case of duplex formation.
An obvious drawback of this method is that a change in
the RNA sequence can possibly alter the monomer–dimer
equilibrium.
The method using scalar couplings (12,13) is based on

the HNN-COSY experiment (15), which relies on the
transfer of magnetization across the hydrogen bond in
nucleic acid base pairs using the two-bond h2JNN coupling.
RNA duplexes are detected through a difference in inten-
sities between cross- and diagonal peaks in HNN-COSY
spectra, as in a duplex species with one labeled and one
unlabeled strand magnetization transfer over the hydro-
gen bond cannot take place. We have extended this
method and demonstrate that the molar fractions of hair-
pin and duplex species in a mixed population can be
determined.
The NOE based method uses isotope editing/filtering

techniques to distinguish intermolecular and intramolecu-
lar NOEs (14). NOEs arising from pairs of protons where
one is bound to 15N and the other one bound to 14N can
only arise from a duplex species. This is a complementary
approach if an efficient J-based magnetization transfer
across the base pair is not possible, for example in G–U
pairs. We have employed simultaneous filters for protons
attached to nitrogens and to carbon. Thereby, intermole-
cular NOEs involving imino-imino (in G–U base pairs)
and imino–amino (in G–C base pairs) can be discrimi-
nated from NOEs involving imino protons and H2s in
A–U base pairs.
Here we present the combination of HNN-COSY and

NOE based methods to distinguish between monomeric
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Figure 1. Schematic structure and sequence of Xist RNA and its
A-repeats (A) Xist RNA is a long (15 kb in mouse, 17 kb in human)
noncoding RNA. The A-repeats located at the 50-end are essential for
silencing, while other regions are redundantly responsible for chromo-
some association. (B) The A-repeats consist of 7.5 copies of a conserved
sequence predicted to fold into two hairpins, connected by long U-rich
linkers. N=any nucleotide; Y=C/U. (C) The 26-mer A-repeat con-
struct used containing both predicted hairpins. This construct is iden-
tical to the fifth human Xist RNA A-repeat apart from the reversed
G4-C11 base pair as described in the Introduction section. (D) The 14-
mer A-repeat construct used in this study, containing the first predicted
hairpin with a novel tetraloop.
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Figure 2. Schematic representation of the relative populations of spe-
cies present in a 1:1 mixture of isotope labeled (magenta) and unlabeled
(black) nucleic acids for (A) a hairpin conformation and (B) full duplex
formation. The sequence of the second predicted hairpin of the Xist
RNA A-repeat is shown.
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hairpin and duplex conformations of nucleic acids. The
approach is demonstrated and was crucial for the deter-
mination of the architecture of the Xist RNA A-repeats in
our structural studies.

MATERIALS AND METHODS

Sample preparation

13C,15N uniformly labeled and unlabeled r(GGCGC
[AUCG] GCGCUUCGG [AUAC] CUGC) A-repeat
26-mer RNA (consisting of both predicted A-repeat hair-
pins, Figure 1C) and r(GGCGC [AUCG] GCGCC)
A-repeat 14-mer RNA (containing only the first hairpin,
Figure 1D) was prepared by in vitro transcription with T7
RNA polymerase (EMBL Protein Expression and
Purification Core Facility, Heidelberg, Germany) using
synthetic DNA oligos (MWG Biotech/Eurofins MWG
Operon, Ebersberg, Germany) as a template (16) and
either 13C,15N labeled (Silantes, Munich, Germany) or
unlabeled (Sigma-Aldrich, Munich, Germany) NTPs.
The positions of G and C in the fourth base pair of the
first predicted hairpin were reversed to facilitate NMR
assignment. 20-O-methyl groups were incorporated into
the two 50-residues of the DNA template strand to
reduce the amount of n+1 transcription products (17).
The RNA was purified on preparative denaturing 20%
(w/v) polyacrylamide (19:1 acrylamide: bisacrylamide)
gels. Gel bands were visualized by UV shadowing using
fluorescent thin layer chromatography plates (Whatman)
and the band corresponding to the full-length product was
excised and electroeluted (Schleicher & Schuell/Whatman,
Dassel, Germany). The RNA was precipitated, resus-
pended and extensively washed in 1K MWCO concentra-
tors (Pall, Dreieich, Germany) with 10mM NaH2PO4/
Na2HPO4 buffer (pH 6.0) of progressively decreasing
NaCl concentration (1–0M). Finally the RNA was
desalted (PD-10, Amersham/GE Healthcare, Freiburg,
Germany) and lyophilized.
NMR samples were prepared in 10mM NaH2PO4/

Na2HPO4 buffer (pH 6.0), 100mM NaCl, 0.02% Azide,
0.02 mM EDTA in 95% H2O, 5% D2O. The RNA con-
centration of the 13C,15N uniformly labeled sample for
recording the HNN-COSY reference experiment was
0.8mM. An equal amount of unlabeled RNA was added
to this sample, mixed, lyophilized and resuspended in the
same amount of H2O/D2O. Both the edited/filtered
NOESY and HNN-COSY were run on this 1.6mM
sample. In addition, the HNN-COSY was repeated on
the same sample diluted to a total RNA concentration
of 0.8mM. Just before the NMR measurements samples
were heated to 958 for 5min followed by snap-cooling on
ice with the rationale to trap the kinetically favored intra-
molecular monomeric hairpin conformation over a possi-
ble intermolecular dimer. The stoichiometry of the NMR
samples was initially checked with native PAGE
(Supplementary Material).

NMRSpectroscopy

HNN-COSY. NMR experiments were recorded at 58C
on a Bruker DRX600 spectrometer equipped with a

cryoprobe. HNN-COSY spectra were recorded with the
pulse sequence described by Dingley & Grzesiek (15)
shown in Supplementary Figure 1. The delay T for evolu-
tion of the h2JNN coupling was set to 20, 30 and 40ms. One
thousand and twenty-four complex points were collected
in t2 with a sweep width of 12.5 kHz, and 140 complex
points were recorded in t1 with a sweep width of
6.25 kHz. Two hundred and fifty-six scans were recorded
for each complex t1 increment. The experiments were per-
formed with the 1H carrier positioned at the H2O reso-
nance and the 15N carrier at 175 p.p.m. The data were zero
filled to 512� 2K complex data points, followed by apo-
dization using Lorentz-to-Gauss transformation and
cosine functions in t2 and t1, respectively, before Fourier
transformation.

Isotope-edited/filtered NOESY. The !1, !2 double iso-
tope-filtered NOESY experiment employed is shown in
Figure 3. Compared to the experiment proposed by
Aboul-ela et al. (14) for discrimination between intra-
and intermolecular NOEs we have added a 13C filter in
!1. This allows the discrimination of intermolecular
imino–imino NOEs in G–U base pairs, and the identifica-
tion of intermolecular imino-H2 NOEs in A–U base pairs.
Moreover, the !1 filter is combined with semi-constant
time chemical shift evolution (18,19) in t1 to exploit the
filter delay 2� simultaneously for chemical shift labeling
and J-coupling evolution (20) for improved sensitivity.
Editing/filtering for both 15N and 13C in !1 is accom-
plished by a ‘jumping’ 180 pulse (Figure 3). The pulse is
applied before or after a delay � and �0, 1/2JHN and
1/2JHC in which anti-phase magnetization is created for
HN and HC proton spins, respectively. If the pulse is
applied at position (1) in Figure 3, the signals of 15N/13C
bound proton spins are effectively inverted and have an
opposite phase compared to other spins. If it is applied at
position (2) (Figure 3), evolution of heteronuclear
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Figure 3. Double (!1, !2)-filtered NOESY pulse sequence to distinguish
intra- and intermolecular NOEs in nucleic acid base pairs. �=5.4ms,
�0=2.5ms. Narrow and wide bars denote 908 and 1808 pulses, respec-
tively, and are applied with phase x unless stated otherwise. 13C, 15N
1808 pulses are applied at position (1) or (2) to distinguish 13C/15N and
12C/14N bound protons. The 15N 1808 pulses are composite pulses of
the form 908y1808x908y. c= x, �x for distinguishing 15N/14N bound
protons. Phase cycle: �1= x, �x+TPPI; �2= x, x, �x, �x; �rec= x,
�x, �x, x. Water suppression is accomplished by WATERGATE (25)
combined with water flip back (26). Gradients of 800ms length were
applied with 30% (g1) and 50% of maximal power (g2).
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coupling is completely refocused during the semi-constant
time evolution period, and 15N/13C- and 14N/12C-bound
protons have the same phase. Transients are stored sepa-
rately for the two positions of the jumping 1808 pulses in
order to be able to separate the inter- and intramolecular
NOEs. The sum of scans (1) and (2) selects 14N/12C bound
protons in !1, its difference

15N/13C bound protons. In !2,
editing is achieved by applying two consecutive 90 pulses
on 15N. The first pulse is applied with phase x and the
second with phase  alternating between x and –x (21)
and the two transients are stored separately. When both
pulses have the same phase the signal of 15N bound pro-
tons is inverted. Again, the sum of scans with  = x and
 =–x selects 14N bound protons in !2, its difference

15N
bound protons. A total of four different FIDs are
recorded as described in Table 1, which results in (i)
inverting signals of 15N/13C bound protons in !1 and
15N bound protons in !2; (ii) inverting only 15N bound
proton signals in !2; (iii) inverting only 15N/13C bound
protons in !1; and (iv) without any signal inversion.
Linear combinations of these four FIDs yield four sub-
spectra I–IV as shown in Table 2. The NOESY mixing
time was set to 300ms. The experiment was performed
with the 1H carrier positioned at the H2O resonance and
the 15N and 13C carriers both at 150 p.p.m. Pulse lengths

for the 15N and 13C 1808 pulses were 84 and 30 ms, respec-
tively. For the 15N and 13C spins of interest in the G–C
and A-U base pairs these pulses achieve better than 98%
inversion. Therefore, incomplete inversion which could
degrade the editing/filtering performance should not be
an issue. One thousand and twenty-four complex points
were collected in t2 with a sweep width of 13.9 kHz, and
256 complex points were recorded in t1 with a sweep width
of 13.9 kHz. Thirty-two scans of four separate FIDs were
collected for each complex point in t1. The data was zero
filled to 512� 2K complex data points and apodized using
Lorentz-to-Gauss and cosine functions in t2 and t1, respec-
tively before Fourier transformation.
Spectra were processed with NMRPipe (22) and ana-

lyzed using NMRVIEW (23). Imino protons were
assigned with a combination of HNN-COSY (15) and a
sequential walk in 2D NOESY spectra (300ms mixing
time) (24) (Duszczyk et al., in preparation). All pulse
sequences use the WATERGATE sequence (25) and
water flipback (26) for water suppression.

Quantitative analysis of HNN-COSY

A description of the magnetization transfer in the HNN-
COSY pulse sequence is given in the Supplementary
Material. The HNN-COSY spectrum shows cross and
diagonal peaks at the chemical shifts of the 15N1 and
15N3 nuclei for each G–C, A–U, and some non-canonical
base pairs. If both hydrogen bond acceptor and donor are
isotope labeled, intensities of cross and diagonal peaks are
proportional to sin2(�h2JNNT) and cos2(�h2JNNT)
respectively.
Values of h2JNN coupling constants were calculated

from Icross/Idiagonal extracted from the spectra recorded
on the fully labeled RNA samples with:

Icross=Idiagonal ¼ tan2ð�h2JNNTÞ

Icross/Idiagonal was determined as the amplitude ratio of the
time domain oscillations using the time domain fitting rou-
tine nlinLS contained in the NMRPipe package (15,22).
Errors in the intensity ratio and couplings were calculated
based on the effect of random noise for the peak height

Table 2. NOEs observed in the four subspectra that result from linear combinations of the four different FIDs recorded

Subspectrum Linear combination of FIDs NOEs involving protons bound to NOEs observed

!1 !2 G–U A–U

I a+b+c+d 12C, 14N 12/13C, 14N

II a� b� c+d 13C, 15N 15N

III a� b+c� d 13C, 15N 12/13C, 14N

IV a+b� c� d 12C, 14N 15N

Table 1. Transfer amplitude factors for the signals in the four different

FIDs of the double filtered NOESY experiment shown in Figure 3

FID a b c d
Jumping pulse position (1) (2) (1) (2)
Phase  x x �x �x

Amplitude factor
(!1)

13C, 15N � + � +
12C, 14N + + + +

(!2)
15N � � + +

12/13C, 14N + + + +

Overall amplitude factor
12C, 14N (!1) �

12/13C, 14N (!2) + + + +
13C, 15N (!1) �

15N (!2) + � � +
13C, 15N (!1) �

12/13C, 14N (!2) � + � +
12C, 14N (!1) �

15N (!2) � � + +

Nucleic Acids Research, 2008, Vol. 36, No. 22 7071



estimated by nlinLS. No correction for an underestimation
of 10–20% due to the finite excitation bandwidth of the
15N radio frequency pulses (15) was made.
Discrimination between intra- and intermolecular

hydrogen bonds can be accomplished by comparing the
relative intensities of cross and diagonal peaks in HNN-
COSY spectra of a fully labeled and 50% labeled, 50%
unlabeled RNA sample. If the RNA forms monomeric
hairpins, the relative intensities of the diagonal and cross-
peaks (Idiagonal/Icross) will be equal in both samples, apart
from an overall 50% loss of intensity as only the 50%
labeled molecules contribute to the signal. In the case of
duplex formation Idiagonal/Icross will increase as 50% of the
RNA population of which one strand is labeled and the
other unlabeled will only contribute to the diagonal peak
intensity but not to the cross peak intensity.
The 1H and 15N chemical shifts of corresponding posi-

tions in hairpin and duplex conformations are usually
degenerate. Therefore, if the interconversion between
monomer and dimer species is either fast or slow on the
time scale of the h2JNN couplings and if there is no signifi-
cant population of a non-hydrogen bonded form, molar
fractions in a mixed population of monomers and dimers
can be derived from the intensity ratio of cross and diag-
onal peaks in a 50% labeled, 50% unlabeled sample. The
requirements are: (i) corresponding h2JNN coupling con-
stants are similar in the hairpin and duplex conformations;
(ii) the size of the h2JNN couplings is known (for example
from measurements on a 100% labeled sample) and (iii)
transverse 15N T2 relaxation times of the monomer and
dimer species are known. Then, the molar fractions of the
hairpin (�monomer) and that of the duplex conformations
(�duplex=1–�monomer) in a 50% labeled, 50% unlabeled
sample contribute to the intensities of diagonal and
cross peaks as follows:

Note, that the transverse 15N relaxation has only a very
small effect on Idiagonal/Icross. Moreover, in the case of a
fully dimeric or fully monomeric conformation Idiagonal/
Icross does not depend on the transverse relaxation time
at all.

RESULTS AND DISCUSSION

Xist RNAA-repeat 26-mer assignment

Assignment of RNA usually starts with confirmation of
the secondary structure by identifying Watson–Crick base
pairs in A-form helical regions. In long mixing time
NOESY spectra in H2O these cause a characteristic pat-
tern of inter-base NOEs within base pairs and between
consecutive stacked base pairs. With the latter a so-called
‘sequential walk’ through the stem is possible. Sequence
specific assignment of the imino protons is facilitated
with the HNN-COSY experiment where the imino

proton shifts are correlated with base-specific chemical
shifts of the nitrogens in the base pairs.

After recording these two experiments on our Xist
26-mer sample, imino assignment could be almost com-
pleted. However, we noticed an unusual downfield shifted
signal, which did not show any imino–imino NOEs in the
NOESY. In the HNN-COSY experiment this imino was
correlated to a uridine N3 nitrogen and to a nitrogen at
�222 p.p.m., indicative of either adenine N1, N3 or purine
N7 nitrogens (27). A correlation to adenine N1 would cor-
respond to a canonical A–U base pair, but such a base pair
was not expected in the predicted 26-mer double hairpin.
We considered two possibilities: either that this imino was
involved in a non-canonical base contact in the second
predicted loop, or that it was involved in an intermolecular
base pair in a duplex species, although native gel analysis
of the 26-mer A-repeat RNA suggested a homogenous
monomeric population (Supplementary Figure 2).

Quantification of HNN-COSY

To rule out that our Xist samples are dimerizing under
NMR conditions, we used the approach based on the
quantitative HNN-COSY experiment (Figure 4). The
HNN-COSY spectrum recorded on a 100% 15N-labeled
sample of the 26-mer is shown in Figure 4C. Figure 4D
shows slices through the maxima of cross- and diagonal
peaks for two base pairs (G2–C13 in the first predicted
stem and the base pair involving the U20 imino) from
HNN-COSY spectra recorded on a fully labeled (blue)
and 50% labeled, 50% unlabeled (green) 26-mer RNA.
Corresponding spectra were recorded on a shorter
14-mer Xist RNA sample containing only the first pre-
dicted hairpin (Figure 1D) to compare measurements in
the first hairpin within the 26-mer sample to the ones in a
small and stable hairpin that provided superior spectral

quality (data not shown). Only non-overlapped signals
were used to measure intensities. All base pairs in the
14-mer could be analyzed except G1-C14, which is not
visible presumably due to end-fraying. Measured intensi-
ties for diagonal and cross peaks for the base pairs in
the 14-mer and the 26-mer are given in Table 3. It is
clear that for the 14-mer Xist RNA Idiagonal/Icross ratios
are comparable within error for the 100% labeled sample
and the 50% labeled, 50% unlabeled sample. This con-
firms a monomeric state of the 14-mer hairpin. The non-
overlapped signals in the 26-mer show different results for
base pairs from the first and second predicted hairpin.
For G2–C13, G12–C3 and G4–C11 no significant dif-
ference between Idiagonal/Icross is seen between the two
samples. In contrast, for the base pair involving the U20
imino proton, Idiagonal/Icross increases four-fold in the
50% labeled, 50% unlabeled sample. This unambiguously
shows that U20 is involved in an intermolecular base pair.
The most probable partner in this intermolecular base

Idiagonal=Icross ¼
�monomer cos

2ð�h2JNNTÞe
�2T=T2ðmonomerÞ

þ ð1� �monomerÞð1þ 0:5 cos2ð�h2JNNTÞÞe
�2T=T2ðduplexÞ

� �

�monomer sin
2
ð�h2JNNTÞe

�2T=T2ðmonomerÞ
þ ð1� �monomerÞ0:5 sin

2
ð�h2JNNTÞe

�2T=T2ðduplexÞ
� �
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pair is A21 in a second 26-mer molecule. Thus, A20-U21 is
indeed a canonical Watson–Crick base pair, however,
from an unexpected duplex RNA species. Although
Idiagonal/Icross for the G18–C23, G10–C5 and G25–C16
base pairs could not be analyzed quantitatively due to
spectral overlap, the signals involving G18–C23 and
G25–C16 in the second predicted hairpin show a signifi-
cant decrease in cross peak intensity in the 50% labeled
sample (data not shown), consistent with intermolecular
base pairs in the second predicted hairpin.
Calculation of h2JNN coupling constants from a 100%

isotope labeled RNA yielded values between 4.9 and
5.6Hz (Table 3), which are at the lower end of the range
of reported values of 6–7Hz for Watson–Crick base pairs
(15,28,29). Repetition of the experiment on a different
spectrometer and with different transfer times for the N–
N transfer resulted in the same range of couplings. Smaller
couplings are usually observed in nonlinear H-bond geo-
metries or due to fraying at the interfaces with non-regular
secondary structure elements (30). Presumably, apart from
a potential underestimation of the couplings due to imper-
fections of the 15N radio frequency pulses, the size of the
couplings in our system is reduced by fraying and/or other
conformational dynamics in the small hairpins
investigated.
Figure 5 shows the correlation of Idiagonal/Icross with the

transfer time for full monomeric and full duplex confor-
mations, as well as for the case where only 90% of the
sample is either monomeric or dimeric. Transverse 15N T2
relaxation times were estimated to be 50ms for the dimer
and 70ms for the monomer based on reported values for
RNAs of similar size (31) and considering that the experi-
ments were recorded at 58C. For a transfer time T of 40ms
and a h2JNN coupling of 5Hz Idiagonal/Icross is calculated to
be 7.6 for a pure duplex and 1.9 for a pure hairpin
conformation. Thus, a four-fold increase in the ratio is

expected for a full duplex species upon mixing with unla-
beled RNA. If a mixed population exists, the Idiagonal/Icross
ratios shift closer together. Variations in the 15N T2
relaxation times also lead to an increase/decrease of
Idiagonal/Icross for monomer/dimer species, but the effects
are negligible (data not shown). By comparing the experi-
mentally measured Idiagonal/Icross values with the simulated
curves it is clear that all base pairs in the first hairpin of the
26-mer A-repeat RNA are consistent with a fully mono-
meric conformation, while the A–U base pair in the second
predicted hairpin exists in a fully dimeric form.

With an A-U base pair originating from a dimeric con-
formation two possibilities exist for the A-repeat topology.
Dimerization could involve a kissing hairpin with two
equivalent intermolecular A–U base pairs (Figure 6B), or
correspond to a duplex conformation with full base pairing
with the second part of another A-repeat (Figure 6C). To
distinguish between these two conformations information
on the state of the G–U base pair in the second predicted
stemwould be useful. In a kissing hairpin complex this base
pair would be intramolecular while in a duplex this base
pair would be intermolecular. Unfortunately, the analysis
of J-couplings across hydrogen bonds is not applicable to
G–U base pairs due to a lack of sizable J-couplings
(Figure 4A).

Analysis of the double-isotope-filtered NOESY spectra

As a characteristic and strong NOE pattern is visible
between the G and U imino protons in a G-U base pair
we analyzed the 50% labeled, 50% unlabeled sample fol-
lowing the approach first proposed by Aboul-ela et al. (14)
based on NOEs in base pairs with optimizations and exten-
sions as described in the Materials and Methods section.

Linear combinations of the four FIDs a–d (Table 1)
recorded in the double-filtered NOESY experiment yield

Table 3. Experimental ratios between diagonal and cross peak intensities extracted from HNN-COSY spectra of fully labeled and 50% labeled, 50%

unlabeled—Panel A: Xist RNA A-repeat 14-mer and Panel B: Xist RNA A-repeat 26-mer with calculated J-couplings for each base pair

Base pair Idiagonal/Icross,
100% labeled 1.2mM

h2JNN coupling Idiagonal/Icross, 50% labeled
50% unlabeled 1.2mM each

Panel A: 14-mer
C5-G10 1.6� 0.1 5.3� 0.1 1.7� 0.1
G4-C11 1.4� 0.1 5.6� 0.1 1.3� 0.1
C3-G12 1.4� 0.1 5.6� 0.1 1.4� 0.1
G2-C13 1.9� 0.1 5.0� 0.1 1.8� 0.1

Base pair Idiagonal/Icross,
100% labeled 0.8mM

h2JNN coupling Idiagonal/Icross, 50% labeled
50% unlabeled 0.8mM each/0.4mM each

Panel B: 26-mer
C5-G10 ovl. ND ovl.
G4-C11 1.6� 0.1 5.4� 0.1 1.3� 0.1/1.3� 0.1
C3-G12 1.4� 0.1 5.6� 0.1 1.8� 0.1/1.7� 0.1
G2-C13 1.9� 0.1 5.0� 0.1 1.7� 0.1/1.4� 0.1
C16-G25 ovl. ND ovl.
G18-C23 ovl. ND ovl.
U20-A21 2.0� 0.1 4.9� 0.1 8.5� 1/noise

For the 26-mer calculated Idiagonal/Icross values are given for spectra recorded on samples with a total RNA concentration of 1.6mM and 0.8mM.
Intensities that could not be analyzed because of overlap are labeled with ‘ovl’ for ‘overlapped’ and their calculated 2JNN couplings are labeled with
‘ND’ for ‘not determined’. Idiagonal/Icross for U20-A21 could not be determined for the sample with 0.4mM labeled and unlabeled 26-mer each as the
cross peak intensity was in the noise level. Errors in the intensity ratios and couplings were calculated based on the effect of random noise for the
peak height estimated by the time-domain fitting routine nlinLS contained in the NMRPipe package.
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four NOESY subspectra I–IV (Table 2). The imino-amino
regions of these four spectra are shown in Figure 6D and
E. In Figure 6D the spectra with NOEs between the unla-
beled protons (spectrum I in black) and NOEs between the
labeled protons (spectrum II in red) are superimposed. In
Figure 6E the two spectra with NOEs between labeled and
unlabeled protons are shown. These NOEs can only ori-
ginate from a duplex RNA species. NMR signals of spe-
cial interest are highlighted: the U20 imino to A21 H2
cross peaks, and the two imino–imino NOEs in the
G17–U24 base pair. The latter demonstrate that not
only U20–A21, but also the G17–U24 base pair in the
second predicted stem of the 26-mer Xist construct is
intermolecular. For the G1–U14 base pair in the first
stem no imino–imino cross peaks are seen in Figure 6E,
which confirms that the first predicted hairpin is intramo-
lecular. The intensities of the imino to imino NOEs in the
G–U base pair are symmetrical in spectra III and IV (con-
sidering that spin-diffusion in the long mixing time
NOESY can differentially effect the peak intensities of
the symmetric cross peaks). In contrast, the imino-H2

NOEs in the A–U base pair are only symmetric in spec-
trum III since the 13C filter is applied only in !1. This
asymmetric NOE pattern is only consistent for an inter-
molecular NOE involving an imino proton and a proton
attached to carbon, which independently confirms that
these NOEs correspond to an A-U base pair.

The architecture of the Xist RNA-repeat

The combined data from the HNN-COSY and double-
isotope-filtered NOESY experiments are in agreement
with an architecture of the A-repeats as shown in
Figure 6C with a fully dimerized second stem. The fact
that the imino–imino NOEs for the G17–U24 base pair in
the spectra shown in Figure 6D and E have comparable
intensities indicates that the 26-mer RNA exists in a fully
dimeric form in solution. If an equilibrium would exist
between the kissing hairpin and duplex forms shown
in Figure 6B and C, the G-U imino–imino NOEs in
Figure 6E should have lower intensities than those in
Figure 6D.
The question remains if the dimerization seen in vitro

under NMR conditions is significant in vivo, or if it is
merely an artifact of the high concentrations used in the
experimental conditions. In this respect, we note that the
imino signal of U20, which is involved in the intermole-
cular basepair, is visible in 1D NMR spectra even at con-
centrations as low as 50 mM. In addition, analytical
ultracentrifugation data of a 0.1mM sample show that
the A-repeat 26-mer exists as a dimer in solution
(Duszczyk et al., in preparation). It should also be con-
sidered that in vivo there is a high local concentration of
the A-repeats as they are connected by relatively short
linkers and are localized to the X chromosome. Thus, it
is possible that the second region of the A-repeat may
function as a multimerization platform for several
A-repeats, either within a single Xist RNA molecule, or
between different ones. Further experiments to address
these issues are underway.

CONCLUSION

We developed and applied a novel approach to unambigu-
ously define the stoichiometry of the NMR sample for the
structural analysis of a Xist RNA A-repeat. Using a com-
bination of quantitative HNN-COSY and a novel double
isotope-filtered NOESY experiment we could define the
conformation of the 26-mer A-repeat RNA. We show
that in a single 26-mer A-repeat only the first predicted
hairpin is formed, while the second predicted stem-loop
forms a RNA duplex and mediates dimerization of the
26-mer A-repeat. Our strategy will be generally applicable
to identify and quantify populations of hairpin and duplex
conformations in RNAs and to define RNA folding topol-
ogy from inter- and intra-molecular base-pairing patterns.
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