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2Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen,
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Abstract While multicompartment models have long been used to study the biophysics of

neurons, it is still challenging to infer the parameters of such models from data including

uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed

neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina

based on two-photon imaging data. We obtained multivariate posterior distributions specifying

plausible parameter ranges consistent with the data and allowing to identify parameters poorly

constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron

models, we created a simulation environment for external electrical stimulation of the retina and

optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem

of retinal neuroprosthetics.

Introduction
Mechanistic models have been extensively used to study the biophysics underlying information proc-

essing in single neurons and small networks in great detail (Gerstner and Kistler, 2002;

Koch, 2004). In contrast to phenomenological models used for neural system identification, such

models try to preserve certain physical properties of the studied system to facilitate interpretation

and a causal understanding. For example, biophysical models can incorporate the detailed anatomy

of a neuron (Golding et al., 2001; Poirazi et al., 2003; Hay et al., 2011), its ion channel types

(Hodgkin and Huxley, 1952; Fohlmeister and Miller, 1997) and the distributions of these channels

(Rattay et al., 2017) as well as synaptic connections to other cells (O’Leary et al., 2014). For all

these properties, the degree of realism can be adjusted as needed. While increased realism may

enable models to capture the highly non-linear dynamics of neural activity more effectively, it usually

also increases the number of model parameters. While the classical Hodgkin-Huxley model with one

compartment has already 10 free parameters (Hodgkin and Huxley, 1952), detailed multicompart-

ment models of neurons can have dozens or even hundreds of parameters (Taylor et al., 2009;

Hay et al., 2011).

Constraining many of these model parameters such as channel densities requires highly special-

ized and technically challenging experiments, and hence it is usually not viable to measure every sin-

gle parameter for a neuron model of a specific neuron type. Rather, parameters for mechanistic
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simulations are often aggregated over different neuron types and even across species. Even though

this may be justified in specific cases, it likely limits our ability to identify mechanistic models of indi-

vidual cell types. Alternatively, parameter search methods have been proposed to identify the

parameters of mechanistic neuron models from standardized patch-clamp protocols based on

exhaustive grid-searches (Goldman et al., 2001; Prinz et al., 2003; Stringer et al., 2016) or evolu-

tionary algorithms (Gerken et al., 2006; Keren et al., 2005; Achard and De Schutter, 2006;

Rossant et al., 2011). Such methods are often inefficient and identify only a single point estimate

consistent with the data (for discussion, see Gonçalves et al., 2020).

Here, we built on recent advances in Bayesian simulation-based inference to fit multicompartment

models of neurons with realistic anatomy in the mouse retina. We used a framework called Sequen-

tial Neural Posterior Estimation (SNPE) (Lueckmann et al., 2017; Gonçalves et al., 2020) to identify

model parameters based on high-throughput two-photon measurements of these neurons’

responses to light stimuli. SNPE is a Bayesian simulation-based inference algorithm that allows

parameter estimation for simulator models for which the likelihood cannot be evaluated easily. The

algorithm estimates the distribution of model parameters consistent with specified target data by

evaluating the model for different sets of parameters and comparing the model output to the target

data. To this end, parameters are drawn from a prior distribution, which is an initial guess about

which parameters are likely to produce the desired model output. For example, the choice of prior

distribution can be informed by the literature, without constraining the model to specific values. The

model output for the sampled parameter sets can then be used to refine the distribution over plausi-

ble parameters given the data. This updated distribution, containing information from both the prior

and the observed simulations, is known as the posterior. For high-dimensional parameter spaces,

many samples are necessary to obtain an informative posterior estimate. Therefore, to make efficient

use of simulation time, SNPE iteratively updates its sampling distribution, such that only in the first

round samples are drawn from the prior, while in subsequent rounds samples are drawn from inter-

mediate posteriors. This procedure increases the fraction of samples leading to simulations close to

the target data. Since this approach for parameter estimation not only returns a point-estimate but

also a posterior distribution over parameters consistent with the data, it allows one to straightfor-

wardly determine how well the parameters are constrained. While the method has been used previ-

ously to fit simple neuron models (Lueckmann et al., 2017; Gonçalves et al., 2020), it has so far not

been applied to models as complex and realistic as the ones presented here.

We estimated the posterior parameter distribution of multicompartment models of three retinal

neurons, a cone photoreceptor (cone), an OFF- and an ON-bipolar cell (BC). The structure of the BC

models was based on high-resolution electron microscopy reconstructions (Helmstaedter et al.,

2013) and in six independently parameterized regions. We performed parameter inference based

on the responses of these neurons to standard light stimuli measured with two-photon imaging of

glutamate release using iGluSnFR as an indicator (Franke et al., 2017). Our analysis shows that

many of the model parameters can be constrained well, yielding simulation results consistent with

the observed data. After validating our model, we show that the inferred models and the inference

algorithm can be used to efficiently guide the design of electrical stimuli for retinal neuroprosthetics

to selectively activate OFF- or ON-BCs. This is an important step toward solving a long-standing

question in the quest to provide efficient neuroprosthetic devices for the blind.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (mouse) B6;129S6-Chattm2(cre)LowlJ Jackson laboratory
JAX 006410

RRID:IMSR_JAX:006410

Genetic reagent (mouse) Gt(ROSA)26Sor tm9(CAG-tdTomato)Hze Jackson laboratory
JAX 007905

RRID:IMSR_JAX:007905

Strain (mouse, female) B6.CXB1-Pde6brd10 Jackson laboratory
JAX 004297

RRID:IMSR_JAX:004297

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain
(Adeno-associated virus)

AAV2.7m8.hSyn.iGluSnFR Virus facility,
Institute de la Vision, Paris

Software, algorithm NeuronC https://retina.anatomy.upenn.
edu/rob/neuronc.html

RRID:SCR_014148 Version 6.3.14

Software, algorithm SNPE
https://github.com/mackelab/delfi

See Inference algorithm

Software, algorithm COMSOL Multiphysics COMSOL Multiphysics RRID:SCR_014767

Biophysical neuron models
We created detailed models of three retinal cell types: a cone, an ON- (Figure 1A,Bi) and an OFF-

BC (Figure 1Bii). From the different OFF- and ON-BC types, we chose to model the types 3a and

5o, respectively, because those were the retinal cone bipolar cell (CBC) types in mice for which we

could gather most information. To model the light response, the OFF-BC model received input from

five and the ON-BC from three cones (Behrens et al., 2016). Every cone made two synaptic connec-

tion with each BC. The postsynaptic conductances were set to 0.25 nS per connection.

Multicompartment models
We used NeuronC (Smith, 1992) to implement multicompartment models of these neurons. A multi-

compartment model subdivides a neuron into a finite number of compartments. Every compartment

is modeled as an electrical circuit, has a position in space, a spatial shape and is connected to at

least one neighboring compartment (Figure 1C). The voltage in a compartment n, connected to the

compartments n� 1 and nþ 1 is described by:

d

dt
Vn
m ¼

1

cnm

Vnþ1

m �Vn
m

rnþ1

i þ rni
þ
Vn�1

m �Vn
m

rn�1
i þ rni

þ
Vn
r þVn

ex�Vn
m

rnm
þ
X

e

Vn
e þVn

ex�Vn
m

rne ð:::Þ

 !

þ
d

dt
Vn
ex: (1)

Here, compartments are either modeled as cylinders or spheres. The membrane capacitance cnm,

membrane resistance rnm and axial resistance rni of a compartment n are assumed to be dependent

on the compartment surface area An
m and/or the compartment length lnc :

rnm ¼ Rm=A
n
m; cnm ¼CmA

n
m; rni ¼ Ril

n
c=A

n
m: (2)

We assumed the specific membrane resistance Rm, the specific membrane capacitance Cm, and

the axial resistivity Ri to be constant over all compartments within a cell model. We used

Ri ¼ 132W cm for all cell types and informed our priors for Cm and Rm, which we estimated for every

cell type individually, based on estimates for rod bipolar cells of rats (Oltedal et al., 2009). Parame-

ters of NeuronC and the used values are summarized in Appendix 1—table 3.

Anatomy
We used a simplified cone morphology consisting of four compartments: one cone-shaped compart-

ment for the outer segment, one spherical compartment for the combination of inner segment and

soma, one cylindrical compartment for the axon, and another spherical one for the axonal terminals

(Figure 1). The light collecting area in the outer segment was set to 0.2 mm2 (Nikonov et al., 2006).

The diameter of the soma dcS, the axon dcA and axonal terminals dcAT , the length of the axon lcA and the

length of the outer segment lcOS were based on electron microscopy data (Carter-Dawson and LaV-

ail, 1979):

dcS ¼ 5:13�m; dcA ¼ 1:3�m; dcAT ¼ 6�m; lcA ¼ 15�m; lcOS ¼ 14:4�m: (3)

The BC morphologies in this study were based on serial block-face electron microscopy data of

mouse bipolar cells (Helmstaedter et al., 2013). We extracted the raw voxel-based morphologies

from the segmentation of the EM dataset and transformed them into a skeleton plus diameter

Oesterle et al. eLife 2020;9:e54997. DOI: https://doi.org/10.7554/eLife.54997 3 of 37

Research article Computational and Systems Biology Neuroscience

https://retina.anatomy.upenn.edu/rob/neuronc.html
https://retina.anatomy.upenn.edu/rob/neuronc.html
https://scicrunch.org/resolver/SCR_014148
https://github.com/mackelab/delfi
https://scicrunch.org/resolver/SCR_014767
https://doi.org/10.7554/eLife.54997


representation using Vaa3D-Neuron2 auto tracing (Xiao and Peng, 2013). These where then manu-

ally refined using Neuromantic (Myatt et al., 2012) to correct errors originating from small segmen-

tation errors (Figure 1).

The ON-BC morphology we chose was classified as type 5o, equal to the functional type of the

model. For the OFF-BC, we decided for a morphology classified as type 3b, although we functionally

modeled a type 3a cell, because the chosen reconstructed morphology was of higher quality than all

available type 3a reconstructions and because type 3a and 3b BCs have very similar morphologies.

Additionally, type 3a and 3b mostly differ in the average axonal field size (Wässle et al., 2009;

Helmstaedter et al., 2013), with that of type 3a being larger than that of type 3b. The selected

morphology had the largest axonal field among all cells classified as 3b in the dataset, well within

the range of type 3a cells.

Because the computational time scales approximately linear with the number of BC compart-

ments, using the full number of compartments of the EM reconstructions (>1000) during parameter

−1

−1

−1

−1

+1

+1

+1

+1

−1−1

−1

+1
+1

−1

−1

+1

+1

Figure 1. From serial block-face electron microscopy (EM) data of retinal BCs to multicompartment models. (A)

Raw morphology extracted from EM data of an ON-BC of type 5o. (Bi) Processed morphology connected to three

presynaptic cones (red) and several postsynaptic dummy compartments that are generated to create the synapses

in the model (yellow). The cone and BC morphologies are divided into color-coded regions with a legend shown

on the right. (Bii) Same as (Bi) but for an OFF-BC of type 3. (C) Three cylindrical compartments of a

multicompartment model. Every compartment (blue) n consists of a membrane capacitance cnm, a membrane

resistance rnm, a leak conductance voltage source Vn
r , an extracellular voltage source Vn

ex and at least one axial

resistor rni that is connected to a neighboring compartment. Vn
ex is only used to simulate electrical stimulation and

is otherwise replaced by a shortcut. Compartments may have one or more further voltage- or ligand-dependent

resistances rne with respective voltage sources rne to simulate ion channels (indicated in gray).
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inference was computationally infeasible. Therefore, we utilized the compartment condensation

algorithm of NeuronC, which iteratively reduces the number of compartments while preserving bio-

physical properties (Smith, 1992). To be able to draw a sufficient number of samples, we reduced

the number of compartments during parameter inference to 22 and 19 for the OFF- and ON-BC

respectively (requiring approximately 3 min per simulation for a 31 s light stimulus). To simulate the

electrical stimulation, more compartments are necessary to capture the effect of the electrical field

on the neurites of the BC models. Therefore, we increased the number of compartments to 139 and

152 for the OFF- and an ON-BC, respectively, which is sufficient to accurately represent all major

neurites without becoming computationally too expensive (requiring approximately 20 min and

13 min per simulation for a 31 s light stimulus for the OFF- and ON-BC, respectively).

Ion channels and synapses - literature review
The complement and distribution of voltage- or ligand-gated ion channels shapes the response of

neurons. Here, ion channels are modeled as additional electrical elements in the compartments’

membrane with conductances dependent on time varying parameters, such as the membrane poten-

tial and the calcium concentration within the cell. In addition to the equations that govern a chan-

nel’s kinetics, their location in the cell has to be defined. After a literature review of retinal cone

bipolar cell types in mice, we decided to model the OFF- and ON-type for which we could gather

most information, namely BC3a and BC5. Currently, there are three accepted subtypes of BC5: 5o,

5i and 5t (Greene et al., 2016). Here, we modeled the BC5 subtype that expresses voltage-gated

sodium channels (Hellmer et al., 2016) which probably also corresponds to the more transient BC5

subtype reported in Ichinose et al., 2014. The TTX sensitivity observed in Matsumoto et al., 2019

suggests that both, 5o and 5i express voltage-gated sodium channels. To make our model consis-

tent, we used data from the same BC5 subtype (5o) for the morphology, the target data and the

number of cone contacts. A summary of all used channels, their location within the models and the

respective references can be found in Table 1. The following paragraphs describe which channels

were included in the models and why. Note, however, that for all channels (except the L-type cal-

cium channel in the axon terminals, as calcium channels are necessary in the model for neurotrans-

mitter release) channel densities of zero were included in the prior distributions, thereby allowing

the parameter inference to effectively remove ion channels from the model.

In their axon terminals, cones express L-type calcium (CaL) channels that mediate release of the

transmitter glutamate (Morgans et al., 2005; Mansergh et al., 2005; Ingram et al., 2020). We

modeled calcium extrusion purely with calcium pumps (CaP) since other mechanisms such as sodium-

calcium-exchangers probably only play a minor functional role in cones (Morgans et al., 1998).

Additionally, there is evidence that cones express hyperpolarization-activated cyclic nucleotide-

gated cation (HCN) channels of the type 1, mostly in the inner segment but also in the axon

(Knop et al., 2008; Van Hook et al., 2019). The presence of HCN3 channels in mouse cones is more

Table 1. Ion channels of biophysical models.

Channel Cone OFF-BC (type 3a) ON-BC (type 5) Cone references BC references

CaL AT S, AT S, AT Morgans et al., 2005; Mansergh et al., 2005 Van Hook et al., 2019

CaT S, AT Van Hook et al., 2019

CaP AT S, AT S, AT Morgans et al., 1998 Morgans et al., 1998

HCN1 All D, S, AT Knop et al., 2008; Van Hook et al., 2019 Knop et al., 2008; Hellmer et al., 2016

HCN4 D, S, AT Hellmer et al., 2016; Knop et al., 2008

KV IS/S DD, PA, DA DD, PA, DA Knop et al., 2008; Van Hook et al., 2019 Ma et al., 2005

Kir S S Cui and Pan, 2008; Knop et al., 2008

ClCa AT Yang et al., 2008; Caputo et al., 2015

NaV DA DA Hellmer et al., 2016

Regions of ion channels and the respective abbreviations as in Figure 1.

D refers to the combination of DD and PD. All refers to the combination of IS/S, A, and AT.

If multiple regions are stated for a neuron, the ion channel density differs between them.
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controversial. These channels have been observed in rat cones (Müller et al., 2003), and a more

recent study also found evidence for HCN3 channels at the synaptic terminals of mouse cones, but

could not observe any functional differences between wild-type and HCN3-knockout mice. To

restrict the number of model parameters, we did not include HCN3 in our cone model. However, we

added calcium-activated chloride (ClCa) channels to the axon terminals (Yang et al., 2008;

Caputo et al., 2015) and voltage-gated potassium channels KV at the inner segment (Van Hook

et al., 2019).

Our BC5 type expresses voltage-gated sodium (NaV) channels at the axon shaft (Hellmer et al.,

2016). Another study found inward-rectifier potassium (Kir) channels at the soma of BC5

(Knop et al., 2008), which were also found in the homologous type in rat (Cui and Pan, 2008). Addi-

tionally, BC5 express HCN channels at the axon terminal, the soma and the dendrites (Knop et al.,

2008; Hellmer et al., 2016). From the four subtypes of HCN, BC5 seem to almost exclusively

express HCN1. In the rat, there is also evidence for the expression of HCN4 channels in BC5

(Müller et al., 2003; Ivanova and Müller, 2006), but this could not be verified for mice. Data from

rat suggests that BCs with NaV channels also express KV channels (Ma et al., 2005). We therefore

added KV channels at the dendrites and the axon.

Similar to BC5, BC3a express HCN channels at the axon terminals, the soma and the dendrites.

However, instead of HCN4 they express HCN4 (Hellmer et al., 2016; Knop et al., 2008). There is

also evidence that BC3a express NaV channels at the axon shaft (Hellmer et al., 2016), which were

also found in the homologous type in rat (Cui and Pan, 2008). Just like for BC5, we added also KV

in BC3a were only reported for rat so far (Cui and Pan, 2008). As we could not find any evidence for

the lack of Kir channels in mouse BC3a and the channel repertoires of BC3a in mouse and rat are

overall very consistent, we included them in our model.

The distribution of calcium channels in mouse CBCs is largely unknown (Van Hook et al., 2019).

In the rat retina, there is evidence for T-type calcium (CaT) channels in BC3a (Ivanova and Müller,

2006). Calcium currents of unspecified type were observed in BC5 (Cui and Pan, 2008). Generally,

L-type calcium (CaL) channels are believed to mediate neurotransmitter release in almost all BCs

across types and species (Van Hook et al., 2019). Therefore, we included them in both BC models.

The literature review in Van Hook et al., 2019 suggests that T-type calcium channels might be

exclusively expressed in BC3. In mouse BC3b, the simultaneous expression of both CaT and CaL has

been described (Cui et al., 2012). Furthermore, the latter and other studies (Hu et al., 2009;

Satoh et al., 1998) suggest that voltage-gated calcium channels might not be located in the axon

terminals only, but also in the soma and might play a role in signal transmission within the cell. Based

on the studies mentioned, we assumed that BC3a and BC5 express CaL in the axon terminals and

potentially also at the soma. The BC3a model may additionally use CaT channels, both at the soma

and at the axon terminals. For calcium extrusion, we added calcium pumps (Morgans et al., 1998).

BC5 receive input from cones via the metabotropic glutamate receptor 6 (mGluR6) (Van Hook

et al., 2019). BC3a receive input from cones via kainate receptors (Ichinose and Hellmer, 2016).

We modeled the kainate receptors by modifying the inactivation time constant t g of the AMPA

receptors included with NeuronC.

Ion channels and synapses - implementation
All ion channels in this study were based on the models available in NeuronC. We used both Hodg-

kin-Huxley (HH) and Markov-Sequential-State (MS) channel implementations. Since we did not add

channel noise to our model, every HH channel could have also been described as an equivalent MS

channel. However, since HH channels are computationally less expensive, we used HH implementa-

tions wherever possible. Implementation details and references are listed in Table 2. The L-type cal-

cium channel, for example, was based on the HH model defined by the following equations:

1

re
:¼ ge ¼ c3 � gmax;

d

dt
c¼ ð1� cÞ �aðVÞ� c �bðVÞ; (4)

aðVÞ ¼ hT �
�0:04 � ðV þ 15Þ

exp ð�0:04 � ðV þ 15ÞÞ� 1
�
1

ms
; bðVÞ ¼ hT � 5 � exp

V þ 38

�18

� �

�
1

ms
: (5)

Here, hT corrects for differences between the temperature of the simulated cell Tsim and the
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temperature for which the channel equations were defined Teq based on a temperature sensitivity

Q10 which can vary between ion channels and state transitions:

hT ¼ exp logðQ10Þ � Tsim�Teq
� �

=10K
� �

: (6)

There are several sources for model uncertainty about the exact channel kinetics. First, not all

channel models used here were developed based on mouse data resulting in species-dependent dif-

ferences. Second, we do not always know the exact subtypes of ion channels, for example in the

case of the T-type calcium channel. Third, the exact temperature sensitivities Q10 are not known.

Therefore, we estimated transition rates and thresholds for state transitions during the parameter

inference. For this, we allowed for offsets DV relative to V in the rate equations and additionally, we

estimated relative time constants t for the rates. For example Equation 4 was changed to:

d

dt
c¼ ð1� cÞ �

1

t a

�aðV�aÞ� c �
1

t b

�bðV �DVbÞ: (7)

To keep the parameter space as small as possible, we only optimized the kinetics of ion channels

with high uncertainty (e.g. KV) or with high relevance for the exact timing of the neurotransmitter

release (e.g. CaL and CaT). Additionally, we constrained the channel parameters to physiologically

plausible ranges. Table 2 summarizes which channel parameters were estimated during parameter

optimization. Time constants t and voltage offsets DV not optimized were set to one and zero,

respectively. For the NaV, a single time constant t all was used to modify all time constants propor-

tionally. The calcium pump dynamics were modified by changing the calcium concentration CaPK

that causes half of the maximum calcium extrusion velocity. The BC glutamate receptors were opti-

mized by allowing for a change in the synaptic transmitter concentration at the receptors by a factor

of STC, which might be smaller for the OFF-BC than for the ON-BC given the greater distance

between the release sites of the cones and the dendritic tips of the BCs (Behrens et al., 2016). The

simulated cell temperature Tsim was set to 37˚C if not stated otherwise. For further information we

refer to the NeuronC documentation (Smith, 1992).

Neurotransmitter release
The glutamate release of cones and BCs release is mediated through ribbon synapses that release

vesicles in response to calcium influx in a nonlinear way (Matthews and Fuchs, 2010; tom Dieck

and Brandstätter, 2006; Baden et al., 2013). We modeled the ribbon synapses with a standard

model (Smith, 1992) including a readily releasable pool (RRP) from which vesicles can be released

(Lagnado and Schmitz, 2015). The presence of multiple release pools shapes the dynamic of release

at the ribbon synapse and make it state dependent, allowing for rapid adaptational processes at the

synaptic site (Baden et al., 2013). In the model, the current release rate is dependent on the number

of vesicles currently available vRRP in the RRP, the maximum number of vesicles vmaxRRP in the RRP and

the intracellular calcium concentration ½Ca�. In NeuronC, calcium is modeled in radial shells through

Table 2. Ion channel implementation details and optimized channel parameters.

Channel NeuronC Type States Parameters Channel remarks and references

Kainate rec. AMPA1 MS 7 STC, t g Based on Jonas et al., 1993.

mGluR6 mGluR STC See NeuronC documenation.

CaL CA0 HH (4) DVa, t a Based on Karschin and Lipton, 1989.

CaT CA7 MS 12 DVa, t a Modification of Lee et al., 2003.

CaP CaPK See NeuronC documenation.

HCN1=2=4 K4 MS 10 Based on Altomare et al., 2001.

KV K0 HH (5) DVa, t a Based on Hodgkin and Huxley, 1952.

Kir K5 MS 3 DVa Modification of Dong and Werblin, 1995.

ClCa CLCA1 MS 12 Modification of Hirschberg et al., 1998.

NaV NA5 MS 9 DVa, DVg , t all Based on Clancy and Kass, 2004.
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which calcium can diffuse deeper into the neuron. For the release of neurotransmitter, only the cal-

cium concentration in the first shell ½Ca�
0
(equivalent to the concentration at the membrane) is con-

sidered. The release rate r is computed as:

rðtÞ ¼ ½Ca�
0
ðtÞ

1e6

mol

� �2

�
vRRPðtÞ

vmaxRRP

� gl �
vesicles

s
; (8)

where gl is a linear gain factor. gl and vmaxRRP were optimized for every cell type individually. The RRP is

constantly replenished with a constant rate that is equivalent to the maximum sustainable release

rate rmsr. At a time t, for a simulation time step Dt, the vesicles in the pool are updated as follows:

vRRPðtþDtÞ ¼ vRRPðtÞ� rðtÞ �Dtþ rmsr �Dt � 1�
vRRPðtÞ

vmaxRRP

� �

: (9)

For the cone model, rmsr was set to 100 vesicles per second based on Berntson and Taylor,

2003. The prior for vmaxRRP was based on RRP sizes reported for salamander (Thoreson et al., 2016;

Bartoletti et al., 2010). For the BCs, rmsr was set to eight vesicles per second based on the reported

value for rat rod bipolar cells in Singer and Diamond, 2006. The prior for vmaxRRP was based on

Wan and Heidelberger, 2011.

Bayesian inference for model parameters
To estimate the free parameters of the multicompartment models, we used a Bayesian likelihood-

free inference framework called Sequential Neural Posterior Estimation (SNPE) (Lueckmann et al.,

2017; Gonçalves et al., 2020). The goal of the parameter estimation was to find parameter regions

for which the model outputs match the experimentally observed glutamate release in response to a

light stimulus. Details of the target data, the stimulus, the comparison between experimental and

simulated data and the inference algorithm are described below. To be able to simulate the light

response of the BC models, we inferred the parameters of the cone model first.

Target data of neuron models
As target data, we used two-photon imaging data recorded with an intensity-based glutamate-sens-

ing fluorescent reporter (iGluSnFR) (Marvin et al., 2013). All animal procedures were approved by

the governmental review board (Regierungspräsidium Tübingen, Baden-Württemberg, Konrad-

Adenauer-Str. 20, 72072 Tübingen, Germany) and performed according to the laws governing ani-

mal experimentation issued by the German Government.

To constrain the cone models, we used glutamate traces of two cone axon terminals (Figure 5—

figure supplement 1A) in response to a full-field chirp light stimulus (Figure 5A). The traces were

recorded in one transgenic mouse (B6;129S6-Chattm2(cre)LowlJ, JAX 006410, crossbred with Gt(ROSA)

26Sortm9(CAG-tdTomato)Hze, JAX 007905) that expressed the glutamate biosensor iGluSnFR ubiqui-

tously across all retinal layers after intravitreal injection of the viral vector AAV2.7m8.hSyn.iGluSnFR

(provided by D. Dalkara, Institut de la Vision, Paris). The cone glutamate release in the outer plexi-

form layer was recorded in x-z scans (64 � 56 pixels at 11.16 Hz; Zhao et al., 2019). Region-of-inter-

est (ROIs) were drawn manually and traces of single ROIs were then normalized and upsampled to

500 Hz as described previously (Franke et al., 2017; Szatko et al., 2019). For each axon terminal,

we computed the mean over five traces. Both means were then aligned by minimizing the mean

squared error between them, and the mean of the two aligned means was used as target data for

the cone model (Figure 5—figure supplement 1B).

For the BC models, we used mean glutamate traces of BC3a (n = 19 ROIs) and BC5o (n = 13

ROIs) (Figure 5—figure supplement 1C–F) in response to a chirp light stimulus (Figure 6A) from a

recently published dataset (Franke et al., 2017). In that study, glutamate responses were recorded

from BC terminals at different depths of the inner plexiform layer (x-y scans, 64 � 16 pixels at 31.25

Hz). ROIs were drawn automatically based on local image correlation and traces of single ROIs were

normalized and upsampled to 500 Hz (see above). Since we simulated isolated BCs (except for the

cone input), we used the responses to a local ‘chirp’ light stimulus recorded with the glycine recep-

tor blocker strychnine, which means that the target data is less affected by inhibition from small-field

amacrine cells. We did not consider input from GABAergic, wide-field amacrine cells, because these

are not strongly activated by the local chirp stimulus (Franke et al., 2017). The shape of the BC
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stimulus differed from the cone stimulus as contrast was not linearized for the BC recordings and

therefore intensity modulations below 20% brightness were weakly rectified.

Light stimulus and cell response
We first matched the experimental with the simulated stimulus. For this, we used the digital stimuli

and corrected both timing and amplitude (using a sigmoid function) to minimize the mean squared

error with respect to the experimentally recorded stimuli, correcting for delays and non-linearities in

the displaying process. Then we linearly transformed the light stimulus such that the simulated pho-

ton absorption rates were 10� 10
3 P�=ðs � coneÞ for the lowest and 31� 10

3 P�=ðs � coneÞ for the high-

est stimulus intensity including the background illumination, approximating the values reported in

Franke et al., 2017. In NeuronC, the photon absorption rate acts as input to a phototransduction

model (Nikonov et al., 1998), which provides the hyperpolarizing current entering the inner seg-

ment. The membrane potential in the axon terminal compartment regulates the calcium influx into

the cell which in turn influences the glutamate release rate. This glutamate release from the simu-

lated cones modifies the opening probability (the fraction of open channels in the deterministic

case) of postsynaptic receptors, which drive the BC models.

Discrepancy function
To compare model outputs to the experimentally observed target data, we defined a discrepancy

function d. Since the target traces were relative fluorescence intensities, the absolute number of

released glutamate vesicles could not be directly inferred from the target data, and the data only

constrained relative variations in the release rate during simulation. Because we also wanted to con-

strain our models to plausible membrane potentials and release rates, we combined the following

seven discrepancy measures:

. diGluSnFR: The mean squared error between the experimental and simulated iGluSnFR trace.

. dRestRate: A penalty for implausibly high resting release rates.

. dRestV : A penalty for implausibly low or implausible high resting membrane potentials.

. dDRate: A penalty for implausibly low release rate changes.

. dDV : A penalty for implausibly low membrane potential changes.

. dminV : A penalty for implausibly low membrane potentials.

. dmaxV : A penalty for implausibly high membrane potentials.

The discrepancy between a model output m and the target data nt was computed as:

dðnt;mÞ ¼ ½diGluSnFRðnt;mÞ; d
Rest
RateðmÞ; d

Rest
V ðmÞ; dDRateðmÞ; d

D
V ðmÞ; d

min
V ðmÞ; dmaxV ðmÞ�>: (10)

To identify the overall ‘best’ samples, we computed the total discrepancy as the absolute-value

norm of the discrepancy vector: dtotðnt;mÞ ¼ kdðnt;mÞk.

The discrepancy function diGluSnFR (Equation 10) computes the distance between a simulated

iGluSnFR trace nm and an iGluSnFR target nt. To estimate the simulated iGluSnFR trace, we con-

volved the glutamate release rate rm with an iGluSnFR kernel k. Here, the time-dependent kernel

function k was approximated with an exponential decay function, based on iGluSnFR intensity

changes to spontaneous vesicle release reported in Marvin et al., 2013:

nm ¼ rm �k; kðtÞ ¼ expð�t=60msÞ: (11)

The discrepancy was then computed as the euclidean distance between the simulated and the

target iGluSnFR trace with respect to a distance minimizing linear transformation of the simulated

trace. This linear transformation was necessary because the target traces only reflect relative fluores-

cence changes. The discrepancy was normalized to be between zero and one by dividing by the vari-

ance knt ��tk
2, where �t is the mean of the target data.

diGluSnFRðnt;nmÞ ¼min
a;b

knt �ðaþ b � nmÞk
2

knt ��tk
2

; b� 0: (12)

For all other discrepancies, specific values of the glutamate release rate (in the case of the BCs,

the mean release rate over all synapses) or the somatic membrane potential were compared to a
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lower and an upper bound of target values tl and tu, such that values within these bounds were

assigned a discrepancy of 0.0. Outside this range, the discrepancy was defined by additional bounds

pl and pu. Given a specific value of the simulation ym, the respective discrepancy d
.

.
ðymÞ was com-

puted as:

d
.

.
ðymÞ ¼

�1þ exp �2
ðym�tlÞ

2

ðtl�plÞ
2

� �

; if ym 2 ð�¥; tlÞ;

0; if ym 2 ½tl; tu�;

1� exp �2
ðym�tuÞ

2

ðtu�puÞ
2

� �

; if ym 2 ðtu;¥Þ:

8

>

>

>

<

>

>

>

:

(13)

To compute dRestRate and dRestV , the resting release rate r0m and resting membrane potential v0m for the

background light adapted state were extracted. For the BC models, the resting membrane potential

was not penalized for values between tl ¼�65mV and tu ¼�45mV based on reported values for

mice (Ichinose et al., 2014; Ichinose and Hellmer, 2016) and rat retina (Ma et al., 2005). For the

cone model, the expected resting membrane potential was more depolarized between tl ¼�55mV

and tu ¼�40mV(Cangiano et al., 2012).

The discrepancy of the resting release rate dRestRate was computed similarly. For the BC models, the

lower bound tl was set to zero. As mentioned earlier, we limited our BC models to have a maximum

sustainable release rate of 8 vesicles per second based on Singer and Diamond, 2006. We allowed

non-zero resting release rates due to the background light and spontaneous vesicle fusion but con-

strained it to values lower than the maximum sustainable release rate (Kavalali, 2015; Baden et al.,

2014). For the OFF-BC we chose an upper bound of 4 vesicles per second (half the maximum sus-

tainable release rate). For the ON-BC, we chose a slightly smaller value of 3 vesicles per second.

This difference was based on the observation that the ON-BC target never falls significantly below

the value of the resting state, indicating that the resting release rate is probably close to zero and

can therefore not become smaller. In contrast, the OFF-BC target falls below the resting value right

after stimulus onset, indicating a small but non-zero resting release rate. For the cone model, we

assumed a comparably high resting release rate between tl ¼ 50 and tu ¼ 80 vesicles per second

based on the assumed higher maximum sustainable release rate and the fact that cones show steady

release in darkness (Choi et al., 2005; Sheng et al., 2007).

For the penalty on implausible release changes dDRate, we computed the largest absolute difference

Dr between the resting release rate r0m and release rates rm after stimulus onset. dDV was computed

analogously but for the membrane potential vm and the resting membrane potential v0m:

Dr¼max jrm� r0mj and Dv¼max jvm� v0mj: (14)

dDRateðymÞ and dDV ðymÞ were then computed by using the differences ym ¼ Dr and ym ¼ Dv, respec-

tively, in Equation 13. For the BC release rate, we did not penalize differences larger than tl ¼ 5

vesicles per second. For the cone, we expected much larger differences between tl ¼ 50 to tu ¼ 65

vesicles per second due to their larger maximum sustainable release rate. For the membrane poten-

tial, we expected a difference of at least tl ¼ 5mV based on light step responses recorded with patch

clamp in mouse BCs (Ichinose et al., 2014; Ichinose and Hellmer, 2016). Since here, the stimulus

contrast was higher, we only used the reported values as lower bounds but allowed the model to

have larger variation, namely up to tu ¼ 25mV for the OFF- and tu ¼ 15mV for the ON-BC. We

allowed greater membrane potential variation in the OFF-BC, because it receives input from more

cones.

For the discrepancy measures dminV and dmaxV , we computed the minimum and maximum of the

membrane potential vm after stimulus onset and used again Equation 13. For dminV , we chose

tl ¼ �80mV for the BCs and tl ¼ �60mV for the cone model, and in both cases tu ¼ ¥. For dmaxV , we

chose tu ¼ �10mV for the BCs and tu ¼ �35mV for the cone, and in both cases we set tl ¼ �¥. The

BC values are based on data from rat (Ma et al., 2005) and ground squirrel (Saszik and DeVries,

2012); the cone values are based on Cangiano et al., 2012.

All values for pl and pu were based on pilot simulations with the goal to distribute the penalties

where they most mattered. All discrepancies (except for diGluSnFR) and their respective values pl, pu, tl
and tu are illustrated in Figure 2 for clarity and summarized in Table 3.
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Priors
The inference method SNPE is a Bayesian method and therefore it needs a prior distribution pð�Þ for

the parameters � to estimate the posterior. We chose truncated normal distributions for all priors

because they allow for weighting of more plausible parameters (in contrast to e.g. uniform distribu-

tions), while they enable restrictions to plausible ranges (in contrast to e.g. normal distributions). A

d-dimensional truncated normal distribution N T is defined by a mean m ¼ ð�1; :::; �dÞ
T , a d � d covari-

ance matrix S and a d-dimensional space W ¼ ½a1; b1� � :::� ½ad; bd�:

N Tð�jm;S;WÞ ¼
exp �0:5ð��mÞTS�1ð��mÞð Þ

R

W
exp �0:5ð!�mÞTS�1ð!�mÞð Þd!

if �2W,

0 otherwise.

8

<

:

(15)

The prior means �i and truncation bounds ½ai;bi� were based on experimental data wherever pos-

sible (see Appendix 1—table 1 and 2), including data from rat and different cell types such as rod

bipolar cells, as well as pilot simulations. For parameter inference, we normalized the parameter

space such that the truncation bounds were [0, 1] in all dimensions. The diagonal entries of the prior

covariance matrix S were set to 0.32. Because it is difficult to find prior knowledge about the depen-

dencies of parameters, we set all non-diagonal entries to zero. To sample from N T , we implemented

a rejection sampler, that samples from a normal distribution with the same mean m and covariance

matrix S and resamples all � not in W.

Inference algorithm
SNPE estimates a posterior parameter distribution represented by a mixture-density network, based

on sampling, that is, model evaluations for randomly drawn parameters. Inference is performed in

several rounds. In every round j, the algorithm draws N parameters from a sampling distribution

~pjð�Þ to estimate the posterior distribution pð�jxtargetÞ, where xtarget is a summary statistic of the target

data.

In the first round, parameter samples �n are drawn from the prior, that is, ~p1ð�Þ ¼ pð�Þ, and the

multicompartment model is evaluated for all �n. From each simulated response, a summary statistic

xn is computed, resulting in N pairs of parameters and summary statistics ð�n; xnÞ. At the end of the

round, a mixture-density network is trained with summary statistics x as input, and the parameters f

Figure 2. Discrepancy measures based on Equation 13 for the cone (red dashed line), the OFF- (blue solid line)

and ON-BC (green dotted line). The parameters defining the discrepancy measures are listed in Table 3. All

discrepancy measures are between zero and one per definition.
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of a mixture of Gaussian distribution qfð�jxÞ as output. The network is trained by minimizing the loss

function L:

LðfÞ ¼�
1

N

X

N

n

pð�nÞ

~pð�nÞ
KðxnÞ logðqfð�njxnÞÞ; (16)

where K is a kernel function with values between zero and one that weights the influence of samples

on the network training. KðxnÞ is close to one for samples with summary statistics xn close to the the

target summary statistic xtarget and becomes smaller with increasing discrepancy between xn and

xtarget. This means, the network tries to find parameter distributions qfð�jxÞ that describe the distribu-

tion of samples for any given summary statistic x. Or, in other words, the network is trained to find a

mapping from summary statistics to parameter distributions. K ensures that the network focuses its

capacity on summary statistics close to the target summary statistic. After training the network, it

can be evaluated at a summary statistic x
� to obtain the posterior parameter distributions for the

given summary statistic. Evaluating at x� ¼ xtarget yields an approximation of the true posterior distri-

bution pð�jxtargetÞ»qfð�jxtargetÞ. This posterior can either be used as the sampling distribution of the

next round ~pjþ1ð�Þ, or—if the algorithm is stopped—as the final posterior distribution. The relative

probability pð�nÞ=~pð�nÞ in Equation 16 weights samples not drawn from the prior, which ensures that

Bayes’s rule is not violated. A detailed proof that this actually yields an approximation of the true

posterior in the Bayesian sense can be found in Lueckmann et al., 2017.

We based our algorithm on the Python code available at https://github.com/mackelab/

delfi version 0.5.1 (Macke Lab, 2020) with the following settings and modifications. We modeled qf

as a single Gaussian, because we noticed that mixture of Gaussians almost always collapsed to a sin-

gle component after a few rounds. Both, intermediate and final posteriors were truncated using the

truncation bounds of the prior. The truncation was performed after network training. For every neu-

ron model, we drew N ¼ 2; 000 samples per round and stopped the algorithm after the fourth round.

Two hundred additional samples were drawn from the posterior for further analysis. Since we

wanted to use the posterior samples to simulate the effects of electrical stimulation on the BCs, the

number of compartments was increased in this last step to 139 and 152 for the OFF- and ON-BC,

respectively.

As summary statistics of model outputs mn, we used the discrepancy function dðnt;mnÞ ¼ xn (see

Equation 10), which describes the discrepancy between model outputs and the target data. The tar-

get summary statistic was set to be a zero-vector xtarget ¼ ½0; :::; 0�>, since the target should have a

discrepancy of zero with respect to itself. The first dimension of d, diGluSnFR, computes the distance

between the simulated and experimentally observed iGluSnFR trace. Considering the noise in the

target data, observing a discrepancy of zero is virtually impossible. Therefore, evaluating the net-

work at xtarget ¼ ½0; :::; 0�> is based on extrapolation, that is, the mixture-density network is evaluated

for an input where it was not trained on. This, as we observed during pilot experiments, often led to

posterior estimates of poor quality or endless loops of resampling. So instead of evaluating the

Table 3. Parameters of discrepancy measures.

d
.

.
Cone BC (3a | 5o) References

pl tl tu pu pl tl tu pu

dRestRate
0 50 80 100 0 0 3 | 4 7 Choi et al., 2005; Sheng et al., 2007; Berntson and Taylor,

2003; Singer and Diamond, 2006

dRestV
�80 �55 �40 �20 �80 �65 �45 �30 Cangiano et al., 2012; Ichinose et al., 2014; Ichinose and

Hellmer, 2016; Ma et al., 2005

dDRate 0 50 65 100 0 5 ¥ ¥

dDV 0 5 10 20 0 5 15 |
25

40 Ichinose et al., 2014; Ichinose and Hellmer, 2016

dminV
�75 60 ¥ ¥ �100 �80 ¥ ¥ Cangiano et al., 2012; Ma et al., 2005; Saszik and DeVries,

2012

dmaxV �¥ �¥ �35 �20 �¥ �¥ �10 0 Cangiano et al., 2012; Ma et al., 2005; Saszik and DeVries,
2012
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network at xtarget ¼ ½0; :::; 0�> to obtain the posterior estimate, the network was instead evaluated at

xtarget ¼ ½xiGluSnFRmin ; 0; :::; 0�>, where xiGluSnFRmin is the the smallest diGluSnFR sampled during this round. This

is roughly equivalent to assuming that the best strategy for extrapolation is to simply use the esti-

mate at the boundary. For the weighting function K, we used zero-centered Gaussian kernels k with

a bandwidth of s ¼ 0:25 in all dimensions but the first one. In the first dimension, that is the weight-

ing kernel for diGluSnFR, we also used an adaptive strategy and both, the mean �iGluSnFR and the band-

width siGluSnFR of the kernel, were updated in every round:

�iGluSnFR ¼ xiGluSnFRmin ; siGluSnFR ¼ qiGluSnFR
20

� xiGluSnFRmin ; (17)

where qiGluSnFR
20

is the 20th percentile of all sampled iGluSnFR discrepancies of the same round. K was

computed as the product of all scalar kernels k.

Some parameter combinations caused the neuron simulation to become numerically unstable. If a

simulation could not successfully terminate for this reason, the sample was ignored during training

of the mixture-density network by setting the kernel weight to zero. In other cases, the BC models

had a second, strongly depolarized and therefore biologically implausible equilibrium state. To test

for this, we simulated a somatic voltage clamp to 30 mV for 100 ms and checked whether the mem-

brane potential would recover to a value of �30 mV or lower within additional 300 ms. Samples not

recovering to � -30 mV were also ignored during training.

Data analysis of simulated traces
The distance function diGluSnFRðnt; nmÞ (see Equation 12) was used not only to compute the discrep-

ancy between simulations and the respective targets but also more generally to compare different

experimental and simulated iGluSnFR traces. The distance between two iGluSnFR traces n1 and n2

was computed as diGluSnFRðn1; n2Þ.

To quantify the timing precision of our neuron models, we estimated peak times in simulated and

target iGluSnFR traces to compute pairwise peak time differences. For every peak in the simulated

trace, we computed the time difference to the closest peak of the same polarity (positive or nega-

tive) in the target. We did not consider peaks between 16 s and 23 s of the stimulation for the cone

and between 16 s and 21 s for the BC models, because the targets were to noisy for precise peak

detection in these time windows. This resulted in approximately 35 positive and negative peak time

differences per trace.

Simulation of electrical stimulation
To simulate external electrical stimulation of our BC models, we implemented a two-step procedure.

In the first step, the electrical field is estimated as a function of space and time across the whole ret-

ina for a given stimulation current. By setting a position of the BC multicompartment models within

the retina, the extracellular voltage for every compartment can be extracted. In the second step, the

extracellular voltages are applied to the respective compartments (Figure 1C) to simulate the neural

response in NeuronC. To be able to perform the first step, we estimated the electrical properties of

retinal tissue first. For this, we utilized the same algorithm that was used for parameter inference of

the neuron models. To validate the framework, we simulated the electrical stimulation in

Corna et al., 2018 and compared experimental and simulated neural responses. Finally, we utilized

the framework to find electrical stimuli for selective stimulation of OFF- and ON-bipolar cells. Details

of the implementation and the experimental data are described in the following.

Computing the extracellular voltage
We estimated the electrical field in the retina for a given electrical stimulus with the finite-element

method using the software COMSOL Multiphysics (Comsol, 2019). We modeled the photoreceptor

degenerated retina as a cylinder with a radius of 2 mm and a height of 105 mm (Pennesi et al.,

2012). The stimulation electrodes were modeled as flat disks on the bottom of the retina. Above the

retina, an additional cylinder with the same radius and a height of 2 mm was placed to model the

electrolyte. The top of this cylinder was assumed to be the return electrode. The implementation of

such a model with the subdivision into finite elements is shown in Figure 3. For a single circular stim-

ulation electrode, the model was radially symmetric and could therefore be reduced to a half cross-
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section as shown in Figure 3 to increase the simulation speed without altering the results. The fol-

lowing initial and boundary conditions were applied to the model. The initial voltage was set to zero

at every point Vðx; y; z; t ¼ 0Þ ¼ 0. The surface normal current density j?stim of stimulation electrodes

was always spatially homogeneous and dependent on the total stimulation current istim and the total

surface area of all electrodes Aelectrode:

j?stim ¼
istim

Aelectrode

: (18)

The potential of the return electrode was kept constant VreturnðtÞ ¼ 0. At all other boundaries, the

model was assumed to be a perfect insulator j?other ¼ 0. We assumed a spatially and temporally homo-

geneous conductivity and permittivity in both the retina and the electrolyte. The conductivity of the

electrolyte was set to sames ¼ 1:54S=m based on Eickenscheidt and Zeck, 2014 and its relative per-

mittivity was assumed to be "ames ¼ 78 , based on the value for water. The conductivity sretina and rela-

tive permittivity "retina of the retina were optimized with respect to experimental target data as

described below.

Target data to infer the electrical parameters of the retina
To estimate the electrical properties of the retina, we first recorded target data. All procedures were

approved by the governmental review board (Regierungspräsidium Tübingen, Baden-Württemberg,

Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany, AZ 35/9185.82–7) and performed according

to the laws governing animal experimentation issued by the German Government. We applied dif-

ferent sinusoidal stimulation voltages vstim and recorded the evoked currents. Currents were

recorded with (irecretina) and without (irecames) retinal tissue placed on the micro-electrode array. In both

cases, the recording chamber was filled with an electrolyte (Ames’ medium, A 1420, Sigma, Ger-

many). A single Ag/AgCl pellet (E201ML, Science Products) was used as a reference electrode and

located approximately 1 cm above a customized micro-electrode array. The electrodes, made of

sputtered iridium oxide had diameters of 30 mm and center-to-center distance of 70 mm. The stimu-

lation current was calculated from the voltage drop across a serial 10 resistor in series with the Ag/

AgCl electrode (Corna et al., 2018). The voltage drop was amplified using a commercial voltage

amplifier (DLPVA, Femto Messtechnik GmbH, Berlin, Germany) and recorded using the analog input

(ME 2100, Multi Channel Systems MCS GmnH, Germany). Stimulation currents were measured

Figure 3. Model for the external electrical stimulation of the retina. (A) Schematic figure of the experimental setup

for subretinal stimulation of ex vivo retina combined with epiretinal recording of retinal ganglion cells. Schematic

modified from Corna et al., 2018. (B,C) Model for simulating the electrical field potential in the retina in 3D and

2D, respectively. The retina (darker blue) and the electrolyte above (lighter blue) are modeled as cylinders. The

shown 3D model is radially symmetric with respect to the central axis (red dashed line). Therefore, the 3D and 2D

implementations are equivalent, except that the computational costs for the 2D model are much lower. The 2D

implementation is annotated with parameters that were either taken from the literature or inferred from

experimental data. (D) Electrical field potential in the retina for a constant stimulation current of 0.5 mA for a single

stimulation electrode with a diameter of 30 mm. Additionally, the compartments (black circles with white filling) of

the ON-BC model are shown. The stimulation is subretinal meaning that the dendrites are facing the electrode

(horizontal black line on bottom).

Oesterle et al. eLife 2020;9:e54997. DOI: https://doi.org/10.7554/eLife.54997 14 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.54997


across an ex vivo retina of a rd10 mouse (female; post-natal day 114; strain: Pde6brd10 JAX Stock

No: 004297).

We applied sinusoidal voltages of 25 and 40 Hz. For 25 Hz, we applied amplitudes from 100 to

600 mV with steps of 100 mV. For 40 Hz all amplitudes were halved.

Procedure to infer the electrical parameters of the retina
We estimated the conductivity sretina and relative permittivity "retina of the retina in three steps based

on the experimental voltages vstim and the respective recorded currents irecretina and irecames. To facilitate

the following steps, we fitted sinusoids iretina and iames to the slightly skewed recorded currents and

used them in the following (Figure 8C). To fit the sinusoids, we minimized the mean squared error

between recorded currents and idealized sinusoidal currents of the same frequency f, resulting in

estimates of the phase fðiamesÞ and the amplitude AðiamesÞ of the currents:

fðxÞ; AðxÞ ¼
f;A

argmin

Z

t

ðx�A � sinð2pftþfÞÞ2dt: (19)

During parameter inference, we only used two voltage amplitudes per frequency, resulting in four

voltage and eight current traces. The other amplitudes were used for model validation. First, we esti-

mated the electrical properties of the electrode. Here, ‘electrode’ is meant to include the electrical

double layer and all parasitic resistances and capacitances in the electrical circuit. We simulated the

voltage vames across the electrolyte without retinal tissue by applying the currents iames as stimuli (Fig-

ure 8Ai). Since this setup does not contain anything besides the electrolyte and the electrode, the

difference between the experimental stimulus vstim, which was applied to record iames, and the simu-

lated voltage vames was assumed to have dropped over the electrode:

velectrode ¼ vstim� vames:

Based on that assumption, we could estimate the electrical properties of the electrode. We mod-

eled the electrode as a RC parallel circuit (Figure 8Aii). Having both, sinusoidal voltages (velectrode)

over and the respective sinusoidal currents (iames) through the electrode, we analytically computed

the values for Re and Ce as follows. We assumed Re and Ce to be dependent on vstim and therefore to

be dependent on the stimulus frequency and amplitude. From the data we derived the phase fZ

and amplitude jZj of the impedance formed by the RC circuit. For every velectrode, we estimated

fðvelectrodeÞ and AðvelectrodeÞ using Equation 19. fZ and jZj were then computed as:

fZ ¼fðvelectrodeÞ�fðiamesÞ; jZj ¼ AðvelectrodeÞ=AðiamesÞ: (20)

Then, knowing the frequency f, fZ and jZj are sufficient to compute Re and Ce:

Re ¼ jZj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tanðfZÞ
2

q

; Ce ¼�tanðfZÞ=ð2pfReÞ: (21)

With the estimated values of the RC circuit, we created a model with only two unknowns, the con-

ductivity sretina and the relative permittivity "retina of the retina (Figure 8Aiii). To estimate the unknown

parameters of this model, we used the same inference algorithm as for the neuron models but with

a different discrepancy function. Here, the discrepancy dRðvstimÞ for a stimulus vstim was computed as

the mean squared error between the respective experimental current (now with retinal tissue) iretina
and the simulated current isimretina:

dRðvstimÞ ¼
X

vstim

Z

t

ðiretina� isimretinaÞ
2
dt: (22)

The total discrepancy was computed as the sum of all discrepancies dRðvstimÞ for the four different

vstim stimuli that were used. To cover a wider range of possible parameters, we first estimated the

parameters in a logarithmic space by sampling the exponents ps and p" of the parameters:

sretina ¼ 2
ps � 0:1S=m; �retina ¼ 2

p" � 106: (23)

We used normal distributions (without truncation) as priors for ps and p" and set the means to 1.0

and the standard deviations to 2.0. After three rounds with 50 samples each, we computed the
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minimum (as, a"), maximum (bs, b") and mean (�s, �") for both parameters sretina and "retina from the

10% best samples. Then, we then ran the parameter inference algorithm again, but now in a linear

parameter space around the best samples observed in the logarithmic space. For the priors of sretina

and "retina, we used truncated normal priors bound to ½as;bs� and ½a";b"� with means �s and �",

respectively. As for the cell parameter inference, we normalized the parameter space to values

between in [0, 1]. The diagonal entries of the prior covariance matrix were set to 0.32, with non-diag-

onal entries of zero. The parameters resulting in the lowest sampled discrepancy during optimization

are referred to as the optimized parameters and were used to simulate the neural responses to elec-

trical stimulation.

Simulation of the neural response to electrical stimulation
With the optimized parameters for the electrical properties of the retina, we were able to compute

the BC responses for any given stimulation current. Note that for this, we used the model illustrated

in Figure 3 as described earlier but with the optimized parameters for sretina and "retina. To simulate

the neural response, we first used the stimulation current to simulate the extracellular voltage over

time within the retina. After defining the relative position of the multicompartment model with

respect to the retinal cylinder, we extracted the extracellular voltage for each compartment at its

the central position (Figure 3C). Finally, these extracellular voltages were applied to the compart-

ment models in NeuronC to simulate their response (Figure 1C). To estimate the uncertainty of the

BC responses to electrical stimulation, we simulated different cell parametrizations in every stimula-

tion setting. For this, we used the five best posterior samples, that is, the five (out of 200) samples

with the smallest dtot, for both BC models. In all simulations, we modeled subretinal stimulation of

photoreceptor degenerated retina (Zrenner, 2002). For this, we removed all cone input from the

BCs and virtually placed the multicompartment models in the retinal cylinder such that the dendrites

were facing towards the electrode. The z-position of BC somata, that is, the distance to the bottom

of the retinal cylinder, was set to 30 mm.

Model validation
To validate the model for electrical stimulation, we compared simulated BC responses to experimen-

tally recorded retinal ganglion cell (RGC) thresholds to 4 ms biphasic current pulses reported in

Corna et al., 2018. In this study, the RGC thresholds were recorded epiretinally under subretinal

stimulation of photoreceptor degenerated (rd10) mouse retina using a micro-electrode array

(Figure 3A). The stimulation threshold was defined as the charge delivered during the anodic stimu-

lation phase evoking 50% of the firing rate of a specific RGC. On the micro-electrode array. The

30 mm diameter electrodes were arranged on a regular grid with a center-center spacing of 70 mm.

The RGC thresholds were measured for different numbers N of N�N active electrodes.

We simulated the electrical field in the retina for the configurations with 1�1, 2�2, 4�4 and

10�10 active electrodes using the respective currents from the experimental data. The electrodes

were centered with respect to the retina. For every stimulation current, we simulated the response

of the OFF- and ON-BC at six xy-positions with distances from 0 to 500 mm relative to the center.

Simulation temperature Tsim was set to 33.5˚C to match experimental conditions. For every 40 ms

simulation, we computed the mean number of vesicles released per synapse.

Optimizing electrical stimulation to separately activate ON- and OFF-BCs
To find stimuli for selective stimulation of ON- and OFF-BCs, we simulated the response of the BC

models to different electrical stimuli. For this, we used a single 30 mm diameter electrode and cen-

tered the dendrites of the simulated BCs above this electrode. To find stimuli that stimulate the

OFF-BC without stimulating the ON-BC or vice versa, we utilized the same algorithm used for esti-

mating the BC parameters. Here, the inference algorithm was used to estimate parameters of a

40 ms stimulation current istim parametrized by four free parameters p1; :::; p4. The current was

defined as a cubic spline fit through the knot vector a ¼ ð0; p1; :::; p4; p�; 0Þ spaced equidistantly in

time between zero and 40 ms, where p� is chosen such that the stimulus is charge neutral (i.e. the

integral over the current is zero). For all stimuli, the maximum stimulus amplitude was normalized to

0.5 mA. An illustration is shown in Figure 10.
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Here, the priors over p1; :::; p4 were Gaussian with zero means and standard deviations of 0.3. For

every sampled stimulus instim, we simulated the response of the BCs for Dt ¼ 60ms starting with the

stimulus onset. For parameter estimation, we defined the discrepancy measure dtstim as the ratio

between the relative release Rn of the OFF- and ON-BC which was defined as:

Rn ¼
�ðrnÞ��ðrbaseÞð ÞDt

vmaxRRPþ rmsr ��ðrbaseÞð ÞDt
; (24)

where �ðrnÞ is the evoked mean release and �ðrbaseÞ is the base release rate in the absence of electri-

cal stimulation; that is, the numerator is equal to the number of released vesicles (as a mean over all

synapses) caused by the stimulation. The denominator is equal to the theoretical maximum of releas-

able vesicles per synapse (see Equation 9). dtstim was computed as:

dtstim instim
� �

¼ Rnðother BCÞ = Rnðtarget BCÞ: (25)

We ran the parameter inference twice (each with one round only), once with the ON- and once

with the OFF-BC as target. We drew 400 samples from the prior that were reused for the second

run of inference, and 100 more samples from the posterior. Here, the posteriors were two-compo-

nent mixture of Gaussians without truncation.

Code and data availability
Models and simulation code is available at https://github.com/berenslab/CBC_

inference (Oesterle, 2020; copy archived at swh:1:rev:2b8ec4ac0ca916d42c-

ba0404229298f8ff79c3a3). Experimental and inference data is available at https://zenodo.org/

record/4185955.

Results
We used a high-resolution electronmicroscopy data set (Helmstaedter et al., 2013) to create bio-

physically realistic multicompartment models of three neuron types from the mouse retina including

cones, an OFF- and an ON-bipolar cell (BC) type. These neurons form the very beginning of the

visual pathway, with cones converting light into electrochemical signals and providing input via sign-

preserving and -reversing synapses to OFF- and ON-BCs, respectively. The parameters of these

models include the basic electrical properties of the cells as well as the density of different ion chan-

nel types in different compartments. Given a set of parameters, simulations from the model can eas-

ily be generated; however, it is not possible to evaluate the likelihood for a given set of parameters,

which would be required for standard Bayesian inference procedures for example through MCMC.

To overcome the challenge of choosing the resulting 20 to 32 parameters of these models, we

adapted a recently developed technique called Sequential Neural Posterior Estimation (SNPE)

(Lueckmann et al., 2017) (for details, see Materials and methods). Starting from prior assumptions

about the parameters, the algorithm compared the result of simulations from the model to data

obtained by two-photon imaging of the glutamate release from the neurons (Franke et al., 2017)

and measured a discrepancy value between the simulation and the data. Based on this information,

the algorithm used a neural network to iteratively find a distribution over parameters consistent with

the measured data. This yielded optimized biophysically realistic models for the considered neuron

types.

Inference of cone parameters
We first estimated the posterior distribution over the parameters of a cone based on the glutamate

release of a cone stimulated with a full-field chirp light stimulus, consisting of changes in brightness,

temporal frequency, and temporal contrast (Figure 4A and Figure 5). The cone model had a simpli-

fied morphology and consisted of four compartments (Figure 1, see Materials and methods). We

included a number of ion channels in the model reported to exist in the cones of mice or closely

related species (see Table 1). Prior distributions were chosen based on the literature. For inference,

we drew 2000 samples of different parameter settings per round and stopped the algorithm after

the fourth round. Then, 200 more parameter samples were drawn from the respective posteriors for

further analysis. The chosen discrepancy functions penalized discrepancies between the target and
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simulated iGluSnFR trace diGluSnFR, implausible membrane potentials, and implausible release rates.

To compare different model fits, the discrepancy measures were added to yield a total discrepancy

dtot. We found that the total discrepancy dtot of the cone model was relatively high for most samples

drawn from the prior but decreased over four rounds of sampling (Figure 4A). The discrepancy mea-

suring the fit quality to the glutamate recording diGluSnFR was already relatively small in the first round

for most, but not all samples. In the following rounds, the number of samples with large diGluSnFR was

strongly reduced (Figure 4A).

The parameter setting with lowest discrepancy (dtot ¼ 0:10) modeled accurately the response of

the cone to full-field stimulation with the chirp light stimulus (Figure 5). The simulated iGluSnFR sig-

nal nicely matched the data both on a coarse timescale and in the millisecond regime (Figure 5D).

Indeed, for this sample, all discrepancies besides diGluSnFR were zero or almost zero

(dtot � diGluSnFR<0:0001) and most of the remaining discrepancy could be attributed to the noisy target

data.

As our inference algorithm returned not only a single best set of parameters, but also a posterior

distribution, we could obtain additional parameter samples from the model which should produce

simulations consistent with the data. Almost all samples from the posterior yielded simulations that

matched the target data well (median diGluSnFR: 0.12) and the overall total discrepancy was small

(median dtot: 0.21). Besides the discrepancy between the experimental and simulated glutamate

trace diGluSnFR, most of the remaining discrepancy in the posterior samples was caused by rate

Figure 4. Discrepancies of samples from the cone and the BC models during and after parameter estimation. (A,

B, C) Sampled discrepancies for the cone (A), the OFF- (B), and ON-BC (C) respectively. For every model, the total

discrepancy dtot (left) and the discrepancy between the simulated and target iGluSnFR trace diGluSnFR (right) are

shown. For every model, four optimization rounds with 2000 samples each were drawn (indicated by gray vertical

lines). After the last round (indicated by dashed vertical lines, ‘p.’), 200 more samples were drawn from the

posteriors. For the BCs, the number of compartments was increased in this last step to 139 and 152 for the OFF-

and ON-BC, respectively. Additionally, 200 samples were drawn from assuming independent posterior marginals

for comparison (indicated by blue vertical lines, ‘m.’). For every round, the discrepancy distribution (horizontal

histograms), the median discrepancies (red vertical lines), the 25th to 75th percentile (blue shaded area) and the

5th to 95th percentile (gray-shaded area) are shown. (D) Discrepancies between different iGluSnFR traces of BCs

to demonstrate the high precision of the model fit. The pairwise discrepancy computed with equation

Equation 12 between eight iGluSnFR traces is depicted in a heat map. The column and row labels indicate which

nt and nm were used in equation Equation 12 respectively. The traces consists of the optimized BC models

(‘Model’), the targets used during optimization (‘Target’), experimental data from the same cell type without the

application of any drug (‘No drug’) and experimental data from another retinal CBC type with the application of

strychnine (‘BC4’ and ‘BC7’). Note that strychnine was also applied to record the targets.

The online version of this article includes the following source data for figure 4:

Source data 1. Sample discrepancies of all samples shown in (A-C).

Source data 2. Discrepancies shown in (D), and the respective (mean) iGluSnFR traces.
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variation (mean kdDRatek: 0.18) and resting rates (mean kdRestRatek: 0.14) that were too low in some of the

models. While in principle we could propagate the remaining uncertainty about the model parame-

ters provided by the posterior to the inference about BC models, we used only the parameter set

with the smallest total discrepancy dtot for efficiency and refer to this as the optimized cone model.

To analyze the role of active ion channels, we removed ion channels individually (except for the CaL

channel with is necessary to simulate the vesicle release) from the optimized cone and simulated the

light response (Figure 5—figure supplement 2). We found that the HCN channel contributed most,

while the contribution of ClCa was negligible. Since ClCa did not alter the light response for both, the

cone and BC light stimulus, we removed it in the following steps for computational efficiency.

Inference of bipolar cell parameters
We next turned to anatomically detailed multicompartment models of two BC types. We chose to

model type 3a and type 5o because these were the OFF- and ON-CBC types for which we could

gather most prior information from the literature. The anatomy of the cells was extracted from a 3D

reconstruction of examples of these cell types based on electron microscopy data

(Helmstaedter et al., 2013) and divided into regions sharing ion channel parameters (Figure 1). As

for the cone model, the channels included in the model and the prior distributions were chosen

based on the literature (see Table 1). This yielded 32 and 27 free parameters for the OFF- and ON-

BC, respectively.

We fitted the BC type models to published two-photon glutamate imaging data reflecting the

glutamate release from the BC axon terminals (Franke et al., 2017). In this case, we used responses

Figure 5. Optimized cone model. (A) Normalized light stimulus. (B) Somatic membrane potential relative to the resting potential for the best

parameters (blue line) and for 200 samples from the posterior shown as the median (gray dashed line) and 10th to 90th percentile (gray shaded area). A

histogram over all resting potentials is shown on the right. (C) Release rate relative to the resting rate. Otherwise as in (B). (D) Simulated iGluSnFR trace

(as in (B)) compared to target trace (orange). Three regions (indicated by gray dashed boxes) are shown in more detail below without samples from the

posterior. Estimates of positive and negative peaks are highlighted (up- and downward facing triangles respectively) in the target (brown) and in the

simulated trace (blue and cyan respectively). Pairwise time differences between target and simulated peaks (indicated by triangle pairs connected by a

black line) are shown as histograms for positive (blue) and negative (cyan) peaks on the right. The median over all peak time differences is shown as a

black vertical line.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. iGluSnFR traces used for constraining the cone and BC models.

Source data 2. Stimulus, target, and cell responses, including responses with removed ion channels.

Figure supplement 1. iGluSnFR traces used for constraining the cone and BC models.

Figure supplement 2. Effect of active ion conductances on the optimized cone model.

Oesterle et al. eLife 2020;9:e54997. DOI: https://doi.org/10.7554/eLife.54997 19 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.54997


to a local chirp light stimulus activating largely the excitatory center of the cells. In addition, the

responses were measured in the presence of the drug strychnine to block locally acting inhibitory

feedback through small-field amacrine cells (Franke et al., 2017) (see Materials and methods for

details). Similar to what we observed in cones, the total discrepancy dtot for parameter sets sampled

for the OFF- and ON-BC model decreased over the four rounds of optimization (Figure 4B and C).

In contrast to the the cone model, the discrepancy measure penalizing deviations from the gluta-

mate trace diGluSnFR was relatively large for prior samples and declined approximately equally fast as

the total discrepancy dtot.

We found that simulations generated with the parameter set with minimal total discrepancy or

parameters sampled from the posterior matched the target traces very well for both OFF- and ON-

BC models (Figure 6). For these parameters, the cells were relatively ispotential units throughout

the light stimulus (Figure 6—figure supplement 1 and Figure 6—figure supplement 2) with a

larger voltage gradients from dendrites to the axon in the ON-BC. The optimized BC models, that is

the BC samples with the lowest total discrepancies dtot, had discrepancies of zero except for the

iGluSnFR discrepancy diGluSnFR. To get a more quantitative impression of the quality of the model fits,

we compared the pairwise iGluSnFR discrepancies diGluSnFR between the optimized BC models, the

experimentally measured response traces as used during optimization, traces recorded from the

same cell type without application of strychnine and responses of another OFF- and ON-BC. For

both optimized cell model outputs, the discrepancy was smallest for the targets used during optimi-

zation. This shows that the optimized models were able to reproduce cell-type specific details in

light response properties that go beyond the simple distinction of ON and OFF responses. While

the discrepancies between traces of different ON-BC types were overall relatively small for local

stimulation (Franke et al., 2017), the discrepancies between traces from OFF cells were larger likely

due to network modulation of the target cell type by amacrine cells (indicated by the difference

between the target and the no-drug condition) and larger response differences between the two

compared OFF-BC types. The posterior samples of both BC models had a low discrepancy, except

for a few samples (median dtot: 0.29 and 0.26 of the OFF- and ON-BC, respectively). The only dis-

crepancy measure with a non-zero median of the absolute values was diGluSnFR, which also accounts

for 88% and 82% of the mean total discrepancy for the OFF- and ON-BC respectively.

Despite the overall high resemblance between optimized model outputs and targets, there were

some visible systematic differences. For the ON-BC, the target showed a skewed sinusoidal

response with faster rise than fall times during the frequency and amplitude increasing sinusoidal

light stimulation between 10 s and 18 s and between 20 s and 27 s respectively. In contrast, the opti-

mized model output showed approximately equal rise and fall times, resulting in a systematic delay

of positive and negative peaks (median delay of all peaks: 15.6 ms) in the simulated iGluSnFR trace

relative to the target (Figure 6G). Additionally, some of the positive peaks of the optimized ON-BC

model during sinusoidal light stimulation were too small (e.g. at 11.5 s). This effect might have been

a side-effect of the peak timing difference between target and model: Amplitude increases were

inefficient in reducing the discrepancy as long as the peaks were not precisely aligned. In contrast,

the peak time precision of the OFF-BC model (Figure 6D) was much higher (median delay of all

peaks: 0.0 ms). In this case, the main difficulty for the model appeared to be its inability to repro-

duce the non-linearity in the cell response to the increasing amplitude sinusoidal light stimulation

between 20 s and 27 s.

After having verified that the posterior over parameters provided a good fit to the experimental

data, we inspected the one-dimensional marginal distributions to learn more about the resulting cel-

lular models (Figure 7). For most parameters, the marginal posteriors had smaller variances than the

priors, indicating that the parameter bounds were not chosen too narrow. For some parameters, the

posterior mean differed substantially from the prior mean (e.g. the CaT channel density at the axon

terminal of OFF-BC) while it was largely unchanged for others (e.g. the CaL channel density at the

soma for the OFF-BC). The algorithm also inferred the dependencies of some parameters, visible in

the two-dimensional marginals (Figure 7—figure supplement 1 and Figure 7—figure supplement

2). Because of these correlations, the full posterior in the high-dimensional parameter space led to

simulations which were on average better (median: 0.29 vs. 0.31 and 0.26 vs. 0.33 for the OFF- and

ON-BC, respectively) and less variable in their quality (95%-CIs: 0.53 vs. 1.01 and 0.64 vs. 1.42 for

the OFF- and ON-BC, respectively) than parameters drawn from a posterior obtained by assuming

independent marginal distributions. In most cases, the parameters resulting in the lowest total
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Figure 6. Optimized BC models. (A) Normalized light stimulus. Responses of the OFF- and ON-BC are shown in (B–D) and (E–G), respectively. (B, E)

Somatic membrane potential relative to the resting potential for the best parameters (blue line) and for 200 samples from the posterior shown as the

median (gray dashed line) and 10th to 90th percentile (gray-shaded area). A histogram over all resting potentials is shown on the right. (C, F) Mean

release rate over all synapses relative to the mean resting rate. Otherwise as in (B). (D, G) Simulated iGluSnFR trace (as in (B)) compared to respective

target trace (orange). Three regions (indicated by gray dashed boxes) are shown in more detail below without samples from the posterior. Estimates of

positive and negative peaks are highlighted (up- and downward facing triangles, respectively) in the target (brown) and in the simulated trace (blue and

cyan, respectively). Pairwise time differences between target and simulated peaks (indicated by triangle pairs connected by a black line) are shown as

histograms for positive (blue) and negative (cyan) peaks on the right. The median over all peak time differences is shown as a black vertical line.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 6:

Source data 1. Stimulus, target, and cell responses, including responses with removed ion channels.

Figure supplement 1. Heatmaps of the OFF-BC.

Figure supplement 2. Heatmaps of the ON-BC.

Figure supplement 3. Effect of active ion conductances on the optimized OFF-BC model.

Figure supplement 4. Effect of active ion conductances on the optimized ON-BC model.

Figure 6—video 1. Animated heatmaps of the OFF-BC.

Figure 6 continued on next page
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discrepancy were close to the means of the respective posteriors. For some parameters there was a

strong difference between the marginal posteriors of the OFF- and ON-BC. For example, the two

parameters controlling the leak conductance, Vr and Rm, were much lower for the OFF-BC consistent

with the strong variation of membrane resistances reported in Oltedal et al., 2009. The membrane

conductance was lower for the ON-BC, which could increase signal transduction speed in the longer

axon. Even though the posteriors were narrower than the priors, they still covered a wide range of

different parameters. To some extent, this may reflect the fact that we fit the model parameters

solely on the cells output, and for example dendritic parameters may be underconstrained by such

data; in addition, it may also reflect variability between cells of the same type seen in the experimen-

tal data that has also been reported in other studies (Franke et al., 2017).

After the fourth optimization round, 200 samples were drawn from the posterior distribution with

an increased number of compartments to find model parameters to simulate electrical stimulation

(see Methods). For comparison, we also ran simulations with the same parameters but the original

number of compartments (data not shown). Interestingly, more than 85% of the samples had a lower

discrepancy if the models were simulated with more compartments for both BCs. For the best 20%

(i.e. 40 samples) of the posterior samples (sorted with respect to samples with fewer compartments),

the samples with more compartments had lower discrepancies with only one exception per cell. This

Figure 6 continued

https://elifesciences.org/articles/54997#fig6video1

Figure 6—video 2. Animated heatmaps of the ON-BC.

https://elifesciences.org/articles/54997#fig6video2

Figure 7. Parameter distributions of the BC models. 1D-marginal prior (dashed gray line) and posterior distributions (solid lines) are shown for the

OFF- (blue) and ON-BC (green). The parameters of the posterior samples with the lowest total discrepancy are shown as dashed vertical lines in the

respective color. XY@Z refers to the channel density of channel XY at location Z. Locations are abbreviated; S: soma, A: axon, D: dendrite and AT: axon

terminals (see Figure 1 and main text for details). Note that although these 1D-marginal distributions seem relatively wide in some cases, the full high-

dimensional posterior has much more structure than a posterior distribution obtained from assuming independent marginals (see Figure 4). Not all

parameter distributions are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Prior and posterior parameters for the OFF- and ON-BC.

Figure supplement 1. 2D-marginals for the OFF-BC.

Figure supplement 2. 2D-marginals for the ON-BC.
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indicates that, given enough computational power, the same parameter inference approach but with

more compartments could further improve the model outputs. From these samples, we used the

five samples with the smallest total discrepancies dtot for the simulation of electrical stimulation.

Additionally, we used these five samples to analyze the effect of active ion conductances on the

light response by removing individual ion channels types from the BCs (Figure 6—figure supple-

ment 3 and Figure 6—figure supplement 4). Similar to the optimized cone model, the HCN chan-

nels played the most important role in shaping the light response. For both cells, the NaV and

somatic calcium channels barely had any influence on the membrane voltage or the vesicle release

rate.

Simulating electrical stimulation of the retina
To provide an exemplary use-case for our data-driven biophysical models of retinal neurons, we

asked whether we could use our simulation framework to optimize the stimulation strategy for retinal

neuroprosthetic implants. These implants have been developed for patients who lose sight due to

degeneration of their photoreceptors (Zrenner, 2002). While existing implants have been reported

to provide basic vision (Zrenner, 2002; Edwards et al., 2018; Luo and da Cruz, 2016), they are far

from perfect. For example, most current stimulation strategies likely activate OFF- and ON-pathways

at the same time (Barriga-Rivera et al., 2017). To this end, we created a simulation framework for

subretinal electrical stimulation of retinal tissue with micro-electrode arrays. We estimated the con-

ductivity and relative permittivity of the retina based on experimentally measured currents evoked

by sinusoidal voltages and then validated simulations of the electrical stimulation of our fitted BC

models with standard pulse like stimuli against responses measured in RGCs (Corna et al., 2018).

Finally, we used the simulation framework to find stimuli that can separately stimulate OFF- and ON-

BCs.

Our framework for simulating the effect of external electrical stimulation using the inferred BC

models consisted of two steps: we first estimated the electrical field resulting from a stimulation pro-

tocol as a function of space and time across the whole retina (Figure 3). The corresponding extracel-

lular voltages were then applied to the respective compartments to simulate the neural response. To

do so, we needed a model of the electrical properties of the electrode and the retinal tissue. We

assumed disk electrodes and a simplified model assuming homogeneous electrical properties of the

retina and the surrounding medium (see Materials and methods). This model contained two free

parameters that needed to be estimated from data: the conductivity and relative permittivity of the

retinal tissue.

To estimate these parameters we recorded electrical currents resulting from sinusoidal voltage

stimulation with different frequencies in a dish with and without a retina (Figure 8B,C). We used the

data without a retina to estimate the properties of the stimulation electrode (Figure 8A,D,E and

Materials and methods). Based on the estimates of the electrode properties and the data recorded

with a retina, we estimated the conductivity and relative permittivity of the retina with the same

parameter inference method as for the neuron models.

We found that both parameters are very well constrained by the measured data (Figure 8F). The

parameters resulting in the lowest discrepancy were sretina ¼ 0:076S=m and "retina ¼ 1:1� 10
7 in

accordance with the conductivity of 0:077 S=m reported for rabbit Eickenscheidt et al., 2012 and

the relative permittivity of gray matter estimated in Gabriel et al., 1996. With these parameters, we

simulated currents for all stimulus amplitudes we recorded experimentally. The simulated and exper-

imental currents matched for the amplitudes used during parameter inference but also for ampli-

tudes reserved for model validation (Figure 8G). Therefore, we used them in all following

experiments.

To validate our simulation framework, we compared simulated BC responses to experimentally

measured RGC thresholds (Corna et al., 2018). We simulated BCs at different positions for four dif-

ferent electrode configurations (Figure 9A) and nine stimulation current wave forms (Figure 9B). For

small stimulus charge densities, the BCs barely responded, whereas for very high charge densities

the cells released all glutamate vesicles available in the readily release pool (Figure 9C and D). In

between, the response increased from no response to saturation, dependent on the distances of the

simulated cell to the active electrodes. Across stimulation conditions, these threshold regions coin-

cide with the measured RGC thresholds to the same stimulation, when assuming that the stimulated

RGCs were not too far away from the stimulation electrode. Since the reported RGC thresholds likely

Oesterle et al. eLife 2020;9:e54997. DOI: https://doi.org/10.7554/eLife.54997 23 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.54997


result from indirect stimulation via BCs, the consistency between the RGC and simulated BC thresh-

olds can be interpreted as evidence that our model was well calibrated to simulate electrical

stimulation.

Optimized electrical stimulation for selective OFF- and ON-BC
stimulation
We finally used our framework for electrical stimulation to find stimuli that excite OFF- or ON-BCs

selectively. To this end, we performed Bayesian inference over an electrical charge-neutral stimulus

(Figure 10A) with the SNPE algorithm, using the response ratio between the two BC types

(Figure 10B) as a discrepancy function to minimize. Using this procedure, we found that triphasic,

anodic first stimuli with a cathodic middle phase of high amplitude (Figure 10C) evoked substantial

neurotransmitter release in the OFF-BC (Figure 10Di) while evoking almost no response in the ON-

BC (Figure 10Dii). The stimuli optimized to target the ON-BC were biphasic, with no clear

Figure 8. Estimation of the conductivity sretina and the relative permittivity "retina of the retina for simulating

electrical stimulation. (A) Electrical circuits used during parameter estimation. (B) Stimulation voltages vstim at

25 (left) and 40 Hz (right). From the six experimentally applied amplitudes, only the amplitudes used for parameter

inference are shown. (C) Experimentally measured currents iames through electrolyte (Ames’ solution) without retinal

tissue for the stimulus voltages vstim in (B). The mean traces over all (but the first two) repetitions are shown (black

dashed lines). Sine waves were fitted to the mean traces (solid lines) with colors referring to the voltages in (B). (D)

Simulated voltages over the electrolyte vames using the fitted currents in (C) as stimuli applied to the circuit in (Ai).

(Aii) Electrical circuit used to model the electrode plus interface. (E) Stimulus frequency and amplitude dependent

estimates of Re (i) and Ce (ii) based on the electrical circuit shown in (Aii) for 25 (black) and 40 Hz (gray). Note that

the values were derived analytically (see main text). The values corresponding to the stimulus voltages shown in (B)

are highlighted with respective color. (Aiii) Electrical circuit used to estimate sretina and "retina. The respective values

for Re and Ce are shown in (E) and are dependent on vstim. The current iretina through the model is measured for a

given stimulus voltage vstim. (F) Sampled parameters of "retina and sretina and the respective sample losses. First,

samples were drawn in a wide logarithmic space (gray dots) and then in a narrower linear parameter space. The

best sample (lowest discrepancy) is highlighted in red. (G) Simulated currents iretina (solid lines) through the circuit

in (Aiii) with optimized parameters (red dot in (F)) and respective experimentally measured currents (broken lines).

Here, results for all six stimulus amplitudes are shown for both frequencies.

The online version of this article includes the following source data for figure 8:

Source data 1. Currents, voltages, and samples from optimization.
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preference for anodic or cathodic first currents (Figure 10E). In contrast to the stimuli optimized for

the OFF-BC, these stimuli did not exclusively stimulate the targeted ON-BC (Figure 10Fii) but also

the OFF-BC (Figure 10Fi). We did not find stimuli evoking stronger release (defined as in Equa-

tion 24) in the ON-BC than the OFF-BC. This lower threshold of the OFF-BC, which we also

observed for the biphasic current pulses (Figure 9), was partially caused by the shorter axon of the

OFF-BC resulting in slightly larger changes of the extracellular voltage at the axon terminals during

Figure 9. Threshold of electrical stimulation for experimentally measured RGCs and simulated BCs of

photoreceptor degenerated mouse retina. (A) Stimulation currents measured experimentally and used as stimuli in

the simulations. (B) xy-positions of BCs (crosses) and electrodes (red dots) for 1�1, 2�2, 4�4, 10�10 stimulation

electrodes, respectively. Every electrode is modeled as a disc with a 30 mm diameter. Except for the electrode

configuration, the models were as in Figure 8. (C, D) Mean synaptic glutamate release relative to the size of the

readily releasable pool vmaxRRP of simulated OFF- and ON-BCs, respectively. Values can be greater than 1, because

the pool is replenished during simulation. Errorbars indicate the standard deviation between simulations of BCs

with different parametrizations; for both BCs, the five best posterior samples were simulated. Glutamate release is

shown for different charge densities (x-axis) and cell positions (colors correspond to xy-positions in (A);

for example the darkest blue corresponds to the central BC). Experimentally measured RGC thresholds (gray

dashed lines) plus-minus one standard deviation (gray-shaded ares) are shown in the same plots.

The online version of this article includes the following source data for figure 9:

Source data 1. Current traces and vesicle release for all simulations.

Oesterle et al. eLife 2020;9:e54997. DOI: https://doi.org/10.7554/eLife.54997 25 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.54997


stimulation (Figure 10—figure supplement 1A,B). While the morphologies and ion channel distribu-

tions contributed to differences in the membrane voltage at the axon terminals (Figure 10—figure

supplement 1C), the decisive factor for differences in the OFF and ON response presumably lies in

the presence or absence of CaT channels at the axon terminals. Removing these channels from the

OFF-BC had almost no effect on the membrane voltage, but resulted in qualitatively similar

responses for both cell types (Figure 10—figure supplement 1D,E). Removing the CaL channels at

the axon terminals on the other hand, left the OFF response for the triphasic and biphasic cathodic

first stimuli largely unchanged (Figure 10—figure supplement 1F).

Discussion
In this study, we showed how the recently developed Bayesian likelihood-free parameter inference

method called Sequential Neural Posterior Estimation (SNPE) (Lueckmann et al., 2017) can be used

to estimate the parameters of multicompartment models of retinal neurons based on light-response

measurements. In addition, we built a model for electrical stimulation of the retina, and optimized

electrical stimulation protocols for retinal neuroprosthetic devices designed to support vision in the

blind.

Performing Bayesian inference for mechanistic models is difficult, as they typically do not come

with an analytical solution of the likelihood function. The SNPE algorithm — like many approximate

Bayesian computation (ABC) methods (Sisson et al., 2018) — does not require such an analytical

formulation, as it builds on simulations of the model. In contrast to standard ABC methods, the

SNPE algorithm makes efficient use of simulation time by using all simulated data to train a mixture

Figure 10. Electrical currents optimized for selective ON- and OFF-BC stimulation. (A) Illustration of the stimulus

parametrization. A stimulation current was computed by fitting a cubic spline through points defined by p1:::p4 and

p� (black dots) that were placed equidistantly in time. p1:::p4 were free parameters and p� was chosen such that the

stimulus was charge neutral, that is the integral over the current (gray-shaded area) was zero. Currents were

normalized such that the maximum amplitude was always 0.5 mA. (B) Illustration of the electrical stimulation of an

OFF- (i) and ON-BC (ii) multicompartment model. (C, E) Stimuli optimized for selective OFF- and ON-BC

stimulation, respectively. The two best stimuli observed during optimization are shown. (D, F) Cumulative vesicle

release (as a mean over all synapses) relative to the size of the readily releasable pool vmaxRRP in response to the

electrical stimuli shown in (C) and (E), respectively. Stimuli and responses are shown in matching colors. Release is

shown for the five best posterior cell parametrizations for the OFF- (i) and ON-BC (ii) as a mean (line) plus-minus

one standard deviation (shaded area).

The online version of this article includes the following source data and figure supplement(s) for figure 10:

Source data 1. Optimized stimuli and BC responses, including responses with removed ion channels.

Figure supplement 1. Electrical stimulation with optimized stimuli and removed ion channels.
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density network to update the parameter distributions (Lueckmann et al., 2017; Gonçalves et al.,

2020). Moreover, SNPE makes minimal assumptions about the simulator, giving full flexibility to use

it with different simulation environments and software. As all Bayesian methods, SNPE allows the

incorporation of literature knowledge in the form of priors which can be used to constrain parame-

ters and to put more weight on more plausible parameters. Finally, it does not only yield a point-

estimate of the best parameters — like exhaustive grid-search techniques (Goldman et al., 2001;

Prinz et al., 2003; Stringer et al., 2016) or evolutionary algorithms (Gerken et al., 2006;

Keren et al., 2005; Achard and De Schutter, 2006; Rossant et al., 2011) — but also returns a pos-

terior distribution that reflects remaining parameter uncertainties and allows one to detect depen-

dencies between parameters.

Recently, there has been a surge of interest in Bayesian simulator-based inference with many

recently published algorithms (Gutmann and Corander, 2016; Papamakarios and Murray, 2016;

Lueckmann et al., 2017; Lintusaari et al., 2017; Papamakarios et al., 2018; Wood, 2010;

Durkan et al., 2018; Sisson et al., 2018; Gonçalves et al., 2020; Bittner et al., 2019). While we ini-

tially evaluated different algorithms, we did not perform a systematic comparison or benchmarking

effort, which is beyond the scope of this project. Much of the literature on simulator-based inference

evaluates the proposed algorithms on fairly simple models. In contrast, we used SNPE here to per-

form parameter inference of comparatively complex multicompartment models of neurons. Impor-

tantly, we did not need targeted experiments to constrain these models, but based our framework

on two-photon imaging data of glutamate release in response to simple light stimuli using a geneti-

cally encoded indicator called iGluSnFR (Marvin et al., 2013; Franke et al., 2017). This methods

allows direct experimental access to the neurotransmitter release of all excitatory neurons of the ret-

ina (Euler et al., 2019). Using this data, we inferred the distributions of model parameters relevant

for all the intermediate steps between light stimulation of cones to the glutamate release from syn-

aptic ribbons. While we optimized many parameters in the models using SNPE, we chose to keep

some parameters on sensible default values to avoid issues with computational complexity. Of

course, it is possible that optimization of the full parameter space would have yielded slightly better

results or that some parameters would have been set to slightly different values, as a mechanism

whose parameter was allowed to vary compensated for the one whose parameter was held fixed. As

an alternative to our approach, one can combine classical systems identification approaches with

inference for only some of the biophysical mechanisms such as the ribbon synapse (Schröder et al.,

2019). Our approach, however, allows the exploration of mechanisms within neurons which are not

or only barely experimentally accessible. For example, in BCs, it is currently difficult to obtain direct

voltage measurements from any part of the cell but the soma. If one is interested in how the electri-

cal signal propagates through the axon or the axon terminal, our simulations may help to obtain

mechanistic insights and develop causal hypotheses.

Because our inference framework works with experimental measurements which can be per-

formed in a high-throughput manner, it allows for a comparably easy scaling to infer model parame-

ters of a larger number of multicompartment models e.g. of different neuron types. In principle it

could even be possible to infer the parameters of a neuron by imaging another neuron. For example,

one could attempt to infer parameters of an amacrine cell by observing the neurotransmitter release

of a connected BC — although such an indirect inference would likely result in larger uncertainties.

Ideally, such a large-scale approach would also include realistic morphologies, for example from

electron microscopy as shown here. In fact, BCs are anatomically relatively ‘simple’ neurons, and it

will be interesting to test our inference methods on neurons with more complicated structure such

as some amacrine cells (Masland, 2012). While we did not aim at an exhaustive analysis of the effect

of morphology on the neuron responses, one could easily explore how details of the morphology

influence the distribution of optimal biophysical parameters. Further, we extended our model to sim-

ulate and optimize external electrical stimulation of the retina. For blind patients suffering from pho-

toreceptor degeneration, for example caused by diseases like Retinitis Pigmentosa, neuroprosthetic

devices electrically stimulating remaining retinal neurons can restore basic visual abilities

(Edwards et al., 2018; Luo and da Cruz, 2016). The spatial and temporal resolution of such retinal

implants is, however, still very limited (Weitz et al., 2015) with the highest reported restored visual

acuity of 20/546 (Chuang et al., 2014). While many experimental studies have explored different

strategies of stimulation (Jensen et al., 2005; Jensen and Rizzo, 2008; Tsai et al., 2009;

Eickenscheidt et al., 2012), most of them are restricted to very specific stimulus types such as
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current or voltages pulses. As a consequence, retinal implants are not able to specifically target cell

types such as the independent stimulation of the ON and OFF pathways of the retina (Lee and Im,

2019; Barriga-Rivera et al., 2017; Twyford et al., 2014). To facilitate a systematic stimulus optimi-

zation in silico, we developed a simulation framework for electrical stimulation of the retina. While

the idea to simulate responses of BCs to electrical stimuli is not new, previous studies restricted their

models to point/ball source electrodes (Resatz and Rattay, 2004; Rattay et al., 2017), simplified

BCs to passive cables (Gerhardt et al., 2010) or used simplified BC models that only express L- or

T-type channels (Werginz et al., 2015). Our framework combines the simulation of micro-electrode

arrays used in neuroprosthetic devices (Edwards et al., 2018; Luo and da Cruz, 2016) with detailed

models of an OFF- and ON-BC. This allowed us to test a large number of stimulus waveforms, opti-

mizing for stimuli selectively targeting either OFF- or ON-BCs, which could help to better encode

visual scenes into electrical signals of retinal implants. We found stimuli selectively targeting the

OFF-BC without stimulating the ON-BC, but not vice versa. Likely, the main reason for the differen-

tial response of the two BC types was that only the OFF-BC had T-type calcium channels at the axon

terminals. These channels were more sensitive to transient changes in the membrane voltage which

were evoked by the stimuli optimized to selectively target the OFF-BC. The ON-BC, having no

T-type calcium channels and an overall higher threshold, did not respond to these stimuli. However,

it could be stimulated with longer anodic stimulus phases activating the L-type calcium channels.

Since we modeled the cells in isolation, network effects through synaptic activation of amacrine cells

might further modulate the activity of the BCs. However, the neurites and somata of amacrine cells

are substantially farther away from the stimulation electrode than those of the BCs, and these effects

might be comparably small. That notwithstanding, simulations including network effects and also

more diverse BC types will be required in the future. Ideally, in silico optimized stimulation strategies

would be first verified in ex vivo experiments before implementing them in neuroprosthetic devices

to improve the quality of visual impressions.

To be able to simulate the electrical stimulation of the retina, we first inferred the conductivity

and relative permittivity of the rd10 retina based on recorded currents evoked by sinusoidal stimula-

tion voltages. While the estimated conductivity (sretina ¼ 0:076S=m) is consistent with the value

(sretina ¼ 0:077 S=m) reported in Eickenscheidt et al., 2012, also smaller (0:025S=m, Karwoski and

Xu, 1999) and larger ( » 0:75S=m, Wang and Weiland, 2015) conductivities have been reported for

the retina. These differences may be due to different ways in tissue handling and preparation. Com-

paring the estimated values of the relative permittivity ("retina ¼ 1:1� 10
7 ) to the literature is more

difficult, and most simulation studies choose to ignore its effects. The relative permittivity of retinal

tissue has been reported for very high frequencies (10 MHz to 10 GHz), but the strong frequency

dependence makes a direct comparison to frequencies several orders of magnitude smaller (e.g.

40 Hz) not meaningful. Additionally, data from gray matter suggest a relative permittivity of

1.5 � 107 at 40 Hz very close to our estimate (Gabriel et al., 1996). This opens the question weather

the common assumption to ignore the effects of the relative permittivity in other simulations

(Gerhardt et al., 2010; Werginz et al., 2015; Rattay et al., 2017) is valid.

In summary, mechanistic models in neuroscience such as biophysically realistic multicompartment

models have long been regarded as requiring many manual parameter choices or highly specific

experiments to constrain them. We showed here how relatively standard, high-throughput imaging

data in combination with likelihood-free inference techniques can be used to perform Bayesian infer-

ence on such models, allowing unprecedented possibilities for efficient optimization and analysis of

such models. Importantly, this allow us to understand which parameters in such models are well con-

strained, and which are not, and determine which parameter combinations lead to similar simulation

outcomes (Gonçalves et al., 2020; Alonso and Marder, 2019) — questions that have hindered

progress in the field for years.
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Schröder C, James B, Lagnado L, Berens P. 2019. Approximate bayesian inference for a mechanistic model of
vesicle release at a ribbon synapse. Advances in Neural Information Processing Systems.

Sheng Z, Choi SY, Dharia A, Li J, Sterling P, Kramer RH. 2007. Synaptic Ca2+ in darkness is lower in rods than
cones, causing slower tonic release of vesicles. Journal of Neuroscience 27:5033–5042. DOI: https://doi.org/10.
1523/JNEUROSCI.5386-06.2007, PMID: 17494689

Oesterle et al. eLife 2020;9:e54997. DOI: https://doi.org/10.7554/eLife.54997 33 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.1038/nmeth.2333
https://doi.org/10.1038/nmeth.2333
http://www.ncbi.nlm.nih.gov/pubmed/23314171
https://doi.org/10.1017/S0952523811000344
https://doi.org/10.1017/S0952523811000344
http://www.ncbi.nlm.nih.gov/pubmed/22416289
https://doi.org/10.1016/j.cub.2019.08.048
http://www.ncbi.nlm.nih.gov/pubmed/31564498
https://doi.org/10.1038/nrn2924
http://www.ncbi.nlm.nih.gov/pubmed/21045860
https://doi.org/10.1523/JNEUROSCI.18-07-02467.1998
https://doi.org/10.1523/JNEUROSCI.18-07-02467.1998
http://www.ncbi.nlm.nih.gov/pubmed/9502807
https://doi.org/10.1017/S0952523805225038
https://doi.org/10.1017/S0952523805225038
http://www.ncbi.nlm.nih.gov/pubmed/16332266
https://doi.org/10.1046/j.1460-9568.2003.02634.x
http://www.ncbi.nlm.nih.gov/pubmed/12786975
https://doi.org/10.3389/fninf.2012.00004
https://doi.org/10.3389/fninf.2012.00004
http://www.ncbi.nlm.nih.gov/pubmed/22438842
https://doi.org/10.1085/jgp.111.1.7
http://www.ncbi.nlm.nih.gov/pubmed/9417132
https://doi.org/10.1085/jgp.200609490
https://doi.org/10.1085/jgp.200609490
http://www.ncbi.nlm.nih.gov/pubmed/16567464
https://doi.org/10.1016/j.neuron.2014.04.002
https://doi.org/10.1016/j.neuron.2014.04.002
http://www.ncbi.nlm.nih.gov/pubmed/24853940
https://archive.softwareheritage.org/browse/directory/74cb51f26fd3961f853488aeb3b8ef959ce4e541/?branch=refs/heads/master&origin_url=https://github.com/berenslab/CBC_inference&snapshot=e584de7e33f4121abd7232331b53d84b5863674b
https://archive.softwareheritage.org/browse/directory/74cb51f26fd3961f853488aeb3b8ef959ce4e541/?branch=refs/heads/master&origin_url=https://github.com/berenslab/CBC_inference&snapshot=e584de7e33f4121abd7232331b53d84b5863674b
https://archive.softwareheritage.org/browse/directory/74cb51f26fd3961f853488aeb3b8ef959ce4e541/?branch=refs/heads/master&origin_url=https://github.com/berenslab/CBC_inference&snapshot=e584de7e33f4121abd7232331b53d84b5863674b
https://doi.org/10.1113/jphysiol.2008.165415
http://www.ncbi.nlm.nih.gov/pubmed/19124538
https://arxiv.org/abs/1805.07226
https://doi.org/10.1167/iovs.12-9611
https://doi.org/10.1167/iovs.12-9611
http://www.ncbi.nlm.nih.gov/pubmed/22562504
https://doi.org/10.1016/S0896-6273(03)00149-1
http://www.ncbi.nlm.nih.gov/pubmed/12670427
https://doi.org/10.1152/jn.00641.2003
https://doi.org/10.1152/jn.00641.2003
http://www.ncbi.nlm.nih.gov/pubmed/12944532
https://doi.org/10.1038/s41598-017-17603-8
http://www.ncbi.nlm.nih.gov/pubmed/29242502
https://doi.org/10.1080/13873950412331318080
https://doi.org/10.3389/fnins.2011.00009
http://www.ncbi.nlm.nih.gov/pubmed/21415925
https://doi.org/10.1523/JNEUROSCI.2739-08.2012
https://doi.org/10.1523/JNEUROSCI.2739-08.2012
http://www.ncbi.nlm.nih.gov/pubmed/22219291
https://doi.org/10.1097/00001756-199807130-00002
http://www.ncbi.nlm.nih.gov/pubmed/9694192
https://doi.org/10.1523/JNEUROSCI.5386-06.2007
https://doi.org/10.1523/JNEUROSCI.5386-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17494689
https://doi.org/10.7554/eLife.54997


Singer JH, Diamond JS. 2006. Vesicle depletion and synaptic depression at a mammalian ribbon synapse.
Journal of Neurophysiology 95:3191–3198. DOI: https://doi.org/10.1152/jn.01309.2005, PMID: 16452253

Sisson SA, Fan Y, Beaumont M. 2018. Handbook of Approximate Bayesian Computation. Chapman and Hall/
CRC.

Smith RG. 1992. NeuronC: a computational language for investigating functional architecture of neural circuits.
Journal of Neuroscience Methods 43:83–108. DOI: https://doi.org/10.1016/0165-0270(92)90019-A,
PMID: 1405746

Stringer C, Pachitariu M, Steinmetz NA, Okun M, Bartho P, Harris KD, Sahani M, Lesica NA. 2016. Inhibitory
control of correlated intrinsic variability in cortical networks. eLife 5:e19695. DOI: https://doi.org/10.7554/eLife.
19695, PMID: 27926356

Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D, Schubert T, Euler T, Franke K. 2019. Neural circuits in
the mouse retina support color vision in the upper visual field. bioRxiv. DOI: https://doi.org/10.1101/745539

Taylor AL, Goaillard JM, Marder E. 2009. How multiple conductances determine electrophysiological properties
in a multicompartment model. Journal of Neuroscience 29:5573–5586. DOI: https://doi.org/10.1523/
JNEUROSCI.4438-08.2009, PMID: 19403824

Thoreson WB, Van Hook MJ, Parmelee C, Curto C. 2016. Modeling and measurement of vesicle pools at the
cone ribbon synapse: changes in release probability are solely responsible for voltage-dependent changes in
release. Synapse 70:1–14. DOI: https://doi.org/10.1002/syn.21871, PMID: 26541100

tom Dieck S, Brandstätter JH. 2006. Ribbon synapses of the retina. Cell and Tissue Research 326:339–346.
DOI: https://doi.org/10.1007/s00441-006-0234-0, PMID: 16775698

Tsai D, Morley JW, Suaning GJ, Lovell NH. 2009. Direct activation and temporal response properties of rabbit
retinal ganglion cells following subretinal stimulation. Journal of Neurophysiology 102:2982–2993. DOI: https://
doi.org/10.1152/jn.00545.2009, PMID: 19741103

Twyford P, Cai C, Fried S. 2014. Differential responses to high-frequency electrical stimulation in ON and OFF
retinal ganglion cells. Journal of Neural Engineering 11:025001. DOI: https://doi.org/10.1088/1741-2560/11/2/
025001, PMID: 24556536

Van Hook MJ, Nawy S, Thoreson WB. 2019. Voltage- and calcium-gated ion channels of neurons in the
vertebrate retina. Progress in Retinal and Eye Research 72:100760. DOI: https://doi.org/10.1016/j.preteyeres.
2019.05.001, PMID: 31078724

Wan QF, Heidelberger R. 2011. Synaptic release at mammalian bipolar cell terminals. Visual Neuroscience 28:
109–119. DOI: https://doi.org/10.1017/S0952523810000453, PMID: 21272392

Wang B, Weiland JD. 2015. Resistivity profiles of wild-type, rd1, and rd10 mouse retina. 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE 1650–1653.
DOI: https://doi.org/10.1109/EMBC.2015.7318692
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Appendix 1

Cone prior parameters

Appendix 1—table 1. Cone model parameter priors.

Parameter Unit ai mi bi References: direct and additional

Cm �F cm�2 0.9 1 1.3 Oltedal et al., 2009

Rm kW cm2 1 5 100 Oltedal et al., 2009

Vr mV -90 -70 -50

CaL mS cm�2 0.1 2 10 Morgans et al., 2005; Mansergh et al., 2005; Cui et al., 2012

KV mS cm�2 0 0.1 3 Van Hook et al., 2019

HCN@ S mS cm�2 0 3 10 Knop et al., 2008; Hellmer et al., 2016; Van Hook et al., 2019

HCN@A mS cm�2 0 1 10 Knop et al., 2008; Hellmer et al., 2016; Van Hook et al., 2019

HCN@AT mS cm�2 0 0.1 10 Knop et al., 2008; Hellmer et al., 2016; Van Hook et al., 2019

ClCa mS cm�2 0 0.1 10 Yang et al., 2008; Caputo et al., 2015

CaP �S cm�2 0.1 10 100 Morgans et al., 1998

t aðCaLÞ 0.75 1 1.5

t aðKVÞ 0.1 1 10

DVaðCaLÞ mV �5 0 5

DVaðKVÞ mV �10 0 10

CaPK �mol 0.01 5 100

vmaxRRP vesicles 10 20 30 Thoreson et al., 2016; Bartoletti et al., 2010

gl 0.3 1 3

BC prior parameters

Appendix 1—table 2. BC model parameter priors.

Parameter Unit
ai
(3a|5)

mi

(3a|5)

bi

(3a |
5) References: direct and additional

Cm �F cm�2 0.9 1.18 1.3 Oltedal et al., 2009

Rm kW cm2 1 26 100 Oltedal et al., 2009

Vr mV �90 �70 �50

CaL @ S mScm�2 0 0.5 3 Cui et al., 2012, Van Hook et al., 2019

CaL @AT mScm�2 0.1 0.5 3 Cui et al., 2012, Van Hook et al., 2019

CaT @ S mScm�2 0|n/a 0.5|n/
a

3|n/a Cui et al., 2012, Van Hook et al., 2019; Hu et al., 2009;
Satoh et al., 1998

CaT @AT mScm�2 0|n/a 0.5|n/
a

3|n/a Cui et al., 2012, Van Hook et al., 2019; Hu et al., 2009;
Satoh et al., 1998

KV @D mScm�2 0 0.4 2 Ma et al., 2005

KV @PA mScm�2 0 0.4 2 Ma et al., 2005

KV @A mScm�2 0 0.4 2 Ma et al., 2005

Kir @ S mScm�2 0 1 2 Cui and Pan, 2008, Knop et al., 2008

HCN@D mScm�2 0 0.2 2 Hellmer et al., 2016, Knop et al., 2008

HCN@ S mScm�2 0 0.2 2 Hellmer et al., 2016, Knop et al., 2008
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Appendix 1—table 2 continued

Parameter Unit
ai
(3a|5)

mi

(3a|5)

bi

(3a |
5) References: direct and additional

HCN@AT mScm�2 0 0.2 2 Hellmer et al., 2016, Knop et al., 2008

NaV @DA mScm�2 0 20 100 Hellmer et al., 2016

CaP @ S �S cm�2 0.1 10 100 Morgans et al., 1998

CaP @AT �S cm�2 0.1 10 100 Morgans et al., 1998

t gðKainateÞ 1|n/a 5|n/a 20|n/a

t aðCaLÞ 0.5 1 2

t aðCaTÞ 0.5|n/a 1|n/a 2|n/a

t aðKVÞ 0.1 1 10

t allðNaVÞ 0.5 1 2

DVaðCaLÞ mV �10 0 10

DVaðCaTÞ mV �10|n/
a

0|n/a 10|n/a

DVaðKVÞ mV �10 0 10

DVaðKirÞ mV �5 0 5

DVaðNaVÞ mV �5 0 5

DVgðNaVÞ mV �5 0 5

CaPK �mol 0.1|
0.01

20 100

STC mmol 0.05|1 0.5|
1.5

1|3

vmaxRRP vesicles 4 8 15 Singer and Diamond, 2006

gl 0.5 1 3

NeuronC parameters

Appendix 1—table 3. Other NeuronC parameters.

Parameter Unit Value Remarks

vna mV 65 Reversal potential sodium

vk mV �89 Reversal potential potassium

vcl mV �70 Reversal potential chloride

dnao mmol 151.5 Extracellular sodium concentration

dko mmol 2.5 Extracellular potassium concentration

dclo mmol 133.5 Extracellular chloride concentration

dcao mmol 2 Extracellular calcium concentration

dicafrac 1 Fraction of calcium pump current that is added to total current

use_ghki 1 Use Goldman-Hodgkin-Katz equation

cone_timec 0.2 Time constant of cone phototransduction

cone_loopg 0.0 Gain of calcium feedback loop in cones

cone_maxcond nS 0.2 Max. conductance of of outer segment

timinc ms 0.001 | 0.01 Simulation time step (Figure 9)

ploti ms 0.01 | 1 Recording time step
(Figure 9 and Figure 10 | otherwise)
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Appendix 1—table 3 continued

Parameter Unit Value Remarks

stimincms0.01 | 0.1Synaptic time step
(Figure 9 and Figure 10 | otherwise)srtimestepms0.001 | 0.01 | 0.1Stimulus update time step
(Figure 9 | Figure 10 | otherwise)predurs5 | �10Simulation time to reach equilibrium
potential (Cone | BCs)
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