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Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) commonly complicates
with coagulopathy. A syndrome called Long-COVID-19 is emerging recently in COVID-19 survivors,
characterized, in addition to the persistence of symptoms typical of the acute phase, by alterations
in inflammatory and coagulation parameters due to endothelial damage. The related disseminated
intravascular coagulation (DIC) can be associated with high death rates in COVID-19 patients. It is
possible to find a prothrombotic state also in Long-COVID-19. Early administration of anticoagulants
in COVID-19 was suggested in order to improve patient outcomes, although exact criteria for their
application were not well-established. Low-molecular-weight heparin (LMWH) was commonly
adopted for counteracting DIC and venous thromboembolism (VTE), due to its pharmacodynamics
and anti-inflammatory properties. However, the efficacy of anticoagulant therapy for COVID-19-
associated DIC is still a matter of debate. Thrombin and Factor Xa (FXa) are well-known components
of the coagulation cascade. The FXa is known to strongly promote inflammation as the consequence
of increased cytokine expression. Endothelial cells and mononuclear leucocytes release cytokines,
growth factors, and adhesion molecules due to thrombin activation. On the other hand, cytokines can
activate coagulation. The cross-talk between coagulation and inflammation is mediated via protease-
activated receptors (PARs). These receptors might become potential targets to be considered for
counteracting the clinical expressions of COVID-19. SARS-CoV-2 is effectively able to activate local
and circulating coagulation factors, thus inducing the generation of disseminated coagula. LMWH
may be considered as the new frontier in the treatment of COVID-19 and Long-COVID-19. Indeed,
direct oral anticoagulants (DOACs) may be an alternative option for both early and later treatment of
COVID-19 patients due to their ability to inhibit PARs. The aim of this report was to evaluate the role
of anticoagulants—and DOACs in particular in COVID-19 and Long-COVID-19 patients. We report
the case of a COVID-19 patient who, after administration of enoxaparin developed DIC secondary
to virosis and positivity for platelet factor 4 (PF4) and a case of Long-COVID with high residual
cardiovascular risk and persistence of blood chemistry of inflammation and procoagulative state.
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1. Introduction

The coagulation pathway is a cascade of events that leads to hemostasis in order
to heal wounds and prevent spontaneous bleedings. Intrinsic and extrinsic pathways
converge to generate and activate fibrin. Severe acute respiratory syndrome (SARS-CoV)-
2—responsible for coronavirus disease 2019 (COVID-19) pandemic—seems to evolve with
severe coagulopathy [1]. Disseminated intravascular coagulation (DIC) is a common
complication in sepsis [2] and can be associated with high death rates in COVID-19 pa-
tients [3–6]. Therefore, DIC and subsequent alterations in coagulation processes in severe
COVID-19 may be a hallmark for clinical degeneration in COVID-19 [5]. Sepsis is effectively
able to promote the coagulation process: the first step is the generation of the tissue factor
(TF), which leads to the activation of the extrinsic pathway of the coagulation process;
meanwhile, the increase in plasminogen activator inhibitor-1 (PAI-1) inhibits the fibrinolysis
cascade. Tang et al. also reported the down-regulation of Protein C in sepsis: this resulted
in the reduction of the anticoagulation properties of Protein C pathway in sepsis [5]. Recent
advances in comprehending the pathogenic mechanisms of coagulation and fibrinolysis
in sepsis may have therapeutic implications. Recombinant human activated protein C
(rhAPC; drotrecogin-alfa activated) was the only pharmacologic therapy that demonstrated
reduction in mortality in adults with severe sepsis [7], but no data are available about its
administration in patients with COVID-19. Food and Drug Administration has revoked
the use of drotrecogin-alfa (activated) due to a significant increase in bleeding and poor
efficacy [8]. Systemic corticosteroid administration and long-term bed rest also increase
the risk of venous thromboembolism (VTE) in patients with COVID-19. Theoretically,
administration of anticoagulants (such as heparin) can be considered as a good therapeutic
option in patients with COVID-19, though their efficacy and safety are still a matter of
debate in such a context [9]. Thrombin and Factor Xa (FXa) are well-known components
of the coagulation cascade. The FXa is known to strongly promote inflammation as a
consequence of the increase in cytokine expression. Endothelial cells and mononuclear
leucocytes release cytokines, growth factors, and adhesion molecules due to thrombin
activation. On the other hand, cytokines can activate coagulation. The cross-talk between
coagulation and inflammation is mediated via protease-activated receptors (PARs). These
receptors might become potential targets to be considered for counteracting the clinical
expressions of COVID-19. COVID-19 is effectively able to activate local and circulating co-
agulation factors, thus inducing the generation of disseminated coagula [10]. Recently, the
International Society of Thrombosis and Hemostasis (ISTH) identified an earlier phase of
sepsis-associated DIC, named “sepsis-induced coagulopathy” (SIC), which can benefit from
anticoagulants. [11,12] The patients who meet the diagnostic criteria of SIC may benefit
from anticoagulant therapy [12]. Given the common use of anticoagulants worldwide, in-
ternational guidelines about the management of these drugs in patients with COVID-19 are
needed. The aim of this report was to evaluate the possible clinical effects of anticoagulants
in COVID-19 patients and the role of direct oral anticoagulants (DOACs) as alternative
therapeutic options to heparin in relation to their inhibitory effects on PARs. In particular,
a dedicated focus was set on the withdrawal of DOACs and substitution with heparins in
high-risk patients (i.e., elderly, atrial fibrillation, coronary artery disease, peripheral arterial
disease, heart failure, VTE, cancer, etc.) with known or suspected COVID-19.

2. COVID-19 and Older Adults with Comorbidities

Older people are at higher risk for severe and fatal forms of COVID-19 due to their
frailty and comorbidities [3,13,14]. Experience from Italy shows a median age at death
of 79 years for men and 82 for women [15]. The COVID-19 disease has been defined
as a “pandemic” since 11 March 2020 by the World Health Organization (WHO). As of
April 2nd, the death rate was double that of Severe Acute Respiratory Syndrome (SARS,
2002–2003) and Middle-East Respiratory Syndrome (MERS, 2013) [16]. This pandemic
seems to expand at an exponential rate, doubling the positive cases every 43 h. New COVID-
19 populations are generally liable, but elderly people with underlying diseases are more
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susceptible. Diabetes, hypertension, obesity, cardiovascular disease, and cerebrovascular
disease are the most important comorbidities implied in degeneration of clinical conditions
of patients with COVID-19 [13,14]. Elderly individuals showed the most severe SARS-
CoV-2 phenotypes, were more frequently admitted to the intensive care unit (ICU) and
demonstrated higher mortality rates [15–18]. Yang et al. found that 52% of their COVID-
19 population was older than 60 years old with higher prevalence in chronic medical
illnesses [19]. Indeed, “Inflammaging”, i.e., a sort of dysregulated immune response with
exacerbated inflammatory and depressed immunologic components, is a typical feature of
aging and might make the elderly more vulnerable to COVID-19, mainly by promoting the
cytokine storm [20]. Interestingly, the resistance of the bat to the toxic effect of COVID-19 is
explained by a well-balanced immune response with mild inflammatory component [21].
Furthermore, the proportion of fat mass increases with age [22]. Thus, geriatric patients
might be at greater risk of cytokine storm also if their BMI does not fall within the obesity
range. Indeed, adipose tissue has a proinflammatory effect [23]. Appropriate medical
management of cardiovascular comorbidities, including the correct use of anticoagulants,
was supported to possibly promote favorable effects on the prognosis of patients with
COVID-19 pneumonia [24].

3. Uncertain Effects of Anticoagulants in COVID-19

The virosis induced by SARS-CoV-2 promotes endothelial dysfunction, through direct
invasion of endothelial cells [25], which in turn can induce excessive thrombin generation
and fibrinolysis shutdown, which are conditions able to promote the activation of coagula-
tion [10,25]. Endothelial dysfunction leads to microvascular dysfunction with consequent
vasoconstriction, ischemia, inflammation, edema and a procoagulative state [25]. The
reduction in Oxygen (O2) plasma levels in severe COVID-19 may induce a prothrombotic
status due to the activation of a hypoxia-inducible transcription factor-dependent signal-
ing pathway [10]. All these conditions may lead to occlusion and micro-thrombosis in
pulmonary small vessels of severe COVID-19 patients, as outlined in autoptic reports [4].
Therefore, early administration of anticoagulants in COVID-19 was suggested in order
to improve the outcome of patients, although exact criteria for their application were not
well-established [26]. Low-molecular-weight heparin (LMWH) was commonly adopted for
counteracting DIC and venous thromboembolism (VTE), due to its pharmacodynamics
and anti-inflammatory properties [27]. The prophylactic dose of LMWH was used by Tang
et al. [28] and such administration was related to low and mild bleeding complication
rates. Indeed, DIC may develop due to the occurrence of reduction in platelet count
and prolongation of pro-thrombin time (PT). These alterations are related to an increased
mortality rate. For this reason, anticoagulation may be challenging. ISTH proposed new
SIC criteria to manage anticoagulation in such a context, based upon a dedicated score
which had been previously validated [12]. Nevertheless, severe COVID-19 patients poorly
met SIC criteria, and therefore should not theoretically undergo anticoagulant treatment.
For example, platelet count cannot be considered as a sensitive marker for coagulopathy
in severe COVID-19 pneumonia; therefore, one of the SIC criteria—platelets depletion—
could not be considered for the final decision making [28]. Conversely, markedly elevated
D-dimers—indirect markers for coagulation activation—suggest possible benefits from
heparin therapy. Nevertheless, the activation of coagulation may reduce pathogen dis-
semination and invasion [29]. Therefore, anticoagulation may be dangerous in patients
without significant coagulopathy, thus explaining the occurrence of higher mortality rate
in heparin users as compared to controls with lower D-dimer plasma levels [28]. LMWH
are nowadays considered as the new frontier in counteracting the advancing of COVID-19.
Other therapies have not been considered yet. Physicians should consider anticoagulation
with heparin or LMWH as not beneficial to unselected patients; only those meeting SIC
criteria or with markedly elevated D-dimer may be considered for possible anticoagulation
with LMWH [28,30].
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4. Potential Benefits of DOACs in COVID-19

The blood coagulation cascade is initiated by tissue factor (TF)/Factor VIIa (TF/FVIIa)
complex and conveys to the generation of Xa factor (FXa) first, and then thrombin
(II Factor) [31–33]. Thrombin is a proteolytic enzyme of coagulation cascade able to cleave
fibrinogen into fibrin and activate platelets. Aberrant activation of blood coagulation
system can contribute to the degeneration of different pathologies, such as COVID-19
pneumonia (Figure 1).
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Figure 1. Interplay between SARS-CoV-2 infection, coagulation system, protease-activated receptors
and inflammation. Activation of the coagulation cascade by the SARS-CoV-2 leads to the cleavage of
fibrinogen into fibrin and platelet activation that can contribute to thrombosis. Platelet activation
and fibrin degradation products can also enhance inflammation. Coagulation proteases can activate
endothelial cells via protease-activated receptors that can increase the expression of inflammatory
mediators. Drugs capable of inhibiting Factor Xa could attenuate the inflammatory response and
modulate the coagulation cascade by reducing the formation of blood clots. This figure was created
using the website https://app.biorender.com (accessed on 6 July 2021).

Vessel thrombosis leads to ischemia and, if the occlusion is prolonged, to the necro-
sis of tissues and organs, while degradation products may enhance inflammation into
vessels mainly due to the activation of specific proinflammatory receptors such as protease-
activated receptors (PARs) [34]. Four PARs (PAR1–4) are known, which are ubiquitously
expressed [31,34]. PARs typically serve as both receptor and ligand: proteolytic cleavage by
an activated coagulation factor leads to exposure of a neoamino terminus which activates
the receptor itself, thus leading to widespread intracellular signaling [34]. PAR’s 1, 3 and 4
are usually activated by thrombin, while PAR-2 by the TF/FVIIa complex, factor Xa, and
trypsin [31]. Furthermore, PAR-1 acts as the receptor for TF/FVIIa complex and factor
Xa. Thrombin activates PAR1, PAR3, and PAR4, whereas FXa primarily activates PAR2
and PAR1 [31,34]. Direct oral anticoagulants (DOACs) specifically inhibit FXa or thrombin:
apixaban, edoxaban, and rivaroxaban are inhibitors for FXa, while dabigatran etexilate is a
thrombin inhibitor [31]. The role of this compound in sepsis has not been evaluated yet.
Posma et al. evaluated the role of each proteases of the coagulation cascade, particularly
FXa and thrombin, and PARs in different mouse models of inflammatory diseases, includ-
ing virosis (H1N1 strain of influenza A virus) [35]. The blood coagulation cascade may
be activated during virosis, thus provoking DIC [31]. Inhibition of the TF/FVIIa complex
reduced the inflammatory background of the virosis and the mortality rate in primate

https://app.biorender.com
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model infected by Ebola virus [36]. Indeed, the roles of PAR1 and PAR2 in mouse models
of viral infections are controversial [37]. PAR1 inhibition protected mice against respiratory
syncytial virus and human metapneumovirus infection [38]. In vitro studies with human
A549 cells showed that PAR1 inhibition reduced the replication of respiratory syncytial
virus and human metapneumovirus infection [35]. Animal studies showed a significant
reduction in inflammation in H1N1 infection when rivaroxaban was administered, dabiga-
tran etexilate being unable to reproduce such results [35]. Ellinghaus et al. demonstrated a
reduction in thrombin-induced expression of pro-inflammatory genes in human endothe-
lial cells after administration of rivaroxaban and dabigatran. Indeed, dabigatran showed
a biphasic reaction compared to rivaroxaban as it transiently increased the expression of
pro-inflammatory genes at concentrations below the minimal inhibitory effective concen-
trations [39]. Nevertheless, poor data are available for translating these results in clinical
practice, while no studies have evaluated the effects of DOACs in COVID-19.

5. Clinical Case

A 45-year-old male has been hospitalized for SARS-CoV-2 nasopharyngeal RNA swab
positivity for 10 days due to fever, breathlessness, and peripheral oxygen desaturation.
He was reported no to have any noteworthy diseases, except for fracture surgery of the
right tibia in January 2020. Vital signs on admission were as follows: blood pressure,
150/90 mm Hg; heart rate, 96 beats/min; respiratory rate, 28/min; body temperature,
39.8 ◦C; oxygen saturation through Venturi mask at 12 L/min 57%; pH 7.49; arterial carbon
dioxide partial pressure 36 mmHg; arterial oxygen partial pressure 57 mmHg; PaO2/FiO2
114; Modified Early Warning Score (MEWS) 4 [40]; the severity CT score index was 4 [41]
(Figure 2).
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Figure 2. High resolution computed tomography (HRCT) chest, axial post-processed images, show-
ing bilateral peripheral areas of ground-glass opacity (GGO).

The patient was treated with ceftriaxone (2 gr ev od), clarithromycin (500 mg ev
bid), methylprednisolone (40 mg ev bid), enoxaparin (4000 UI 0,4 subcutaneous bid),
furosemide (20 mg ev od), paracetamol (1 g ev every 4 h). Worsening of patient’s condition
was observed on the second day of hospitalization (MEWS 8). High flow non-invasive
ventilation was started to FiO2 60%. Laboratory data showed that the disseminated
intravascular coagulation (DIC Score = 6) was suggestive of overt DIC [42] (Table 1). Anti-
platelet factor 4 (PF4) was present and enoxaparin was stopped. Arterial and venous
Doppler ultrasound of the lower limbs and supraortic vessels showed no abnormalities.
Abdominal ultrasound, CT scan of the brain and MR angiography of intra- and extra-cranial
vessels did not show relevant signs. Based on the European Society of Cardiology Guidance
(CV disease/COVID-19 2020) [26], Direct Oral Anticoagulant was started (Rivaroxaban
15 mg bid). On the seventh day, coagulation parameters were normalized (DIC score = 0)
and clinical conditions improved with MEWS score 0. The patient was discharged and
went home being apyretic and negative SARS-CoV-2 nasopharyngeal RNA swab, with
home therapy: Rivaroxaban 15 bid for two weeks followed by Rivaroxaban 20 mg od
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and Prednisone 25 mg od for seven days. DIC is an acquired syndrome whose main
characteristic is an alteration in blood coagulation. Insults or injuries with a high risk
of leading to DIC can be both infectious and non-infectious. In the patient observed
in our COVID-19 area, we obtained a rapid remission of symptoms and normalization
of hematochemical parameters, in particular those relating to DIC, after withdrawal of
enoxaparin. The patient experienced exposure to enoxaparin at tibial fracture surgery,
and anti-PF4 was also present. The pathophysiology of DIC in our patient is likely to be
related to both SARS-CoV-2 infection (Figure 1) and the presence of antiplatelet antibodies
(Figure 3).

Table 1. Summary of COVID-19 Patient Laboratory Data.

Laboratory Values
(Reference Range)

24
November

2020

25
November

2020

26
November

2020

27
November

2020

28
November

2020

29
November

2020

30
November

2020

White Blood Cells count
(3.7–10.3), ×109/L 13.52 14.6 14.3 13.7 12.5 13.9 13.58

Neutrophils (40–75), % 87.6 88.0 87.2 86.8 81.0 82.1 77.2

Lymphocytes (19–48), % 6.6 6.0 6.5 9.2 10.2 10.6 11

Eosinophils (0–7), % 0 1 2 2 1 2 0.3

Red Blood Cells count
(4.2–6.0), ×106/L 5.32 5.42 5.12 4.92 4.91 5.2 5.31

Haemoglobin (13.7–17.5),
g/dL 15.4 14.9 14.6 13.2 13.6 14.2 15.1

Platelet count (155–369),
×109/L 311 70 90 180 220 310 346

Prothrombin time
(9.6–12.5), second 13.4 18.2 16.2 13.2 10.2 10.2 10.4

International normalized
ratio (INR) (0.9–1.2) 0.99 1.1 1.2 1.0 0.9 1.0 1.1

Activated partial
thromboplastin time

(19–30), s
29.3 33.2 34.6 35.1 29.1 28.5 27.6

Fibrinogen (150–450),
mg/dL 570 220 300 420 510 480 366

Lactate dehydrogenase
(140–280), U/L 1149 1520 1480 921 843 601 570

Creatinine (0.8–1.30),
mg/dL 0.8 1.0 1.1 1.0 0.9 0.9 0.9

Erytrocite Sedimentation
Rate (0–15), mm 62 121 144 80 73 52 31

High Sensitivity C
Reactive Proteine (0–45),

mg/L
104.9 158.8 161.2 82.1 40.1 18.2 2.23

IL-6 (0–6.4) pg/mL 36.74 84.2 96.8 72.3 42.1 16.3 5.56

D-dimer (250–500),
ng/mL 1044 13,298 18,481 4280 3187 2128 347

Disseminated
Intravascular Coagulation

Score
0 6 6 4 1 0 0
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Figure 3. Pathophysiological mechanism of heparin-induced thrombocytopenia (HIT). Platelet
factor 4 (PF4) is a chemokine secreted from the alpha-granules of platelets, released as tetramers.
They bind to heparin and other proteoglycans and inactivate them. The binding of heparin to PF4
exposes new antigen sites and hence the formation of new (IgG) antibodies. Platelet Fc receptors
bind the antibody-heparin-PF4, which contribute to thrombosis. Thrombocytopenia occurs by two
mechanisms: removal of platelets with bound IgG by splenic macrophages and platelet consumption
caused by thrombus formation. PF4 can also bind heparin sulfate on vascular endothelial cells;
subsequent binding of the pathologic antibody to this PF4-heparin sulfate complex can injure the
endothelium, which further promotes thrombosis. This figure was created using the website https:
//app.biorender.com (accessed on 12 July 2021).

The choice to treat the patient with rivaroxaban derives primarily from the absolute
contraindication to the use of heparins; AVKs have a slow onset of anticoagulant effects and
require continuous monitoring of INR; for dabigatran, apixaban, and edoxaban, evidence
of efficacy in ill patients is lacking; for rivaroxaban there is evidence of a reduction in
fatal and major thromboembolic events in medically ill patients [43]. A timely diagnosis
is therefore the best way to reassure patients. Blood levels of fibrinogen, d-dimer, and
platelet counts can be useful as more than reliable biological markers of an ongoing DIC or
a probable onset of it.

6. Long-COVID-19

Patients discharged from hospital after acute COVID-19 had an increased risk of
multiorgan dysfunction, readmission, and mortality [44]. Recent joint guidelines proposed
by the National Institute for Health and Care Excellence (NICE), the Scottish Intercollegiate
Guidelines Network (SIGN), and the Royal College of General Practitioners (RCGP) have
divided COVID-19 infection into 3 phases—‘Acute COVID-19’ (signs and symptoms of
COVID-19 infection up to 4 weeks), ‘ongoing symptomatic COVID-19’ (from 4 weeks up to
12 weeks), and ‘post-COVID-19 syndrome’ (when signs and symptoms continue beyond
12 weeks). The term ‘Long-COVID-19’ is given to the signs and symptoms that continue or
develop after the ‘acute COVID-19’ phase and include both ‘ongoing symptomatic COVID-
19’ and ‘post COVID-19 syndrome’ [45]. In addition to the persistence of symptoms, it is
also possible to detect abnormalities of chest radiographs and biomarkers [46]. Interestingly,
in Long-COVID-19 patients, it is possible to detect a prolonged elevation of D-dimer,
regardless of the inflammatory indices and the severity of the acute phase. In these patients
with persistent elevation of the D-dimer, there is an increase in serious thromboembolic
complications [47].

https://app.biorender.com
https://app.biorender.com
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7. Materials and Methods and Preliminary Results

To characterize the clinical picture, laboratory findings and prognosis of patients with
long-COVID-19 were reported preliminary data of patients belonging to our Institute. We
consecutively enrolled 50 patients admitted to our Institute from 1 May 2021 to 30 June 2021
for symptoms characterized by dyspnea, fatigue, cough, headache, loss of appetite, myalgia.
Of the patients enrolled, thirty recovered from COVID-19. Table 2 summarizes the clinical
characteristics of the study population.

Table 2. Clinical characteristics and baseline values of the study population.

Demographic, Medical History and Vital Signs Long-COVID-19 No COVID-19

Number of patients, n 30 20

Sex, M/F, n 17/13 8/12

Age, years a 58.6 ± 17.6 56.3 ± 14.7

Weight, kg a 77.1 ± 14.5 73.8 ± 12

Height, cm a 164.6 ± 11.4 169.1 ± 8.7

Body mass index, kg/m2 a 28.4 ± 4.2 25.7 ± 2.4

Pre-existing conditions in the last year, n (%)

Cancer 2 (6.7%) 1 (5.0%)

Chronic heart disease 13 (43.3%) 6 (30.0%)

Chronic kidney disease 5 (16.6%) 2 (10.0%)

Chronic liver disease 3 (10.0%) 1 (5.0%)

Chronic lung disease 7 (23.3%) 7 (35.0%)

Chronic neurological disease 9 (30.0%) 5 (25.0%)

Diabetes 7 (23.7%) 3 (15.0%)

Hypertension 19 (63.3%) 11 (55.0%)

Mental health conditions 2 (6.66%) 1 (5.0%)

Obesity (Body Mass Index > 30) 11 (36.6%) 3 (15.0%)

Heart rate, bpm a 73 ± 15 70 ± 13

Systolic arterial pressure, mmHg a 121 ± 15 121 ± 17

Diastolic arterial pressure, mmHg a 78 ± 12 76 ± 10

Therapies, n (%)

ACE-I/ARB/ARNIs 19 (63%) 12 (60%)

Beta-blocker 11 (37%) 8 (40%)

ASA 13 (43%) 9 (45%)

Diuretics 11 (37%) 6 (30%)

Anticoagulants 12 (40%) 6 (30%)

Echocardiography Measurements

LV end diastolic dimension, cm a 4.8 ± 1 4.5 ± 0.6

LV end diastolic volume, mL a 114.6 ± 52.5 94.1 ± 27.9

LV end systolic dimension, cm a 3.2 ± 1.04 2.6 ± 0.5 *

LV end systolic volume, mL a 48.7 ± 38.5 28 ± 10.5 †

LV ejection fraction, % a 61.9 ± 13.7 70.4 ± 5.7 •
Left atrial anteroposterior dimension, cm a 3.7 ± 1.3 3.5 ± 0.5
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Table 2. Cont.

Demographic, Medical History and Vital Signs Long-COVID-19 No COVID-19

E/A ratio a 1.02 ± 0.4 1.1 ± 0.3

SPAP, mmHg a 13.8 ± 10.5 14.6 ± 8.6
M = Male; F = Female; bpm = beats per minute; ACEi = angiotensin-converting enzyme inhibitor;
ARB = angiotensin receptor blocker; ARNIs = Angiotensin Receptor Neprilysin Inhibitors; ASA= Acetylsal-
icylic Acid; LV = Left Ventricular; SPAP = Systolic Pulmonary Artery Pressure. a Mean ± standard deviation.
* refers to p = 0.023; † refers to p = 0.024; • refers to p = 0.012.

Length of acute COVID-19 was 23.1 ± 8 (range 11–49) days. During the acute phase of
COVID-19, according to Severity of COVID-19 WHO Clinical Classification [48], 21 patients
were classified as Mild/Moderate and 9 as Severe/Critical. On the Post-COVID-19 Func-
tional Status Scale [49] 7 (23.3%) patients reported No/Negligible functional limitations
for, 6 (20%) Slight Functional Limitations and 17 (56.7%) Moderate/Severe Functional
Limitations. No differences were found in demographics, medical history and vital signs in
patients with Long-COVID-19 compared to no COVID-19 patients. Echocardiographic find-
ings showed that left ventricular ejection fraction was lower in Long-COVID-19 patients.
Table 3 summarizes laboratory data of Long-COVID-19 patients and no COVID-19 pa-
tients; inflammatory parameters and coagulation pathway were higher in Long-COVID-19
patients.

Table 3. Laboratory data of the study population.

Laboratory Values (Reference Range) Long-COVID-19 No COVID-19

White Blood Cells count (3.7–10.3), ×109/L a 6.84 ± 2.6 7.14 ± 2.3

Red Blood Cells count (4.0–10.0), ×106/L a 4.53 ± 0.6 4.8 ± 0.58

Haemoglobin (13.7–17.5), g/dL a 14.9 ± 6.4 14.2 ± 1.8

Platelet count (155–369), ×109/L a 221 ± 92 244 ± 50

Prothrombin time (9.6–12.5), s a 14.2 ± 2.5 13.5 ± 1.2

International normalized ratio (0.9–1.2) a 1.07 ± 0.2 1.00 ± 0.09

Activated Partial Thromboplastin Time (19–30), s a 30.6 ± 5.1 28.8 ± 2.6

Fibrinogen (150–450), mg/dL a 364.8 ± 154.4 326.9 ± 86.1

Lactate dehydrogenase (140–280), U/L a 448.1 ± 133 342.45 ± 90.5 *

Creatinine (0.8–1.30), mg/dL a 0.92 ± 0.25 0.86 ± 0.23

Aspartate Aminotrasferase (0–31), U/L a 25.04 ± 12.2 21.6 ± 12.2

Alanine Aminotrasferase (0–34), U/L a 25.2 ± 14.5 20.9 ± 14.6

High Sensitivity C Reactive Protein (0–45), mg/L a 16.3 ± 50.1 3.95 ± 8.8

Sodium (135–155), mEq/L a 139 ± 2.7 139 ± 2.02

Potassium (3.5–5.5), mEq/L a 4.1 ± 0.27 4.3 ± 0.4

D-dimer (250–500), ng/mL a 1044.4 ± 1022 273.7 ± 106 †

Erythrocyte Sedimentation Rate (0–15), mm a 25.7 ± 33.2 15.5 ± 17.2

Albuminuria (0–2.5), mg/dL a 120.7 ± 134.7 64.6 ± 17.7

Interleukin-6 (0–6.4), pg/mL a 13.2 ± 3 3 ± 2.7 •
High-sensitivity Cardiac Troponin (<19), ng/mL a 9 ± 26.3 1.6 ± 0.3

NT-ProBNP (<450), pg/mL a 587.4 ± 273 273.5 ± 147.9 ♦

SARS-CoV-2 Anti-Spike IgM (<1), EU/mL a 12.2 ± 35.5 1.04 ± 2.4
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Table 3. Cont.

Laboratory Values (Reference Range) Long-COVID-19 No COVID-19

SARS-CoV-2 Anti-Spike IgG (<10), EU/mL a 91.5 ± 130.1 35.9 ± 61.5

Serum Ferritin (20–300), ng/mL a 144.6 ± 158.6 113 ± 85.7
a Mean ± standard deviation; * refers to p = 0.004; † refers to p = 0.002; • refers to p = 0.024; ♦ refers to p < 0.0001.

8. Clinical Case

71-year-old man, diabetic, hypertensive, hypercholesterolemic, chronic ischemic heart
disease, previous acute coronary syndrome (ACS) with ST elevation, treated with per-
cutaneous transluminal coronary angioplasty-drug eluting system (PTCA-DES) on the
right coronary artery, recurrence of ACS-STEMI August 2019 treated with PTCA-DES of
anterior interventricular coronary artery. On March 28, onset of fever (39.8 ◦C), cough,
dyspnea, asthenia; nasopharyngeal swab positive for the presence of SARS-CoV-2 virus
RNA. On April 8, worsening of dyspnea and SO2 76%; hospitalization in the COVID-19
area. Non-invasive ventilation in CPAP for 10 days and subsequent high-flow O2-therapy.
Discharged April 28, after nasopharyngeal swab was negative for the presence of SARS-
CoV-2 virus RNA. On May 26, due to the persistence of asthenia, easy fatigue, dyspnea,
cough, polymyalgia and mental confusion, the patient was hospitalized (Functional Status
Scale 3). Laboratory parameters showed persistent inflammatory and procoagulative state
(Erythrocyte Sedimentation Rate 46 mm; High Sensitivity C Reactive Protein 62.86 mg/L;
Interleukin-6 53.45 pg/mL; D-dimer 1199.7 ng/mL; NT-ProBNP 1438.9 pg/mL). Bilateral
peripheral areas of consolidation with surrounding ground-glass opacities were observed
at CT scan (Figure 4).
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Figure 4. A 71-year-old male with sequel of COVID-19 pneumonia. Chest computed tomography
(CT), axial image (A) showing bilateral peripheral areas of consolidation with surrounding ground-
glass opacities (GGOs). Coronal image (B) showing bilateral peripheral area of interstitial thickening.

The transthoracic echocardiographic study showed left ventricular dilatation, anterior
hypokinesia and proximal interventricular septum and a reduction in left ventricular ejec-
tion fraction (Left Ventricular (LV) end diastolic dimension, 6.0 cm; LV end diastolic volume,
181 mL; LV end systolic dimension, 5.0 cm; LV end systolic volume, 119 mL; LV ejection frac-
tion, 34%; Left atrial anteroposterior dimension, 4.5 cm; E/A ratio 0.72; PAPs, 19 mmHg).
Therapy with ceftriaxone and enoxaparin was initiated and antihypertensive, hypoglycemic
and cardioactive drugs were continued. After six days of therapy, the patient’s clinical con-
dition and laboratory parameters improved (Erythrocyte Sedimentation Rate 28 mm; High
Sensitivity C Reactive Protein 2.27 mg/L; Interleukin-6 2.45 pg/mL; D-dimer 824.65 ng/mL;
NT-ProBNP 436.8 pg/mL). The patient was discharged with the following therapy: Panto-
prazole 40 mg/die, Bisoprolol 2.5 mg/die, Rivaroxaban 2.5 mg/bid, acetylsalicylic acid
100 mg/die, Sacubitril/Valsartan 24 mg–26 mg/bid, Repaglinide 0.5 mg/die, Atorvastatin
40 mg/die. The Long-COVID syndrome is characterized, in addition to the persistence of
symptoms typical of the acute phase, also by alterations in inflammatory and coagulation
parameters [50]. Our patient showed concomitant procoagulative and inflammatory states
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following SARS-CoV-2 infection. The finding of a reduced LVEF and elevated levels of
NT-ProBNP, as well as the persistence of symptoms, led to the therapeutic option of therapy
with Sacubitril/Valsartan to counteract the progression of heart failure [51]. In our opin-
ion, Sacubitril/Valsartan is also able to counteract the inflammatory storm in COVID-19
patients [52]. Our patient had a high cardiovascular residual risk, being hypertensive,
diabetic, dyslipidemic, and having ischemic heart disease; furthermore, the condition of
Long-COVID imposes an additional risk of major cardiovascular events [44] (Figure 5).
Therefore, rivaroxaban therapy at vascular doses is mandatory [53].
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9. Conclusions and Perspectives

Cardiovascular diseases affected most of the patients with COVID-19 admitted to
hospitals, thus resulting in higher risk for in-hospital mortality [54]. DIC may also com-
plicate the clinical course of COVID-19. Routine monitoring of hemostasis tests may be
useful for guiding therapeutic approaches and preventing disease progression. Critically
ill COVID-19 patients may show hypoxia or hemodynamic instability, which could be
related to thromboembolic disease. The optimal thromboprophylactic regimen for patients
hospitalized for COVID-19 is unknown [55,56]. Furthermore, the drug–drug interactions
between some antiviral treatments and direct oral anticoagulants may favor the use of
LMWH or unfractionated heparin in this population. Preclinical studies showed that ri-
varoxaban was able to contain the inflammatory response during virosis [35]. The advice is
not to abruptly withdraw DOACs in high-risk patients as this pharmacological action may
result in worsening clinical status and promoting adverse outcomes. We do believe that
DOACs should be continued in patients with COVID-19 until further data are available.
In Long-COVID patients, persistent inflammation and a prothrombotic state secondary to
persistent endothelial damage requires careful monitoring and appropriate intervention.
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