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A B S T R A C T   

Voxelwise disconnection mapping is a novel approach to disclose lesion-symptom relationships for symptoms 
caused by white matter disconnection. It uses MRI-based fiber tracking in healthy subjects seeded from patient’s 
focal brain lesions. Resulting individual disconnection maps can then be statistically associated with symptoms. 
Despite increasing use in the recent years, the validity of this approach remains to be investigated. In this study, 
we validated both, our own implementation and the implementation provided within BCBtoolkit. For technical 
validation, we used simulated symptoms based on overlap of 70 real stroke lesions with tracts from a white 
matter atlas. For clinical validation, paresis scores and lesions from 316 patients with stroke were used. We found 
that voxelwise disconnection mapping is technically valid and outperforms the standard voxel-based lesion- 
symptom mapping approach for symptoms caused by white matter disconnection. Supporting its clinical validity 
and utility, we were able to reproduce the known association between corticospinal tract damage and contra
lateral hemiparesis. In addition, we demonstrate that the validity can be substantially diminished by relatively 
minor methodological changes. Based on these results, we derive methodological recommendations for the 
future use of voxelwise disconnection mapping. Our study highlights the importance of validating novel meth
odological approaches in the rapidly evolving field of neuroimaging.   

1. Introduction 

Focal damage to different eloquent cortical brain areas, e.g., 
following stroke, can cause specific neurological or neuropsychological 
symptoms (Broca, 1861; Damasio and Damasio, 1989). Given the brain 
is organized in networks of interconnected brain regions (Mesulam, 
1990), other mechanisms beyond direct lesion effects may additionally 
account for specific symptoms. First, symptoms may be attributed to 
undamaged regions functionally or structurally connected to the lesion 
site. This phenomenon is referred to as diaschisis, in which dysfunction 
is indirectly caused by missing neural input from another brain area 
(Carrera and Tononi, 2014; von Monakow, 1914). Second, symptoms 
may follow disconnection caused by damage to white-matter fiber 
pathways between brain areas that perform a function in a common 
cortical/subcortical network (Geschwind, 1965). 

The first mechanism, i.e. eloquent damage, implies a direct rela
tionship between lesion site and symptom. To understand structur
e–function relationships in the brain, attribution of symptoms to lesion 

locations thus has long been an important tool (Broca, 1861; Damasio 
and Damasio, 1989), which continues to be used as voxel-based lesion- 
symptom mapping (VLSM, Bates et al., 2003; Karnath et al., 2018). 
However, for symptoms caused by diaschisis or disconnection, there is 
no such close relationship between lesion site and symptom (Boes et al., 
2015; Chung et al., 2004). The utility of VLSM for such symptoms 
therefore is limited. 

For diaschisis, this limitation has recently been addressed by the 
approach of lesion-network mapping (Boes et al., 2015; Fox, 2018). 
Normative functional connectome data is used to calculate networks of 
regions functionally connected to the lesion. These lesion networks can 
then be statistically related to a symptom of interest (Wawrzyniak et al., 
2018). 

For disconnection, the exact localization of lesions along the affected 
white-matter fiber pathways is irrelevant for the elicitation of symp
toms. The corticospinal tract (CST) is an illustrative example: lesions at 
any location along this tract (e.g., periventricular white matter, internal 
capsule, midbrain, pons, medulla oblongata, spinal cord) can cause 

Abbreviations: CST, corticospinal tract; DWI, diffusion weighted imaging; FSL, FMRIB Software Library; NIHSS, National Institutes of Health Stroke Scale; VLSM, 
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central hemiparesis (e.g. Feng et al., 2015). VLSM analyses may remain 
silent in datasets containing a variety of different lesion locations along 
this tract with little or no overlap at all. This limitation can be addressed 
using normative structural connectome data. Fiber tracking seeded from 
individual lesions could implicate a specific tract in all lesions at any site 
along this tract allowing to identify the common neural substrate of a 
symptom caused by disconnection. Importantly, this method relies on 
normative connectome data obtained from publicly available datasets 
and no specialized imaging other than the image needed for patients’ 
lesion delineation is necessary. 

The first methodological proposal for voxelwise disconnection 
mapping has been made by Foulon and colleagues (Foulon et al., 2018). 
This approach is available within the BCBtoolkit (https://www.toolkit. 
bcblab.com) and has been increasingly used in the recent years (e.g. 
Alves et al., 2021; Pacella et al., 2019; Salvalaggio et al., 2020; Wiesen 
et al., 2020). It relies on deterministic fiber tracking seeding from in
dividual lesions (Thiebaut de Schotten et al., 2011). These tractograms 
are used to generate visitation maps (fibers per voxel) which are then 
binarized based on a threshold of > 0 fibers on an individual basis. These 
individual binary maps are summed up across the entire normative 
cohort resulting in an overlap ranging from 0 % to 100 %. In some 
studies, this map is again thresholded at ≥ 50 % (e.g. Alves et al., 2021; 
Foulon et al., 2018; Wiesen et al., 2020). The result is one dis
connectome map per patient. Second level statistics in terms of an as
sociation with a symptom of interest are performed either using an 
algorithm called AnaCOM (Foulon et al., 2018), within the framework of 
the general linear model using permutation tests and threshold-free 
cluster enhancement (Alves et al., 2021; Monai et al., 2020; Pacella 
et al., 2019) or using multivariate methods (Salvalaggio et al., 2020; 
Weaver et al., 2021; Wiesen et al., 2020). An alternative to the voxelwise 
approach is to examine disconnection on the level of macroscopic tracts 
from white matter atlases (Foulon et al., 2018). We here focus on the 
voxelwise approach because of its higher spatial resolution and its in
dependence from choice of white-matter atlas. 

Since its first release, voxelwise disconnection mapping has been 
used increasingly for a variety of different symptoms, e.g. semantic 
fluency deficits (Foulon et al., 2018), anosognosia for hemiplegia 
(Monai et al., 2020; Pacella et al., 2019), post-stroke depression (Weaver 
et al., 2021) or prediction of multimodal deficits after stroke (Salva
laggio et al., 2020). Although the method has produced plausible results, 
both, technical and clinical validation are an important premise for 
future use. Potential interference could result from heteroscedasticity in 
modelling errors when using general linear models due to the thresh
olding of the disconnectome maps (i.e. keeping values ≥ 50 % and 
discarding values < 50 %) performed in some studies and enabled by 
default in BCBtoolkit (Foulon et al., 2018). This might lead to inflated 
FWE-rates in the permutation tests often used in the second level ana
lyses (Huang et al., 2006). In addition, the algorithm of AnaCOM (in
tegrated in BCBtoolkit) might offer poor specificity (Rorden et al., 
2009). The only validation of this method to date is based on 38 patients 
with brain lesions of various etiologies with regard to semantic fluency 
deficits. Results obtained with AnaCOM are compared to automatic 
fMRI meta-analyses for the terms ‘fluency’ and ‘category’ (Foulon et al., 
2018). No further attempts have been made to technically or clinically 
validate voxelwise disconnection mapping and its results. Therefore, 
although increasingly used over the recent years, the validity and clin
ical utility of structural disconnection mapping (and their methodolog
ical conditions) need further exploration. 

In the current study we first aimed to establish a voxelwise discon
nection mapping approach based on probabilistic tractography 
addressing some of the mentioned methodological constraints. Second, 
we aimed to technically and clinically validate our own approach and 
the implementation in BCBtoolkit. We used (i) simulated data of atlas- 
based tract damage and (ii) real data regarding hemiparesis following 
stroke. Finally, we discuss the potential scientific and clinical utility of 
the approach in relation to methodological details and make 

recommendations for best practice. 

2. Material and methods 

We performed two main analyses to which we refer to throughout 
the manuscript as ‘analysis 1’ (technical validation) and ‘analysis 2’ 
(clinical validation). 

For analysis 1 (technical validation, Fig. 1A), we performed a 
modified voxelwise disconnection mapping (described in detail below) 
and the established approach available with BCBtoolkit (Foulon et al., 
2018). In both approaches, we used 70 real stroke lesions taken from a 
prior lesion study (Wawrzyniak et al., 2018; Zeller et al., 2011) and 
simulated behavioral data. In analogy to VLSM validation studies (Mah 
et al., 2014; Sperber and Karnath, 2017), a tract-specific symptom was 
assumed to be present in patients whose lesion overlapped with a spe
cific tract in the JHU white-matter tractography atlas (Wakana et al., 
2007). We then tested for differences in the disconnection maps between 
patients with and without a simulated symptom expecting to find the 
same white-matter tracts used to simulate the symptom. This intended 
circularity allows us to technically validate the different approaches. 

Analysis 2 (Fig. 1B) aimed to clinically validate the approach based 
on 316 stroke patients from another prior lesion study (Klingbeil et al., 
unpublished) for whom paresis scores one week after stroke were 
available. It is established neuroanatomical knowledge that hemiparesis 
after stroke is caused by damage to the CST (e.g. Feng et al., 2015). The 
approach of voxelwise disconnection mapping would therefore prove 
clinically relevant if the CST could indeed be reproduced when testing 
for differences in the disconnection maps between patients with and 
without hemiparesis. 

2.1. Patients and data 

All experimental procedures were approved by the local ethics 
committees according to the Declaration of Helsinki. Written informed 
consent was given by each participant or her/his legal guardian. 

2.1.1. Technical validation cohort 
We used lesion masks from a prior study with 70 consecutive patients 

(aged 21–86, mean age 59.5) with a first-ever, acute (1–7 days after 
onset) focal ischemic unilateral left (n = 37) or right (n = 33) sided brain 
lesion. Individual lesion masks were delineated based on diffusion- 
weighted imaging (DWI) (0–14, mean 4.3 days after stroke onset). 
Spatial normalization to the MNI template was performed with the 
FMRIB Software Library (FSL, Jenkinson et al., 2012). See Fig. 2A for 
lesion overlay. 

2.1.2. Clinical validation cohort 
Lesion masks and paresis subscores from the NIHSS (National In

stitutes of Health Stroke Scale) for 316 patients (aged 18–89, mean age 
66.8, 59.8 % male) were taken from another prior study on post-stroke 
depression (Klingbeil et al., unpublished). Lesions were delineated on 
clinical imaging in terms of MRI (~75 %) or CT (~25 %) scans obtained 
between days 0 and 44 (mean 2.7). Stroke symptoms were scored about 
one week after stroke onset (day 1–27, mean 6.1). Normalization to MNI 
space was performed using the Clinical Toolbox (Rorden et al., 2012) for 
SPM12 (Wellcome Trust Centre for Neuroimaging, London, United 
Kingdom). See Fig. 2C for lesion overlay. 

2.1.3. Normative structural connectome data 
We used diffusion weighted MRI scans (2x2x2 mm, 128 directions, b- 

value 1500 s/mm2 and additional nine b0-weighted images) and T1- 
weighted MPRAGE images (1x1x1 mm, TR/TE: 1900/2.52 ms, flip 
angle: 9◦) of 187 healthy subjects aged 18 to 84 years from the Enhanced 
NKI sample (Nooner et al., 2012). 
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2.2. Data analysis 

2.2.1. Fiber tracking 
Fiber tracking including preprocessing was performed with FSL v6.0. 

Default parameters were used if not otherwise stated. All diffusion data 
was corrected for eddy current-induced distortions and subject move
ments (Andersson and Sotiropoulos, 2016) and non-brain tissue was 
deleted (Smith, 2002). We then performed bayesian estimation of 
diffusion parameters obtained using sampling techniques (Behrens 
et al., 2007; Jbabdi et al., 2012). A series of linear (DWI to T1-weighted 
image, T1 to MNI template) and non-linear (T1 to MNI) spatial regis
trations (Jenkinson and Smith, 2001) and their inversion was performed 
to transform regions of interest into the native DWI space and tractog
raphy results into MNI space. 

Native space probabilistic tractography as implemented in 
‘probtrackx2′ was seeded from individual lesion masks. Path distribu
tions were corrected for the length of the pathways, divided by the total 
number of generated fibers (to account for differently sized seed masks) 
and then stored in MNI space for further processing. 

Because the probabilistic tractography is computationally very 
expensive, we decided to work with a subset of DWI datasets instead of 
performing full tractography in all 187 healthy subjects for every lesion. 
To this end, we performed tractography in all 187 patients for four 
random lesions from the technical validation cohort. We calculated 
correlation coefficients between mean connectivity of differently sized 
random subsets and mean connectivity of all remaining subjects 1,000 
times. This enabled us to plot shared variance (R2, mean and 95 % 
confidence interval) against the number of used DWI datasets (SI 
Fig. 1A). We found that random sets of n = 25 fiber tractograms were 
sufficient to explain over 90 % of variance. In a second step, we per
formed the same analysis with regard to age effects (with a fixed size of 
n = 25) and found high values (i.e. > 90 %) for shared variance in a wide 
range of age with a slight drop for subjects aged ≥ 65 (SI Fig. 1B). To 
roughly match stroke patients, we selected 25 healthy subjects (10 fe
males and 15 males) aged 49–64 (mean 58.4) for all further analyses. 

2.2.2. Disconnection maps 
The raw path distribution maps were highly skewed towards small 

Fig. 1. Methodological overview. Illustration of (A) technical and (B) clinical validation. See text for detailed explanation.  
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values (SI Fig. 2A) and therefore not amenable for permutation testing 
(Huang et al., 2006). We used two methods in separate analyses to 
address this issue: (i) We calculated the mean across all 25 healthy 
subjects and then binarized the resulting disconnection map (Fig. 3A). 
The optimal cutoff value was determined in the technical validation 
cohort based on visual inspection and Dice coefficents of the results 
obtained with five different cutoff values. (ii) We applied a power 
transformation to stabilize variance (Box and Cox, 1964) prior to 
calculating the mean and refrained from additional binarizing (Fig. 3B). 
The suitable exponent λ for this transformation was estimated based on 
path distributions in the technical validation cohort. We iteratively 
searched for the exponent, which minimized the sum of squared errors 
between the transformed data (masked by a white-matter skeleton) and 
a normal distribution with the same mean and standard deviation. We 

found that variance was best stabilized with an exponent of λ = 0.11 and 
subsequently transformed all path distribution maps (SI Fig. 2B). Of 
note, we refrained from binarizing individual tractograms in both ap
proaches to avoid omitting potentially relevant variance in the data. 

Additionally, we calculated disconnectome maps using BCBtoolkit 
based on DWI data from 10 healthy participants provided with the 
toolkit (Foulon et al., 2018). These maps were binarized (in contrast to 
thresholding, which is the default setting in BCBtoolkit) at an overlap of 
≥ 50 % (Fig. 3C), which is in analogy with prior studies (Foulon et al., 
2018; Monai et al., 2020; Weaver et al., 2021; Wiesen et al., 2020). 

2.2.3. Second level analyses 
To examine the relationship between symptoms and disconnection 

maps, we tested for differences between disconnection maps from 

Fig. 2. Lesion characteristics. Lesion overlap of (A) the technical validation cohort and (C) the clinical validation cohort are shown in warm colors. Regions with 
sufficient overlap for VLSM (n ≥ 5) in (B) the technical validation cohort and (D) the clinical validation cohort are displayed in red. Coordinates refer to MNI space. 
Left hemisphere is displayed left. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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patients with and without the (simulated or real) symptom of interest. 
The analyses were performed within the framework of general linear 
models. Lesion size was included in the model as a covariate of no in
terest. Significance was assessed by 4,000 random permutations of the 
design matrix using the Freedman-Lane procedure (Freedman and Lane, 
1983) to obtain the critical threshold corresponding to p(FWE) < 0.05 
on the voxel-level (Nichols and Holmes, 2002). In the case of binarized 
disconnection maps, analyses were restricted to voxels with an overlap 
of at least n = 5. For reference, we also performed VLSM analyses with 
the same parameters. 

2.3. Analysis 1 – Technical validation 

Disconnection maps for all 70 patients of the technical validation 
cohort were tested for differences related to simulated symptoms. We 
used the JHU white-matter tractography atlas (Wakana et al., 2007) to 
simulate tract-specific symptoms for all 20 available tracts. A symptom 
was assumed to be present when there was an overlap between the 
patient’s lesion and the tract (defined as an overlap ≥ 4x4x4 voxels or 
0.64 ml with a tract probability of > 25 %). By using absolute damage 
instead of proportion damaged, we account for the highly anisotropic 
properties of the examined fiber tracts. Finally, we tested for group 
differences between disconnection maps of patients with vs. without the 
symptom for every tract with at least four patients with a simulated 
symptom. These analyses had an intended circularity (Fig. 1A) and were 
expected to reveal the same tracts from the JHU atlas as used to simulate 
the symptoms. 

The analyses were performed with disconnection maps binarized 
with cutoffs of 0.025, 0.05, 0.10, 0.15 and 0.20 as well as with power- 
transformed (λ = 0.11) disconnection maps and disconnectome maps 
obtained with BCBtoolkit. 

To assess similarity between the disconnection mapping and VLSM 

results (thresholded at p(FWE) < 0.05) and the tracts used to simulate 
the symptoms (thresholded at ≥ 25 %), we calculated Dice coefficents 
between these maps (Dice, 1945). 

2.4. Analysis 2 – Clinical validation 

This analysis aimed to evaluate the clinical utility of disconnection 
mapping. We relied on the symptom hemiparesis after stroke which is 
known to be associated with contralateral CST damage (e.g. Feng et al., 
2015). We used lesion masks and paresis scores from the NIHSS of 316 
stroke patients from the clinical validation cohort. Patients were 
assigned to the group of left/right hemiparesis if at least one of the 
following NIHSS items was scored > 0: motor arm, motor leg or facial 
palsy on the respective side. We tested for differences in the discon
nection maps between patients with a left sided hemiparesis and all 
remaining patients (with no or right sided hemiparesis) and right sided 
hemiparesis and all remaining patients separately. 

The analysis was performed with disconnection maps binarized with 
a cutoff of 0.15 as this value provided the best results in the technical 
validation cohort (see below) and with disconnectome maps obtained 
with BCBtoolkit. 

To assess similarity between the disconnection mapping and VLSM 
results (thresholded at p(FWE) < 0.05) and the CST contralateral to the 
paresis, we again calculated Dice coefficents between these maps. 

2.5. Data availability 

Lesions in MNI space of the technical and clinical validation cohort 
as well as group assignment (left/right/no hemiparesis) of the clinical 
validation cohort are publicly available here: https://doi.org 
/10.6084/m9.figshare.19536202. All used software packages are 
referenced in the methods section. Permutation tests were performed 

Fig. 3. Illustration of the different disconnection mapping approaches. Different approaches were used to generate disconnection maps from individual lesions. 
(A) “binary” approach: probabilistic tractography (n = 25), averaging and binarization using different cutoffs in the technical validation cohort and a cutoff of > 0.15 
in the clinical validation cohort. (B) “continuous” approach: probabilistic tractography (n = 25), power transformation (λ = 0.11) and averaging. (C) “BCB” 
approach: deterministic fiber tracking (n = 10) as implemented in BCBtoolkit, binarization of the individual tractograms, summation and again binarization on the 
group level (typically at ≥ 50 %, but also using different thresholds in a supplementary analysis). 
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based on adapted niiStat’s (https://www.nitrc.org/projects/niistat/) 
core functions. 

3. Results 

3.1. Analysis 1 – Technical validation 

Six tracts from the JHU white-matter tractography atlas did not have 
sufficient overlap with the lesions from the technical validation cohort 
and therefore had to be excluded. The remaining 14 tracts could be 
utilized to simulate tract specific symptoms based on lesion overlap with 
the tract. We performed eight analyses per tract: ordinary VLSM for 
reference, binarized disconnection mapping with five different cutoffs 
for binarization (Fig. 3A), disconnection mapping with power- 
transformed maps (λ = 0.11, Fig. 3B) and disconnectome mapping 
using BCBtoolkit binarized at ≥ 50 % overlap (Fig. 3C). 

To give an overview, we display Dice coefficients (analysis result vs. 
true tract) for all tracts and analysis variants in Fig. 4 (and SI Table 1). 
These coefficients can reach values between 0 % and 100 %. Low values 
indicate low similarity between the analysis result and the tract used to 
simulate the symptom, and vice versa for high values. This figure helps 
to recognize the general patterns found in the data but may not substi
tute viewing the actual statistical maps. We here demonstrate the overall 
patterns found in our results based on a representative example (bilat
eral CST). Statistical maps from all other tracts can be found in the 
Supplementary Material. 

First, we were interested in the optimal cutoff for binarization of 
disconnection maps obtained with our approach based on probabilistic 
tractography. Fig. 5 shows results from analyses comparing disconnec
tion maps from patients with and without left or right CST damage 
binarized with five different cutoffs. As expected, we observed a tradeoff 
between sensitivity and specificity. Low cutoff values were associated 
with unacceptable low specificity but high sensitivity. Specificity 
increased with higher cutoff values. However, at high cutoff values, 

sensitivity began to drop. Based on all 14 tracts (Fig. 5 and SI Figs. 3–14), 
we found best balance between sensitivity and specificity at a cutoff 
value of 0.15. This is also evident in the Dice coefficients, which are 
highest (mean of 21 %) for this cutoff value (see Fig. 4). We therefore 
decided to use this cutoff value for all subsequent analyses. 

Second, we aimed to evaluate the performance of our disconnection 
mapping approach and the disconnectome mapping approach imple
mented in BCBtoolkit (Fig. 6, SI Figures 15–26). VLSM analyses which 
have been conducted as a methodological baseline in most cases either 
produced no significant result or patterns which did not overlap with the 
tract used to simulate the symptom (Panel B of Fig. 6 and SI 
Figures 15–26). Corresponding Dice coefficients were low with an 
average of only 3 %. However, both disconnection mapping approaches 
were able to depict the expected tracts for many tract-specific simulated 
symptoms (Panels C–D of Fig. 6 and SI Figure 15–26). Our method based 
on binarized disconnection maps reached a mean Dice coefficient of 21 
% and BCBtoolkit even 31 %. This difference between our approach and 
BCBtoolkit was significant (p < 0.001, paired t-test). Although the 
approach to stabilize variance using power transformation correctly 
identified most tracts, it was associated with extremely poor overall 
specificity in most cases (Panel E of Fig. 6 and SI Figures 15–26) which is 
also mirrored in low Dice coefficients (average 7 %). We therefore 
refrained from further analyses using this approach. 

3.2. Analysis 2 – Clinical validation 

We applied voxelwise disconnection mapping to data from 316 
stroke patients with regard to the symptom of hemiparesis. For this we 
used both, our own approach with a binarization threshold of 0.15 and 
the implementation in BCBtoolkit, separately for the symptom of right 
(71/316 patients) and left (61/316 patients) sided hemiparesis. VLSM 
analyses were performed for reference. 

VLSM analyses were able to detect parts of the right CST, but with 
poor overall spatial accuracy. The left CST could not be reliably iden
tified using VLSM (Fig. 7B). However, both voxelwise disconnection 
mapping approaches were able to demonstrate that the contralateral 
CST is associated with hemiparesis after stroke for both hemispheres 
(Fig. 7C and D). Associated Dice coefficents also confirm the superiority 
of voxelwise disconnection mapping over VLSM for the symptom of 
hemiparesis (Table 1). In contrast to the technical validation, there was 
no substantial difference between our approach and BCBtoolkit in the 
Dice coefficients. 

4. Discussion 

Mapping symptoms to lesion locations has been a key method in 
cognitive neuroscience for over a century. It greatly advanced over time 
from case studies based on post-mortem dissections to in vivo MRI im
aging, voxel-based analysis and permutation testing. Recently, struc
tural connectome data has been utilized to leverage lesion-symptom 
mapping in situations where symptoms result from white-matter 
disconnection and where standard lesion-symptom mapping 

Fig. 4. Dice coefficients – technical validation. This boxplot displays simi
larity between the 14 atlas tracts used to simulate symptoms and the results 
from the different analyses using Dice coefficients. Higher values imply higher 
similarity. Central marks of the box represent the median value, the edges are 
the 25th and 75th percentiles, and the whiskers extend to the most extreme 
data points not > 150 % of the interquartile range beyond the boxes. Filled 
circles represent Dice coefficients for individual tracts. Abbreviations: VLSM: 
voxel-based lesion-symptom mapping (grey), bin 0.x: disconnection mapping 
based tractograms binarized at different thresholds (red), BCB: disconnectome 
mapping based on tractograms obtained with BCBtoolkit and binarized at 50 % 
overlap (blue), cont. λ 0.11: continuous disconnection maps which were power 
transformed with λ = 0.11 (green). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Dice coefficents – clinical validation. This table displays similarity between 
the CST and results from VLSM and disconnection mapping analyses regarding 
contralateral hemiparesis in 316 stroke patients. Higher values imply higher 
similarity. Abbreviations: VLSM: voxel-based lesion-symptom mapping, bin 
0.15: disconnection mapping based tractograms binarized at 0.15, BCB: dis
connectome mapping based on tractograms obtained with BCBtoolkit and 
binarized at 50 % overlap.  

Symptom/JHU atlas tract VLSM bin 0.15 BCB 

Right hemiparesis – left CST 1 % 28 % 27 % 
Left hemiparesis – right CST 6 % 8 % 10 % 
mean 3 % 18 % 19 %  
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Fig. 5. Effect of binarizing threshold. Panel A displays the left and right corticospinal tracts taken from the JHU white-matter tractography atlas (thresholded at 
25 % overlap) which was used to simulate tract-specifics symptoms based on overlap with 70 real stroke lesions. The remaining rows show results from disconnection 
mapping analyses that relate maps binarized at (B) 0.025, (C) 0.05, (D) 0.10, (E) 0.15 and (F) 0.20 to the simulated symptom. All analyses in (B)–(F) were performed 
separately for the left and right corticospinal tract and then combined in one figure for display purposes. Inference is based on random permutation tests using 
Freedman-Lane procedure with 4,000 random permutations of the symptom label and lesion volume serving as a covariate of no interest restricted to regions with an 
overlap of at least 5 disconnection maps. All maps are thresholded at p(FWE) < 0.05 on the voxel-level. Coordinates refer to MNI space. Left hemisphere is dis
played left. 
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approaches might be less powerful. To this end, voxelwise disconnection 
mapping has been increasingly used in the recent years. With this study 
we aimed to address potential methodological constraints with a 
modified implementation of the approach. We further technically and 
clinically validated both, our and the prior implementation within 
BCBtoolkit based on simulated and real data in comparison to standard 
VLSM. 

We found that standard VLSM analyses performed poorly in samples 

with underlying disconnection mechanisms. Most tracts in both analyses 
could not be identified with VLSM and the overall similarity between the 
desired tracts and the VLSM results was low. This failure is likely caused 
by the fact that widespread, non-overlapping lesions along a tract can 
cause the same symptom violating core assumptions of VLSM. Addi
tionally, insufficient lesion overlap in the relevant regions also con
tributes, as many tracts do not overlap at all with the regions eligible for 
VLSM (Fig. 2B). It might, however, be speculated that (much) larger 

Fig. 6. Technical validation of structural disconnection mapping. Panel A displays the left and right corticospinal tracts taken from the JHU white-matter 
tractography atlas (thresholded at 25 % overlap) which was used to simulate a tract-specific symptom based on overlap with individual 70 real stroke lesions. 
Panel B shows results from an ordinary VLSM analysis using the lesions and the simulated symptom. Panel C–E display results from different disconnection mapping 
analyses relating disconnection maps and the simulated symptom. Analyses were based on binarized disconnection maps generated using (C) our approach with a 
binarization threshold of 0.15, (D) BCBtoolkit binarized at ≥ 50 % tract overlap and (E) continuous disconnection maps with stabilized variance using power 
transformation (λ = 0.11). All analyses in (B)–(E) were performed separately for the left and right corticospinal tract and then combined in one figure for display 
purposes. Inference is based on random permutation tests using Freedman-Lane procedure with 4,000 random permutations of the symptom label and lesion volume 
serving as a covariate of no interest. Analyses in (B)–(D) are restricted to regions with an overlap of at least 5 lesions/disconnection maps. All maps are thresholded at 
p(FWE) < 0.05 on the voxel-level. Coordinates refer to MNI space. Left hemisphere is displayed left. 
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sample sizes could resolve this problem for VLSM. The disconnection 
mapping approach substantially extends the area of statistical inference. 
This might be an important reason for superiority of this approach 
compared to VLSM especially in moderately sized patient cohorts. For 
the same data and sample size, we were able to identify most of the 
analyzed tracts in patients with simulated symptoms with a clear su
periority of BCBtoolkit over our own approach. Moreover, we were also 
able to identify the CST to be associated with contralateral hemiparesis 
after stroke based on real data from 316 patients. Both, our approach as 
well as BCBtoolkit performed equally well in these clinical validation 
analyses. In sum, we demonstrated that voxelwise disconnection map
ping is a technically and clinically valid method to identify white-matter 
tracts whose damage is associated with certain symptoms and that it 
outperforms VLSM under these circumstances. 

Based on Dice coefficients, disconnectome mapping as implemented 
in BCBtoolkit performed better than our approach in simulated symp
toms but there was no clear difference between the two approaches for 
real hemiparesis data. However, since our approach based on probabi
listic tractography is computationally more costly on the scale of 

magnitudes and BCBtoolkit is readily available for download and 
already includes the required connectome data, we recommend the use 
of BCBtoolkit in future disconnection mapping studies. 

We found that the validity of disconnection mapping critically de
pends on methodological decisions which highlights the value of our 
study in retrospect and underlines the importance of validating novel 
methodological approaches. Based on our data obtained with different 
approaches and parameters, we would like to elaborate on several 
methodological details and make recommendations for best practice 
where appropriate. 

4.1. Normative cohort sample size 

We based our analysis on a normative cohort of 25 healthy subjects 
to perform fiber tracking. This number was sufficient to explain over 90 
% of variance in the tractograms in comparison with a cohort of 187 
subjects (SI Fig. 1A). Foulon and colleagues (2018) based their analysis 
on a sample of 10 healthy participants which was sufficient to explain 
over 70 % of variance (which is also in line with our data). As our 

Fig. 7. Clinical validation of disconnection mapping. Panel A displays the right and left corticospinal tract taken from the JHU white-matter tractography atlas 
(thresholded at 25 % overlap). Panel B shows VLSM analyses based on data of 316 patients with regard to the presence of a left or right sided hemiparesis. The same 
data has been used to perform disconnection mapping with our approach (Panel C) and with BCBtoolkit (Panel D). Left and right sided hemiparesis were analyzed 
separately and the results were combined in one figure for display purposes. All analyses in (B)–(D) are based on random permutation tests using Freedman-Lane 
procedure with 4,000 random permutations of the symptom label and lesion volume serving as a covariate of no interest restricted to regions with an overlap of 
at least 5 lesions/disconnection maps. All maps are thresholded at p(FWE) < 0.05 on the voxel-level. Coordinates refer to MNI space. Left hemisphere is dis
played left. 
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analyses of disconnectome maps obtained with BCBtoolkit based on 10 
healthy subjects produced valid results, we recommend a sample size of 
at least 10, ideally 25 healthy subjects to characterize the structural 
connectome. Since computational cost (especially relevant for proba
bilistic tractography) scales linearly with sample size, but an increase in 
explained variance per participant diminishes with increasing sample 
sizes, there might be only little benefit beyond sample sizes of 25 (SI 
Fig1A). 

4.2. Thresholding disconnectome maps 

In BCBtoolkit, maps are binarized on the individual level and sub
sequently summed up leading to an overlap of the disconnectome maps 
with values between 0 % and 100 %. Thresholding these disconnectome 
maps (i.e. keeping values ≥ 50 % and discarding values < 50 %) as 
performed in several prior studies (Alves et al., 2021; Foulon et al., 
2018; Wiesen et al., 2020) and enabled by default in BCBtoolkit leads to 
significantly reduced variance for disconnection probabilities < 50 %. 
This leads to heteroscedasticity in the modelling errors in general linear 
models and is associated with inflated FWE rates in permutation testing 
(Huang et al., 2006). We therefore recommend binarizing of dis
connectome maps prior to permutation testing instead of thresholding. It 
might be noted though, that also the binarized as well as the raw dis
connectome maps (due to their binominal nature) are associated with 
some amounts of heteroscedasticity in the modelling errors. This issue 
could be solved in future studies by defining groups of exchangeability 
and performing random sign flipping instead of permuting the whole 
design matrix (Winkler et al., 2014). 

4.3. Binarizing threshold 

We found, that binarizing thresholds substantially influence the 
validity of the results. Low thresholds were associated with poor speci
ficity and false positive results. This can be explained by poor spatial 
accuracy and overestimated tract size with lower thresholds. For our 
own approach based on probabilistic tractography with FSL, we found a 
threshold of 0.15 to be optimal. This threshold can, however, only be 
applied if tractography is performed with the same parameters 
(described in the methods section) as in the current analysis. Addition
ally, this threshold most likely also depends on the normative data itself 
and might be different for diffusion data obtained with different MR- 
scanners and/or with different scanning protocols. 

For BCBtoolkit, we found that the threshold of ≥ 50 % overlap, 
which was motivated from the prior literature, led to valid results in the 
analyses presented in the paper. Nevertheless, we performed supple
mentary analyses to explore how different binarizing thresholds change 
results based on disconnectome maps obtained with BCBtoolkit. We 
repeated the technical validation analyses using disconnectome maps 
binarized at varying thresholds of 10 %, 20 %, 30 %, … and 100 % (see 
SI Table 2 and SI Figure 27). We found highest Dice coefficients (mean of 
33 %) for binarizing thresholds of ≥ 60 % and ≥ 70 % overlap. We also 
repeated the clinical validation analyses using thresholds of 50 %, 60 % 
and 70 % (SI Table 3 and SI Figure 28). Here, we also found a slight 
superiority of these higher thresholds. We therefore recommend using 
thresholds of 60 % or 70 % in future analyses using BCBtoolkit. This 
recommendation refers to the data included in BCBtoolkit (n = 10) but 
might not be applicable for connectome data from other sources. 

4.4. Power transformation 

Raw disconnection maps are highly skewed towards small values (SI 
Fig. 2A). In order to preserve variance contained in raw disconnections 
maps though, we initially aimed to stabilize variance using power 
transformation (Box and Cox, 1964). We were able to accomplish stable 
variance in the data (SI Fig. 2B). However, results from the second level 
analyses displayed unacceptable low specificity. Supposedly, power 

transformation enhances spatial features in the disconnection maps 
which are only vaguely associated with the actual damaged tracts. This 
leads to poor spatial accuracy and indicates associations often in large 
areas around the actual tract (e.g. Fig. 6E) or even almost the whole 
cerebral hemisphere (SI Figure 23E). We therefore recommend refrain
ing from using power transformations for variance stabilization in 
voxelwise disconnection mapping. 

4.5. Binarizing individual tractograms 

We found that binarizing individual tractograms in BCBtoolkit using 
a threshold of > 0 produced valid results on the group level. We 
therefore recommend using this threshold. However, a phantom study 
found (slightly) increased performance in deterministic tractography 
with more conservative thresholds (Sarwar et al., 2019). The exact in
fluence of this threshold on disconnection mapping results remains 
elusive and might be investigated in future studies. 

4.6. Limitations 

The simulation of symptoms in the technical validation analyses 
relied on the arbitrarily defined threshold of 0.64 ml (= 4x4x4 voxels), i. 
e. patients with lesions overlapping > 0.64 ml with an atlas tract were 
defined as having a simulated symptom. To address the arbitrary nature 
of this threshold, we repeated the technical validation analysis using the 
disconnectome maps calculated with BCBtoolkit (binarized at ≥ 50 %). 
Symptoms were simulated based on thresholds of 0.16 ml, 0.64 ml and 
2.56 ml overlap between individual lesion and atlas tracts (i.e. using a 4- 
fold smaller and larger threshold than in the initial analysis). There were 
small differences in the resulting statistical maps but Dice scores across 
all tracts were very similar (paired t-test between all pairs of analyses: p 
> 0.50, see SI Figure 29). Therefore, the results in the technical vali
dation analyses seem not critically dependent on the exact choice of 
volumetric threshold for symptom simulation. 

4.7. Conclusion 

Voxelwise disconnection mapping is a novel method, which has been 
used increasingly in the recent years. We performed thorough validation 
of this method and discussed some of the methodological details. 
Disconnection mapping is a technically and clinically valid method to 
uncover neural substrates of symptoms caused by disconnection 
following focal brain lesions. Under these circumstances it is also su
perior to VLSM. We recommend the use of BCBtoolkit for disconnection 
mapping and binarizing the maps (with a cutoff of ≥ 50–70 %) when 
performing permutation tests. We also found that slight methodological 
changes can dramatically decrease the validity of this method which 
highlights the importance of validation studies for novel methods in the 
field of neuroimaging. 
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