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REVIEW

Tumour vasculature a potential therapeutic target

CT Baillie, MC Winslet and NJ Bradley
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Summary The tumour vasculature is vital for the establishment, growth and metastasis of solid tumours. Its
physiological properties limit the effectiveness of conventional anti-cancer strategies. Therapeutic approaches
directed at the tumour vasculature are reviewed, suggesting the potential of anti-angiogenesis and the targeting
of vascular proliferation antigens as cancer treatments.
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Chemotherapy, radiotherapy and biological therapy (the use
of cellular or humoral components of the immune system in
cancer treatment) have all been shown to have a direct
cytotoxic effect on malignant cells. However, a solid tumour
is composed not only of a parenchymal compartment con-
taining malignant cells, but also of a supportive stromal
compartment containing vascular elements derived from sur-
rounding tissues. It has been suggested that anti-cancer
strategies directed against the stromal component of tumours
could effect an indirect tumour cell kill. This paper
emphasises the potential of the tumour vasculature as a
target in solid tumour therapy.
The vasculature of tumours has been shown to possess

distinct anatomical, physiological and, recently, immun-
ological characteristics that distinguish it from that of normal
tissues. Many solid tumours are inadequately perfused, re-
sulting in conditions of hypoxia and acidosis which, paradox-
ically, protect malignant cells from the standard treatment
modalities of chemotherapy and radiotherapy (Thomlinson
and Gray, 1965). The delivery of drugs and immunocon-
jugates by the tumour vasculature is inefficient, undermining
therapeutic strategies which rely upon vascular access to the
parenchymal compartment of tumours (Dvorak et al., 1991).
Given the constraints upon therapy normally imposed by the
tumour vasculature, treatment options which seek to exploit
its properties have evoked considerable interest.
The process by which an avascular aggregate of tumour

cells establishes a blood supply derived from the host stroma
is known as tumour angiogenesis. The acquisition of new
vascular elements by an established tumour is also dependent
on this process. Angiogenesis is a complex process which is
tightly regulated under normal physiological conditions with
multiple levels of control. It is conceivable that anti-
angiogenesis strategies could provide the clinician with novel
alternatives for cancer therapy (Folkman, 1972).
The established (as opposed to the developing) vasculature

of solid tumours has also been singled out as a potential
therapeutic target, largely as a result of research into the
proliferation kinetics of tumour endothelium. The realisation
that tumour endothelium is highly proliferative relative to
normal endothelium, suggests this as a discriminating feature
which might allow for anti-proliferating endothelial therapy
(APET) (Denekamp, 1982). The anti-endothelial approach
has been broadened to encompass any treatment acting
primarily at the level of the tumour vasculature, under the
heading 'anti-vascular therapy'.

Tumour angiogenesis

The term angiogenesis was first used to describe the forma-
tion of new blood vessels in the placenta (Hertig, 1935).
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Angiogenesis is also a feature of the developing embryo,
healing wounds, psoriasis, arthritis and diabetic retinopathy
(Folkman, 1985). The most extensive study of angiogenesis,
however, has been in solid tumours. The first microscopic
observations of the vascularisation of tumour implants were
made in 1939 using the Sandison-Clarke rabbit ear chamber
(Ide et al., 1939). The most striking feature of these early
studies was the ability of the tumour to elicit a rapid and
continuous ingrowth of new capillary endothelium from the
host tissue (Algire et al., 1945), a process which has become
known as tumour angiogenesis.
A possible mechanism of angiogenesis, originally proposed

by Folkman, in solid tumours begins with the retraction of
pericytes and the proteolytic degradation of the basement
membrane from host post-capillary venules adjacent to the
tumour. Endothelial cells begin to proliferate and migrate in
the direction of the tumour, resulting in three distinct zones
of angiogenesis: the migratory zone, a proliferative zone and
a zone of maturation, where functional vessels can be
identified. The endothelial cells become organised into
tubular structures (capillary loops) and form anastomoses
between themselves and elements of the host vasculature in
the establishment of a primitive tumour circulation (Folk-
man, 1984). The formation of a basement membrane and the
incorporation of pericytes into the vascular structures, which
are features of vascular maturation, are commonly deficient
in tumour angiogenesis (Bicknell and Harris, 1992). Recently,
another model of tumour angiogenesis has been described in
which capillary loops are derived principally from pre-
capillary arterioles (rather than venules), and the tumour
vasculature expands by remodelling the established host vas-
culature based on bifurcation of, and anastomosis with, exis-
ting host vessels (Hori et al., 1990). This system has a greater
emphasis on a dynamic process involving the vascular unit as
a whole. It differs significantly from Folkman's description of
the angiogenic process, which is highly mechanistic and
focuses on the endothelial cell component of the tumour
vasculature. Several possible control points in tumour
angiogenesis are identified by virtue of this emphasis on the
role of endothelial cells, which demonstrate capabilities of
migration, proliferation and differentiation at different phases
of the angiogenic process. The investigation of each of these
features has broadened the scope for intervention in tumour
angiogenesis.
The importance of angiogenesis to the establishment,

growth and metastasis of solid tumours may be inferred from
a variety of observations. Tumours grown in the rabbit
corneal micropocket have demonstrated two phases of
growth: a prevascular phase characterised by slow expansion
of the implant as a thin plate and a vascular phase charac-
terised by the formation of a rapidly growing exophytic mass
(Gimbrone et al., 1974). Similarly, homologous tumour
implants grown in the anterior chamber of the rabbit eye
formed dormant spheroids which, when placed on the iris,
where vascularisation could occur, grew rapidly and became
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locally invasive (Gimbrone et al., 1972). Studies of the vas-
cularisation of hepatic metastases, by making silicone rubber
casts of hepatic vasculature, demonstrated that tumour
metastases were avascular up to 1 mm in diameter and were
consistently vascularised beyond this (Lien and Ackerman,
1970), suggesting that the acquisition of a vascular supply
from the host is essential for the local establishment of a

tumour. Furthermore, tumours grown on the chick chorio-
allantoic membrane (CAM) at different times have resulted in
growth rates directly proportional to the [3H]thymidine label-
ling index of the vascular endothelial cells, suggesting that
the tumour growth rate may be related to the intensity of the
host neovascular response (Knighton et al., 1977). The rela-
tionship between angiogenesis and the development of the
malignant phenotype was examined in an experiment in
which diploid mouse fibroblasts were passaged sub-
cutaneously and separately assessed for their angiogenic
potential using the corneal micropocket assay system. It was
found that the fibroblasts could initiate angiogenesis by pas-
sage 5, but became malignant at passage 15, indicating that
the capability of the cells to evoke an angiogenic response
preceded development of the frankly malignant phenotype
(Ziche and Gullino, 1982). It has been observed that some in
situ human breast carcinomas exhibit a prominent angiogenic
stromal response, suggesting that, before becoming agents of
local invasion and metastasis, malignant cells require
capabilities over and above the ability to initiate an
angiogenic response (Weidner et al., 1991). Increased
angiogenic activity has been suggested as a marker of neo-
plastic and in situ bladder carcinoma (Chodak et al., 1980),
and the intensity of the angiogenic response evoked by
tumours has been positively correlated with the probability
of metastasis for cancer of the breast (Weidner et al., 1991;
Bosari et al., 1992; Horak et al., 1992; Weidner et al., 1992),
melanoma (Srivastava et al., 1988), non-small-cell lung
cancer (Macchiarini et al., 1992), prostatic cancer (Fregene et
al., 1993) and squamous cell carcinoma of the head and neck
(Albo et al., 1994). It has been suggested that microvessel
density (MVD) may represent a new prognostic indicator in
solid tumours (Weidner, 1993).
Most of the evidence outlined above has provided indirect

support for the hypothesis that tumour establishment,
growth and metastasis are angiogenesis dependent. The
impact of molecular biological approaches on the field of
tumour angiogenesis is beginning to provide direct supportive

evidence. It seems likely that inhibitory genetic mechanisms
normally keep angiogenesis in check. Two candidate genes
have been identified, one coding for a glycoprotein with
anti-angiogenic properties (Rastinejad et al., 1989), subse-
quently identified as thrombospondin (Good et al., 1990),
and the other, nm23, coding for a protein positively cor-
related with low tumour metastatic potential (Rosengard et
al., 1989), which possibly operates by interfering with the
signal transduction pathway of the angiogenic peptide trans-
forming growth factor P (TGF-P) (Leone et al., 1991).
The concept that tumours are angiogenesis dependent has

been summarised by Folkman (1972) in the following state-
ment. 'Once tumour take has occurred, every increase in
tumour cell population must be preceded by an increase in
the new capillaries that converge upon that tumour'. It is this
assumption that underpins the case for anti-angiogenesis
strategies in cancer therapy.

Tumour angiogenesis factors

A landmark paper in the study of tumour angiogenesis de-
scribed the isolation of a tumour angiogenesis factor (TAF)
from rat Walker 256 carcinoma cells (Folkman et al., 1971).
A variety of human angiogenic peptides have subsequently
been identified and have had their structures determined by
protein sequencing and cDNA cloning (Table I).
Comparison of the actions of these angiogenic proteins has

demonstrated that several are mitogenic to endothelial cells in
vitro. The mitogenic angiogenic peptides have trophic effects
on diverse tissues with the exception of vascular endothelial
growth factor (VEGF), which is specific for endothelial cells
(Leung et al., 1989). It has been suggested that VEGF func-
tions as a hypoxia-induced angiogenic factor. The production
of VEGF in human glioblastoma multiforme has been
specifically localised to tumour cells which are juxtaposed to
regions of necrosis, by in situ hybridisation, using
radiolabelled antisense riboprobes with specificity for VEGF
mRNA. The same workers have confirmed that VEGF
mRNA can be induced by hypoxia in vitro using cultured rat
glioma cells, skeletal muscle myoblasts and mouse fibroblasts
(Shweiki et al., 1992). Additional support for the role of
VEGF in tumour angiogenesis has been provided by a
similar study which confirmed VEGF production by
palisading tumour cells in anaplastic gliomas, and demon-

Peptide factors

aFGF
bFGF
Angiogenin
TGF-z
EGF
TGF-P
TNF-a
VEGF/VPF

PD-ECGF/TP

PDGF-A/B
Pleiotrophin (PTN)
Substance P
Angiotensin II

IL-6
IL-I

Table I

Endothelial
mitogen

4,

4'

++

Tumour angiogenesis factors
Tsumour
'creted Reference
+ Esch et al. (1985a)
+ * Esch et al. (1985b), Abraham et al. (1986)
+ Fett et al. (1985), Kurachi et al. (1985)
+ Marquardt et al. (1984), Schreiber et al. (1986)
+ Yates et al. (1991)
+ Derynck et al. (1985), Roberts et al. (1986)
+ Leibovich et al. (1987)
+ Leung et al. (1989), Keck et al. (1989),

Senger et al. (1990)
* Ishikawa et al. (1989), Moghaddam and Bicknell

(1992), Finnis et al. (1993)
+ Bicknell and Harris (1992), Risau et al. (1992)
+ Bicknell and Harris (1992), Fang et al. (1992)
? Ziche et al. (1990), Fan et al. (1993)
? Fernandez et al. (1985)
? Motro et al. (1990)
? Bicknell and Harris (1991), Fan et al. (1993)

Low MW factors
ESAF
ESF
Prostaglandins El/E2
Nicotinamide
Erucamide
PG12 analogues

+

+
+

Weiss et al. (1979)
McAuslan and Hoffman (1979)
BenEzra (1978), Form and Auerbach (1983)
Morris et al. (1989), Kull et al. (1987)
Wakamatsu et al. (1990)
Ohtsu et al. (1988)

t, Positive; +, inhibitory; +, no action; t4,, both mitogenic and inhibitory action reported; ?, not known;
*, lacks signal peptide for secretion.
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strated strong expression of the high-affinity VEGF receptor,
flt, on tumour endothelial cells but not on endothelial cells in
normal brain tissue (Plate et al., 1992). VEGF is probably
identical to vascular permeability factor (VPF) (Keck et al.,
1989), which, by virtue of its ability to increase vessel
permeability, causes the extravasation of plasma proteins,
thus providing a suitable microenvironment for angiogenesis
(Kondo et al., 1993).
The most studied angiogenic peptide, basic fibroblast

growth factor (bFGF), and also platelet-derived endothelial
cell growth factor (PD-ECGF) lack secretory signal peptides
necessary for extracellular secretion, casting doubt on their
significance in tumour angiogenesis. However, it has been
suggested that bFGF, which is associated with the extracel-
lular matrix and basement membrane, may be released by
enzymic action, thus permitting its role as a mediator of
angiogenesis (Klagsbrun and D'Amore, 1991). PD-ECGF
has been clearly shown to stimulate angiogenesis (Ishikawa et
al., 1989), and, like VEGF, was originally thought to be a

specific endothelial cell mitogen. However, the mechanism of
action of PD-ECGF has recently been called into question
when it was demonstrated that cDNA coding for a 120
amino acid sequence of human thymidine phosphorylase
(TP) was identical to the sequence of PD-ECGF (Furukawa
et al., 1992). Recombinant human PD-ECGF has been
shown to have thymidine phosphorylase activity (Usuki et
al., 1992), casting doubt on the validity of in vitro assays of
endothelial mitogenicity based on [3H]thymidine uptake.
rPD-ECGF was not shown to have any action on endothelial
proliferation in vitro using a direct cell counting technique
(Moghaddam and Bicknell, 1992). However, a proliferation
assay based on acid phosphatase production has confirmed
endothelial mitogenicity (Finnis et al., 1993), possibly result-
ing from an indirect action mediated by local levels of
thymidine (Finnis et al., 1993). The mechanism by which
PD-ECGF/TP stimulates angiogenesis remains unclear, but it
is not a classical growth factor since direct contact with a

cell-surface receptor is not required for its mitogenic
capability (Finnis et al., 1993).
The related mitogenic growth factors, transforming growth

factor x (TGF-x) and epidermal growth factor (EGF) may be
important mediators of tumour angiogenesis. Immunohis-
tochemical staining using an antibody to TGF-a has shown
perivascular staining in experimental neoplasms, and TGF-x
mRNA has been demonstrated in several solid tumours,
suggesting a possible role in tumour angiogenesis (Schreiber
et al., 1986). The EGF receptors belong to a group of
proto-oncogenes, including c-erbB-2, which are overexpressed
in a number of human tumours. The production of TGF-a/
EGF, coupled with high-level EGF receptor expression by
tumour cells, confers a selective growth advantage on tumour
cells, which may be supported by the mitogenic action of
both TGF-x and EGF on endothelial cells, and the promo-
tion of an angiogenic response (Yates et al., 1991).
The mechanism of action of other angiogenic factors is less

clear. Both angiogenin (Fett et al., 1985; Kurachi et al., 1985)
and platelet-derived growth factor (PDGF) (Bicknell and
Harris, 1992) have been shown to have no mitogenic activity
for cultured endothelial cells, while TGF-P (Roberts et al.,
1986; Frater-Schr6der et al., 1987), tumour necrosis factor-x
(TNF-o) (Leibovich et al., 1987) and interleukin 6 (Motro et

al., 1990) have been demonstrated to be inhibitory to
endothelial cells in vitro. The explanation for these paradox-
ical observations has not been fully elucidated, although
PDGF has been shown to promote endothelial migration
(Risau et al., 1992). The other peptides presumably have an

indirect mechanism of action, such as the stimulation of
other cells (e.g. macrophages) to release angiogenic factors.
Alternatively, they might promote angiogenesis by causing
endothelial differentiation (e.g. tube formation or matrix pro-
duction), rather than endothelial proliferation (Klagsbrun
and D'Amore, 1991).
The relative importance of these and other angiogenic

peptides, such as angiotensin II (Fernandez et al., 1985) and
substance P (Ziche et al., 1990), as mediators of tumour
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angiogenesis is uncertain. The majority of the angiogenic
peptides have been demonstrated to be present in at least
some tumours, and others may be released by white cells and
macrophages associated with the stromal response provoked
by malignant cells.
Low molecular weight angiogenic factors, defined as less

than 2000 daltons in a recent review (Odedra and Weiss,
1991), although less well characterised than their peptide
counterparts, may play a significant role in tumour
angiogenesis. Both endothelial cell stimulating angiogenesis
factor (ESAF) and endothelial stimulating factor (ESF) have
been isolated from tumours, although their precise structure
remains unknown (McAuslan and Hoffman, 1979; Weiss et
al., 1979). ESAF has been shown to dissociate neutral matrix
metalloproteinases from their specific inhibitor, tissue
inhibitor of metalloproteinase (TIMP), thus permitting the
matrix proteolysis which is an essential feature of
angiogenesis. The original TAF was probably composed of
ESAF/ESF in combination with bFGF, and subsequent
observations have confirmed that tissues containing bFGF
have high levels of ESAF. The demonstration that bFGF
stimulates microvascular endothelial cells to synthesise pro-
collagenase suggests a synergistic relationship between ESAF
and bFGF, in which collagenase production under the
influence of bFGF is supported by the action of ESAF in
keeping the collagenase in its active form (Odedra and Weiss,
1991).
Many of the reported low molecular weight angiogenic

factors are either metabolic co-factors or products of
anaerobic metabolism. Whether any of these factors have any
particular relevance to tumour angiogenesis is questionable.
The prostaglandins El and E2 (BenEzra, 1978; Form and
Auerbach, 1983) and nicotinamide derivatives (Kull et al.,
1987; Morris et al., 1989) have been implicated in tumour
angiogenesis by virtue of their isolation from tumour ext-
racts. Prostacyclin analogues (Ohtsu et al., 1988) and long-
chain fatty acids such as erucamide (Wakamatsu et al., 1990),
although not confirmed as tumour-secreted angiogenic
agents, may also have a role in tumour angiogenesis.

Anti-angiogenesis strategies

The original discovery of a tumour-derived diffusible
mediator of angiogenesis (TAF) (Folkman et al., 1971) led to
Folkman's (1972) suggestion of an anti-angiogenesis app-
roach for cancer therapy. The ability of anti-TAF antisera to
block in vivo angiogenesis caused by TAF emphasised the
potential value of this approach (Phillips and Kumar, 1979).
The development of bioassays for most of the component

steps of angiogenesis has enabled the precise mechanism of
action of some angiostatic compounds to be determined
(Table II). Tumour angiogenesis could be subject to
therapeutic intervention at several key points, which are illus-
trated in Figure 1. The strategic links identified in the chain
of events that bring about tumour angiogenesis include the
inhibition of tumour cell release of angiogenic factors, the
antibody-mediated blocking of angiogenic factors or their
receptors, the inhibition of microvascular endothelial pro-
liferation or migration, the disruption of endothelial
differentiation into organised capillary tubes and the preven-
tion of anastomosis formation between newly formed vas-
cular elements and the host vasculature (Bicknell and Harris,
1992).
Reports of the inhibition of angiogenic factor production

by tumours are scanty, but partial (50%) inhibition of
unidentified angiogenic factors produced by a hepatoma and
a bladder carcinoma have been attributed to the interferons-x
and -P (Sidky and Borden, 1987). [Interferon-o has been used
successfully in the treatment of haemangioendotheliomas,
prompting the suggestion of a possible anti-angiogenic
mechanism of action (Orchard et al., 1989).]
The most studied aspect of the anti-angiogenesis approach

has been the attempted blockade of angiogenic factors by
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neutralising antibodies. In one such study human colonic
adenocarcinoma xenografts were grown in nude mice. The
resulting tumours showed both an increased rate of growth
and increased vascularity in the presence of systemically
administered bFGF (Gross et al., 1990). It was demonstrated
that bFGF was not mitogenic to the tumour cells in culture.
Neutralising monoclonal antibodies to bFGF were able to
suppress tumour growth in vivo, and autoradiography of
tumour sections demonstrated that the receptors for bFGF

were located on the vascular endothelium. Several workers
have reported varying degrees of vascular-mediated solid
tumour control in experimental animals using antibodies
directed against bFGF (Hori et al., 1991; Reilly et al., 1989).
However, the fact that others have noted that anti-bFGF
monoclonal antibody-secreting hybridomas readily form vas-
cularised solid tumours in athymic Inice (Matsuzaki et al.,
1989) serves to demonstrate the limitations of this strategy.
The problem with strategies directed at tumour

Table II Anti-angiogenic agents

Factor Level of action Reference
High MW peptides
PF4 C Maione et al. (1990)
Placental ribonuclease inhibition B Shapiro and Vallee (1987), Klagsbrun and D'Amore (1991)
Thrombospondin C Good et al. (1990)
TIMP-1 and TIMP-2 C Moses et al. (1990), Stetler-Stevenson et al. (1989)
Interferon alpha/beta A Sidky and Borden (1987)
Interferon gamma B Klagsbrun and D'Amore (1991)
16 kDa prolactin fragment C,D Clapp et al. (1993)

Antibodies
Antibody vs bFGF B Gross et al. (1990), Hori et al. (1991),, Reilly et al. (1989)
Antibody vs VEGF B Kim et al. (1993), Kondo et al. (1993)

Low MW peptides
Protamine C Taylor and Folkman (1982)
YIGSR peptide D Grant et al. (1989)
Somatostatin analogues ? Barrie et al. (1993)

Non-peptides
Fumagillin C, ?D Ingber et al. (1990)
Steroids/heparin D Folkman and Ingber (1987), Folkman et al. (1989)
Suramin B Bicknell and Harris (1991), Danesi et al. (1993)
Linomide C Vukanovic et al. (1993)
Minocycline ?C Tamargo et al. (1991)
Sulphated chitin derivatives C Murata et al. (1991)
15-Deoxyspergualin ? Oikawa et al. (1991)
Amiloride C Alliegro et al. (1993)
Herbimycin A ? Oikawa et al. (1989)
Retinoids ? Oikawa et al. (1991)
Vitamin D analogues ? Oikawa et al. (1990)
D-Penicillamine ? Matsubara et al. (1989)

Level of action (see Figure 1): A, tumour release of angiogenic factors; B, blockade of angiogenic factors; C,
endothelial cell proliferation/migration; D, tubular organisation: endothelium-ECM interactions.

a Release angiogenic
factors

d Endothelium-
interaction; tul
organisation

ECM
bular Tumour

Endothelial proliferation/migration

Figure 1 Intervention points in tumour angiogenesis.

basement membrane
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angiogenesis factors, whether the inhibition of their synthesis
by tumour cells or their neutralisation once secreted, is that
several angiogenic factors may be produced by a given
tumour, so that the inhibition of a single factor is unlikely to
prevent tumour establishment and growth. Given the lack of
uniformity in the type and number of angiogenic factors
secreted by solid tumours, the chance of generalised success
with these approaches is dependent on the identification of
an angiogenic factor which is common to most tumours. It
has been suggested, for this reason, that VEGF would be a

better candidate than bFGF for this type of strategy (Bick-
nell and Harris, 1992). Recently, tumour inhibition has been
demonstrated using antibodies directed against VEGF (Kim
et al., 1993; Kondo et al., 1993), and signal transduction
from the Flk-I receptor for VEGF has been blocked using a
retrovirus encoding a dominant-negative Flk-I mutant in a

murine glioblastoma model, with resultant inhibition of
tumour growth (Millauer et al., 1994).

In a variation on antibody-mediated blockade of
angiogenic factors, the angiogenic activity of angiogenin has
been shown to be neutralised by the highly specific binding of
placental ribonuclease inhibitor (Shapiro and Vallee, 1987).
An alternative approach involves the blockade of angiogenic
factors at receptor level, as is illustrated by the ability of
suramin to inhibit binding of bFGF (Bicknell and Harris,
1991; Danesi et al., 1993), and the reduction in binding of
aFGF at the endothelial cell surface caused by interferon-y
(Klagsbrun and D'Amore, 1991).
The majority of tumour angiogenesis factors operate by

causing either endothelial cell proliferation or migration (or
by a combination of both mechanisms). Clearly, the ability to
disrupt the process of endothelial proliferation and migration
would be important features of any putative anti-angiogenic
compound. Platelet factor-4 (PF-4) (Maione et al., 1990),
fumagillin (Ingber et al., 1990) and a 16 kDa fragment of
human prolactin (PRL) (Clapp et al., 1993) have been shown
to inhibit growth factor-stimulated endothelial proliferation
in vivo. Thrombospondin (Good et al., 1990), protamine
(Taylor and Folkman, 1982) and the sulphated chitin
derivative, SCM-chitin III (Murata et al., 1991), have all
been demonstrated to inhibit endothelial migration in vitro,
while linomide has been shown to be both cytostatic and
inhibitory to endothelial chemotaxis, suggesting that its anti-
angiogenic properties may account for its in vivo anti-tumour
effects in both rats and mice (Vukanovic et al., 1993).
The migration/proliferation phase of angiogenesis is

associated with increased synthesis of proteolytic enzymes by
endothelial cells. A variety of anti-angiogenic agents operate
by inhibiting this process, thus preventing invasion of the
endothelial basement membrane and migration through the
extracellular matrix by endothelial cells. An anti-angiogenic,
28.5 kDa glycoprotein, tissue inhibitor of metalloproteases
type 1 (TIMP-1), which complexes activated interstitial col-
lagenase with 1:1 stoichiometry, has been isolated from
fibroblasts (Carmichael et al., 1986) and cartilage (Moses et
al., 1990). The resulting TIMP-l -collagenase complex has no

proteolytic activity. A similar, naturally occurring 21 kDa
metalloproteinase inhibitor, TIMP-2, with anti-angiogenic
properties, has been isolated from human melanoma cells
(Liotta et al., 1991). TIMP-2 complexes 1:1 with type IV
*procollagenase. These inhibitory actions of TIMP-1 and -2
illustrate the importance of matrix proteolysis to the
angiogenic process.
A similar mechanism of action has been postulated to

explain the properties of the angiostatic steroids. In develop-
ing the chick CAM as an angiogenic assay, it was discovered
that the combination of heparin with steroids was inhibitory
to angiogenesis. The most potent steroid was shown to be
tetrahydrocortisol, which was previously thought to be with-
out biological activity, and was thus considered to define a
new class of angiostatic steroids (Folkman and Ingber, 1987).
Non-anticoagulant heparin fragments were more effective
than intact heparin, and the synthetic heparinoid, 1B-
cyclodextrin tetradecasulphate, provided the most potent
angiostatic steroid/heparin combination (Folkman et al.,

1989). It has recently been shown that angiostatic steroids are

able to increase the synthesis of plasminogen activator
inhibitor by endothelial cells. The resulting reduced levels of
fibrinolytic proteases might explain the inhibitory action of
the steroid-heparin combination to the angiogenic process
(Blei et al., 1993). Other anti-angiogenic agents which may
operate by the inhibition of matrix proteolysis include PF-4
and the synthetic tetracycline minocycline (Tamargo et al.,
1991).
The mechanisms that bring about the organisation of

endothelial cells into tubular structures are beginning to be
understood at the molecular level, leading to the ident-
ification of a new potential control point for angiogenesis
(Ingber, 1991). It has become apparent that insoluble extra-
cellular matrix (ECM) components promote capillary tube
formation by mechanochemical interactions with endothelial
cells (Ingber and Folkman, 1989). The attachment of
endothelial cells to the ECM and the cytoskeletal events that
result in lumen formation are both believed to be mediated
by laminin. A site on the laminin A-chain named PA 21,
containing the Arg-Gly-Asp (RGD) sequence, has been dem-
onstrated to mediate the initial endothelial cell attachment to
laminin. A separate B1-chain domain containing the Tyr-Ile-
Gly-Ser-Arg (YIGSR) sequence is of importance in cell-cell
interaction and tube formation (Grant et al., 1989). If these
mechanisms could be inhibited, the establishment of a
primitive tumour circulation could effectively be prevented.
The use of synthetic PA 21 or YIGSR peptides has been
shown to inhibit neovascularisation on the developing chick
CAM and YIGSR peptides have been shown to prevent
vascular invasion of the rabbit cornea (Grant et al., 1989).
Antibodies have been raised to the endothelial cell-surface
integrin, which binds to the RGD-containing laminin A-
chain peptide, and are capable of inhibiting endothelium-
ECM interactions. Similarly, antibodies with specificity for
the 32 kDa endothelial YIGSR-binding protein are capable
of inhibiting the morphological changes and cell-cell interac-
tions responsible for the formation of capillary tubes. Other
anti-angiogenic agents which may disrupt endothelium-
ECM interactions include fumagillin and the 16 kDa PRL
fragment.
The PECAM (CD 31) molecule has been localised

predominantly to endothelial cell intercellular junctions
(Muller et al., 1989), leading to the suggestion that it may
play an important role in the adhesive reactions between
endothelial cells which accompany tubular differentiation.
The possibility that anti-PECAM antibodies might be able to
disrupt this interaction is being investigated (Bicknell and
Harris, 1992).

Anti-angiogenesis strategies that have been suggested are
numerous, reflecting the complexity of the process and the
number of levels at which intervention might be possible. The
list of agents with anti-angiogenic properties is rapidly expan-

ding, and includes several for which a mechanism of action
has not yet been established, nor has a definite role in the
inhibition of tumour angiogenesis been proven. As yet, suc-

cess with this approach has been limited and essentially
confined to the experimental setting.

Properties of the tumour vasculature

Studies of tumour vascular morphology have identified a

variety of structural differences between tumour and normal
vasculature. Tumour vasculature is composed of abnormal
vascular elements including sinusoidal vessels, giant capil-
laries and blood channels with a discontinuous endothelial
lining. Normal vessels parasitised from the host tissues, capil-
lary sprouts and arteriovenous anastomoses also contribute
(Warren, 1979). The vasculature is not arranged in an

efficient network, as is seen in normal tissue, but forms
disorganised network patterns.
The physiological properties of tumour vasculature are

strikingly different from normal vasculature. Tumour vas-

culature lacks innervation and therefore has an impaired
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capacity for autoregulation (Mattsson et al., 1979). The
absence of a collateral potential and the reduced effective
capillary density (Gunduz, 1981) combine to promote the
conditions of hypoxia and acidosis often seen in tumours
(Vaupel et al., 1989). Tumour endothelial cells, in contrast to
normal endothelial cells which might divide only twice in a
lifetime, are highly proliferative (Denekamp and Hobson,
1982) and lack some of the differentiated features of normal
endothelium such as alkaline phosphatase and 5'-nucleotidase
activity (Murray et al., 1989). The tumour vasculature con-
tains vessels, particularly at the tumour margin, which are
leaky to macromolecules (Dvorak et al., 1988). The combina-
tion of leaky blood vessels and poor lymphatic drainage
result in the raised interstitial hydrostatic pressure which is a
feature of many tumours and which further impairs tumour
perfusion (Vaupel et al., 1989).

Immunohistochemical markers of normal endothelium,
such as factor VIII-related antigen and angiotensin-
converting enzyme, are often deficient in the tumour vas-
culature, possibly reflecting the lack of differentiation of
tumour endothelium (Denekamp, 1990). The corollary to this
observation is the existence of novel proliferation antigens on
tumour endothelium which serve to discriminate it from
normal endothelium and which might provide a basis for
specifically targeting tumour vasculature (Clarke and West,
1991).

Endothelial proliferation kinetics

Most studies of tumour proliferation kinetics have concent-
rated on the malignant cells of the tumour parenchyma to
the exclusion of cells in the stromal compartment of solid
tumours. The first detailed study of the proliferation kinetics
of tumour stromal elements obtained mean comparative
[3H]thymidine labelling indices of 35%, 11.4% and 9.1% for
the tumour cells, endothelial cells and fibroblasts, respec-
tively, in C3H murine mammary tumours. It was observed
that the mitotic index and the labelling index of malignant
cells decreased with increasing distance from the capillary
lumen. Based on these observations it was suggested that the
endothelial proliferative rate might be the rate-limiting step
in solid tumour growth (Tannock, 1970). In a study of
proliferation kinetics in pulmonary metastases of spon-
taneous mammary tumours in C3H/He mice, it was observed
that the labelling index and growth fraction of carcinoma
cells decreased with increasing tumour volume, and that the
mean labelling index of endothelial cells was both higher
than that of the carcinoma cells in the larger metastases and
independent of tumour volume. This contradicted the earlier
view that the endothelial proliferative rate was rate limiting
for tumour growth, and prompted the suggestion that with
increasing tumour size the decreasing effective capillary den-
sity was the rate-limiting parameter (Gunduz, 1981).
The questions relating to tumour vascular proliferation

kinetics have been well summarised by Hirst et al. (1982). Do
tumour growth rates decline owing to inadequate endothelial
proliferation? Is endothelial proliferation adequate but the
three-dimensional organisation of the tumour vasculature
inadequate and rate limiting? Alternatively, could it be that
tumour growth rates are independent of the endothelial pro-
liferative rate and reflect some intrinsic property of the
tumour cells themselves? These questions have not been satis-
factorily answered by the studies to date, although it would
appear from a review of the proliferation kinetics of 131
experimental tumours that no correlation exists between the
tumour cell and endothelial cell labelling indices, nor has one
been demonstrated between either of these variables and the
tumour volume doubling time (Denekamp and Hobson,
1982). However, the emphasis that emerged from these
pioneering studies of endothelial proliferation kinetics in ex-
perimental solid tumours was the approximately 50-fold in-
creased proliferative rate of tumour endothelium relative to
normal endothelium (Weiss et al., 1988). This observation
prompted Denekamp (1982) to suggest the tumour endo-

thelium as a target for cancer therapy, an approach termed
anti-proliferating endothelium therapy.

Recent proliferation data for both human and animal
tumours have suggested that the magnitude of the increased
proliferative rate of tumour endothelium over normal
endothelium may not be as dramatic as was originally
thought. A study of endothelial proliferation in 20 specimens
of human breast cancer demonstrated mean labelling indices
of 7.3% and 2.2% for tumour and endothelial cells respec-
tively, although no indices were quoted for normal breast
tissue (Fox et al., 1993). The technique of double immuno-
staining, both for bromodeoxyuridine (BrdUrd), providing a
visual marker of proliferation, and for the CD 31 endothelial
surface antigen, was considered to be a more accurate techni-
que than the previous reported methods based on autoradio-
graphy without specific endothelial staining. The authors sug-
gested that the true endothelial labelling index may have been
even lower, owing to the failure to identify endothelial cell
nuclei in immunoreactive vessels deep within the substance of
the tumour. However, their observation that endothelial pro-
liferation was maximal at the periphery of tumours could
mean that the labelling of peripheral endothelial cells was
underestimated for the same reason. This heterogeneity of
endothelial proliferation status within a tumour was con-
firmed in a similar study of ten human squamous cell car-
cinomas labelled in vitro with BrdURd (Schultz-Hector and
Haghayegh, 1993). This showed a mean endothelial labelling
index of 1.8% compared with 0.16% in adjacent normal
mucosa, but showed increased endothelial labelling in disc-
rete foci expressing bFGF within the same tumour. The
association of bFGF expression and an increased endothelial
labelling was confirmed in murine squamous cell carcinomas
by the same authors.

These recent studies have expressed a degree of pessimism
about the prospects of the APET approach in solid tumours.
However, they have demonstrated considerable heterogeneity
of endothelial proliferation even within the same tumour,
possibly related to oxygen and nutrient availability and local
expression of angiogenic factors. Even if a proportion of the
endothelial component of a solid tumour could be targeted
on the basis of its proliferation status, the effects on global
tumour perfusion might be sufficient to cause widespread
tumour cell death.

Anti-vascular therapy

Denekamp's original suggestion of targeting the vasculature
of solid tumours was exclusively concerned with the
endothelial component of the tumour vasculature. The anti-
vascular approach has since been broadened to encompass a
variety of strategies designed to exploit the properties of the
tumour vasculature (Denekamp, 1990; Denekamp, 1993). It
has been suggested that an occult anti-vascular effect may be
operating in a number of conventional and experimental
anti-cancer strategies, further emphasising the potential of
anti-vascular strategies directed at solid tumours.
Many solid tumours contain areas in which the perfusion

is precariously balanced between adequacy and insufficiency.
Given the lack of collateral reserve, a relatively small insult
could be enough to precipitate vascular failure accompanied
by the ischaemic death of numerous tumour cells (Dene-
kamp, 1990). The pathophysiology of failure of the tumour
circulation may result from both local and systemic
mechanisms. Local mechanisms operate as a result of direct
endothelial damage. Endothelial cells respond to injury by
shifting the local balance towards a procoagulant state.
Platelet aggregation and white cell margination lead to sludg-
ing of nutrient vessels. Increased vascular permeability results
in increased interstitial hydrostatic pressure, which tends to
shut off the tumour microcirculation. Systemic mechanisms
precipitating failure of the tumour vasculature include
hypotension and alterations in both blood coagulability and
viscosity.
Tumour endothelial cells may be inherently more sensitive
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to injury as a result of the actions of tumour-derived
cytokines which have been shown to alter the physiological
properties of endothelial cells in vitro. Endothelial monocyte-
activating polypeptides I and II (EMAP-I and -II), purified
from meth A fibrosarcoma cells, have both been demon-
strated to enhance tissue factor expression by cultured
endothelial cells (Clauss et al., 1990; Kao et al., 1992). Both
polypeptides are chemotactic for monocytes, and EMAP-II is
additionally chemotactic for neutrophils. EMAP-I and the
angiogenic peptide VEGF/VPF increase endothelial perm-
eability in vitro, providing a possible biochemical explanation
for this property of tumour vasculature.

It is becoming apparent that some cancer treatments are
more effective in vivo than would be anticipated from in vitro
testing. These observations suggest that a host effect, such as
immune-mediated or vascular-mediated tumour cell destruc-
tion, might be a component of the treatment. The charac-
teristic features of an anti-vascular effect are rapid-onset
patchy areas of cell death which are more conspicuous in
large rather than small tumours (Denekamp, 1990).
The chemotherapeutic drugs bleomycin, cyclophosphamide

and the nitrosoureas have been demonstrated to cause
endothelial damage (Lazo, 1986). Radiotherapy has been
shown to cause vascular occlusion by thrombosis in 10mm
capillaries, with relative sparing of larger 20-30mm vessels
in experimental tumour xenografts (Solesvik et al., 1984). A
further indication of the anti-vascular action of radiotherapy
is seen in the tumour bed effect, in which tumour cells
implanted onto an irradiated site grow more slowly than cells
implanted onto a normal site (Begg and Terry, 1983). Both
radiotherapy and chemotherapy cause ultrastructural damage
to endothelial cells, including autolytic vacuole formation,
intracytoplasmic oedema, the formation of cytoplasmic ext-
rusions on the luminal surface of endothelial cells and the
detachment of degenerated endothelial cells (Freudenberg et
al., 1983; Ward et al., 1983).
The biological response modifiers endotoxin, interferon,

TNFa and IL-2 all have anti-vascular actions which might
contribute to their overall effects on solid tumours.
Endotoxin has been shown to cause haemorrhagic necrosis in
experimental tumours, most probably by an indirect effect
involving TNFa (Carswell et al., 1975; Bloksma et al., 1982).
Despite having angiogenic properties, TNFa has several anti-
vascular actions, including the promotion of neutrophil mar-
gination, direct endothelial toxicity and the induction of a
procoagulant state at the endothelial cell surface (Kallinow-
ski et al., 1989). The use of interferon oc/p in the treatment of
experimental solid tumours has resulted in extensive rapid-
onset vascular endothelial damage causing ischaemic tumour
cell death (Dvorak and Gresser, 1989). IL-2 has also been
linked with endothelial damage, possibly by the stimulation
of endogenous lymphokine-activated killer (LAK) cells
(Kotasek et al., 1988).
The use of moderate hyperthermia in experimental

tumours can cause vascular failure with ischaemic death of
tumour cells (Reinhold et al., 1978; Endrich et al., 1979). The
mechanism of the vascular injury is likely to be multifac-
torial, but a direct effect on the endothelium, and especially
proliferative endothelium, has been demonstrated (Fajardo et
al., 1985). However, the response of human tumour vas-
culature to hyperthermic conditions has been less dramatic.
A vascular effect has also been suggested as part of the
mechanism of action of photodynamic therapy (Star et al.,
1986). The selective accumulation of porphyrin derivatives in
tumours as opposed to normal tissues has been attributed to
the leaky tumour vasculature (Bugelski et al., 1981). How-
ever, evidence exists to suggest that haematoporphyrin is
preferentially taken up by endothelial cells rather than
tumour cells, and that proliferating endothelial cells exceed
quiescent endothelial cells in this capacity (West et al., 1990).
A number of agents have demonstrated unexpected vas-

cular actions in solid tumours without having significant
cytostatic or cytotoxic effects on cancer cells themselves.
Flavone acetic acid (FAA) has a profound anti-vascular
action in some experimental murine solid tumours (Hill et al.,

1989; Zwi et al., 1990) and has been suggested as the pro-
totype anti-vascular agent (Denekamp, 1990). However,
phase I clinical testing of FAA failed to achieve significant
tumour regression and was complicated by dose-limiting
hypotension (Weiss et al., 1988). The electron-affinic
radiosensitiser misonidazole has been demonstrated to have
an anti-vascular action in addition to its redox capability
(Murray et al., 1987). The accumulating evidence of a vas-
cular effect in different forms of cancer therapy, and the
realisation that some agents may operate by an exclusively
anti-vascular action, has prompted the suggestion that novel
chemicals be tested for anti-vascular effects over and above
routine screening for potential tumoricidal properties
(Denekamp, 1990).
The distinctive properties of the tumour vasculature make

possible the use of bioreductive drugs in cancer therapy.
Misonidazole is an example of a non-toxic prodrug which is
reductively metabolised in hypoxic cells to a toxic form.
Using this approach the hypoxic cancer cells are targeted
rather than the genetic or proliferative status of malignant
cells. The opposite strategy can be employed using the
radioprotector WR2721 (Ethiophos) to protect normal cells
from increased radiation doses. Ethiophos is poorly taken up
by tumours, possibly as a result of reduced tumour
endothelial alkaline phosphatase activity. Normal endo-
thelium is able to phosphorylate Ethiophos, allowing trans-
port of the radioprotector into normal cells (Denekamp,
1993).
The original concept of APET envisaged the linkage of an

antibody with endothelial specificity to an S-phase cytotoxic
drug, relying on the increased proliferative rate of tumour
endothelium over normal endothelium for selectivity. Con-
cerns about possible toxicity to normal tissues (Hart et al.,
1981) and the demonstration of novel proliferation proteins
on tumour endothelium (Clarke and West, 1991) have led to
the modified aim of targeting tumour endothelium-specific
antigens. A number of monoclonal antibodies with varying
degrees of specificity for human tumour endothelium have
been reported. The first such antibody to be described EN7/
44, was derived by immunising mice with capillary-rich
suspensions from human breast carcinoma, and was specific
for endothelial cells in the tips of budding capillaries in
proliferating tissues (Hagemeier et al., 1986). An alternative
immunisation strategy employing capillary endothelial cells
which had been cultured in tumour-conditioned medium
generated antibodies HB6 and HU21, which stained the vas-
culature in a proportion of tumours without apparent vas-
cular specificity in normal tissues (Clarke and West, 1991).
The antibody, E9, has demonstrated a high degree of tumour
endothelial specificity, despite being raised by immunising
mice with unstimulated human umbilical vein endothelial
cells. An interesting feature of this antibody was a con-
siderable degree of heterogeneity of intensity of endothelial
staining with individual tumours, prompting the authors to
suggest that this might reflect unequal distribution of
endothelial activating factors within the tumour substance
(Wang et al., 1993). Incidental evidence for tumour
endothelium-specific antigens has been demonstrated by
workers investigating the immunobiology of osteosarcoma
(Bruland et al., 1988) and renal carcinoma (Oosterwijk et al.,
1986).
A 165 kDa cell-surface glycoprotein known as endosialin is

probably the best characterised of the tumour endothelium-
specific antigens identified. Antibody FB5, which has
specificity for endosialin, was derived by immunising mice
with human fetal fibroblasts. Endosialin was shown to be
expressed by endothelial cells in 67% of a total of 128
malignant tumours tested, and was not present on endo-
thelial cells in normal tissues (Rettig et al., 1992). Recently,
tumour endothelial specificity has been claimed for endoglin,
the antigen recognised by monoclonal antibodies TEC4 and
TECI1. Immunotoxins constructed from TEC11 have been
shown to be selectively cytotoxic for proliferating rather than
non-dividing endothelial cells in vitro (Thorpe et al., 1994).
However, endoglin has previously been identified as a major
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endothelial TGF-P-binding glycoprotein (Cheifetz et al.,
1992), with a pan-endothelial distribution in most normal
tissues (Gougos and Letarte, 1990; Lastres et al., 1992). The
explanation for the apparent tumour vascular specificity of
antibodies TEC4 and TEC 1 remains unclear, given the
staining characteristics of other antibodies with specificity for
endoglin.

Antibody-mediated tumour vascular targeting has been
tested in an animal system in which a neuroblastoma cell line
was grown in nude mice. The tumour vasculature was
induced to express MHC class II determinants by transfec-
tion of the tumour cell line with interferon-Ty. Frozen section
immunohistochemistry was used to demonstrate that the
tumour vasculature could be stained specifically using an
anti-class II MHC antibody, and that the tumour cells
themselves could be stained using an antibody directed at an
MHC class I antigen present on the tumour allograft but
absent from the host (Burrows et al., 1992). Classical tumour
cell targeting and tumour vascular targeting were compared
using ricin A immunoconjugates constructed from the same
MHC class I and II antibodies. These experiments not only
confirmed the theoretical superiority of vascular targeting,
but also confirmed that combination therapy using both
types of targeting resulted in the best tumour responses
(Burrows and Thorpe, 1993). If antibodies of sufficient
specificity could be raised against human tumour endothelial
proliferation proteins, a number of strategies could be emp-
loyed for therapeutic tumour vascular targeting such as con-
jugation with toxins, radioisotopes or enzymes, using the
antibody-directed enzyme prodrug therapy (ADEPT) app-
roach.

Conclusions

Antibody-mediated tumour vascular targeting could cons-
titute an attractive alternative to similar humoral approaches
directed at the parenchymal component of solid tumours.
Unlike tumour-associated antigens expressed by cancer cells,
tumour endothelial proliferation antigens are highly accessi-
ble to circulating antibodies. The failure of a single tumour
capillary as a result of this and other anti-vascular strategies
could lead to the ischaemic death of many malignant cells
with nutritional dependence on the targeted vessel. The
development of clinical applications for the related anti-
angiogenesis approach looks an increasingly realistic prospect
given the plethora of agents with anti-angiogenic properties.
The targeting of tumour endothelial proliferation antigens

and other anti-vascular approaches, in common with anti-
angiogenesis strategies, suffers from the theoretical problem
that peripheral tumour cells could survive on a diffusion-
dependent basis. However, these surviving cells should be
readily susceptible to conventional cancer treatments. An
additional cause for concern is the effect of these approaches
on wound healing, endometrial proliferation, placental
development and other physiological processes involving pro-
liferating endothelium. The theoretical benefits of vascular
targeting and anti-angiogenesis strategies for cancer therapy
still have to be realised in the clinical setting, but these
approaches represent an attractive means of overcoming con-
straints imposed on conventional cancer therapy by the
tumour vasculature.
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