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Introduction

The glucocorticoid receptor (GR) is a well-known 
ligand-dependent nuclear receptor (NR) capable of 
activating or repressing thousands of genes in the 
human body.1 GR signaling is present in a variety 
of organ systems, including the nervous, visual, 
respiratory, reproductive, and epidermal systems, 
and regulates genes involved in metabolism and 
immune and inflammatory responses.2 Similar to 
other nuclear receptors, the presence of ligands 
disrupts the binding between the heat shock pro-
tein (HSP) and GR due to the higher affinity 
between GRs and the ligand; the ligand then binds 
to GR and the complex dimerizes and translocates 

into the nucleus.1 Activated GR binds to the gluco-
corticoid response element to regulate target genes, 
which then repress the inflammatory, allergic, and 
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immune responses.3 Synthetic glucocorticoid-like 
substances, such as dexamethasone (Dex) and 
prednisolone, are used to treat inflammatory dis-
eases. Such diseases include AMD (age-related 
macular degeneration), which is caused by an 
extruded substance known as drusen that accumu-
lates due to retinal pigment epithelium (RPE) cell 
dysfunction,4–6 and pulmonary diseases, such as 
asthma.7 In addition, steroid hormones are used to 
treat rheumatic arthritis, ulcerative colitis, and 
organ transplant rejection.8 Although the GR path-
way may have multiple functions, there is a com-
mon mechanism of activation in all cells. However, 
the type of genes regulated by GR differ from cell 
to cell.9–11 Given that multicellular organisms are 
composed of many types of cells that are function-
ally divergent, genes must be differentially acti-
vated based on the cell type.

In differentiated cells, the combinations of regu-
latory transcription factors required for the expres-
sion of individual genes vary across cell types. 
Although the mechanisms of cell type–specific 
gene expression are not yet clear, early studies have 
suggested that pioneer factors are important regula-
tors of gene expression.12–14 Pioneer factors are dis-
tinguished from activators by their ability to bind to 
silent chromatin.15 The recruitment of transcription 
factors to specific genomic sequences within con-
densed chromatin is difficult. However, pioneer 
factors are able to open the binding site and facili-
tate the binding of proteins to DNA.13 Pioneer fac-
tors are able to regulate epigenetic factors by 
recruiting histone-modifying enzymes to either 
activate or repress gene expression, potentially 
facilitating cellular reprogramming, depending on 
the external conditions of the cell.16 The epigenetic 
effects of pioneer factors can be divided into his-
tone modifications and DNA methylation. Changes 
to histone modifications affect gene expression by 
allowing activating or repressive modification 
enzymes to remain in place.17 In contrast, DNA 
methylation involves the binding of transcriptional 
corepressors to histones, which suppresses gene 
expression through H3K9 methylation.18,19

Hormone signaling induces chromatin remode-
ling and converts chromatin to an open state at cer-
tain previously inaccessible GR-binding sites.20,21 
This suggests that prior to GR binding, pioneer fac-
tors remodel the chromatin structure to make it 
more accessible. FOXA1, a representative pioneer 

factor that binds to the nuclear receptors, interacts 
with the estrogen receptor (ER) and retinoic acid 
receptor (RAR), depending on the cell type.22,23 
FOXA1 expression upregulates GR binding at the 
mouse mammary tumor virus (MMTV) promoter, a 
chromatin domain regulated by GR.24 Transcription 
factors, including GR, are recruited to the MMTV 
promoter in a FOXA1-dependent manner, leading 
to increased transcriptional activity.24 In contrast, 
recent studies have shown that hormone signal 
transduction through ER and GR promotes the 
restructuring of the FOXA1-chromatin complex. 
Another pioneer factor, C/EBPβ, initially binds 
GR-binding sites in mouse liver tissue to promote 
chromatin remodeling and maintain chromatin 
accessibility.25 C/EBPβ is required for the recruit-
ment of GR and for additional chromatin remode-
ling at multiple GR-controlled de novo sites. On 
one hand, activating protein 1 (AP-1) acts as an 
essential pioneer factor to maintain chromatin in 
the open state at 40% of the GR responsive regions 
in mammary cells. On the other hand, GR recruits 
AP-1 to some binding sites in cell lines that express 
FOXA1.26,27

Here, we examined the differential patterns of 
GR-mediated gene expression in two different cell 
lines. Furthermore, we suggested that the mecha-
nism underlying this cell type–specific gene 
expression might depend on the pioneer factor 
FOXA1. Based on this, we identified genes regu-
lated by GR following treatment of two different 
cell lines, A549 and ARPE-19, with Dex, and 
examined how gene expression varied depending 
on FOXA1. Finally, we identified the factors that 
regulate cell type–specific gene regulation in A549 
and ARPE-19 cells.

Materials and methods

Cell culture

Human RPE cells (ARPE-19) purchased from the 
American Type Culture Collection (Manassas, VA, 
USA) were grown in Dulbecco’s modified Eagle’s 
medium F-12 obtained from Welgene (Daegu, 
Korea) at 37°C under 5% CO2 conditions. A549 
cells were obtained from the Korean Cell Line Bank 
(KCLB, Seoul, Korea) and maintained in Roswell 
Park Memorial Institute (RPMI) 1640 medium with 
2 mM L-glutamine and 10% fetal bovine serum 
(FBS) at 37°C under 5% CO2 conditions.



Chung et al.	 3

mRNA sequencing

Total RNA was extracted and an mRNA sequenc-
ing (mRNA-seq) library was prepared using the 
TruSeq Stranded mRNA kit (Illumina, San Diego, 
CA, USA). Polyadenylated mRNAs were purified 
using poly-T oligo-coupled magnetic beads. 
mRNAs were then fragmented using divalent cati-
ons under elevated temperature conditions. The 
fragmented RNA was subsequently used for first- 
and second-strand cDNA synthesis using reverse 
transcriptase with random primers and DNA poly-
merase I. These cDNA fragments were purified 
and enriched by polymerase chain reaction (PCR) 
to create a cDNA library. Each constructed library 
was sequenced using an Illumina NextSeq500 
instrument (Illumina). The original image data 
were converted into sequence data and stored in 
the FASTQ format. Genes showing an absolute 
fold change of at least 2 and with a false discovery 
rate (FDR) < 0.05 between the groups were con-
sidered to be differentially expressed. Gene set 
enrichment was evaluated using EnrichR.28

RNA interference

Small interfering RNA (siRNA) experiments were 
performed according to previously published 
methods.29 Transfection of APRE-19 cells was per-
formed with Oligofectamine (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s proto-
col. The following siRNA sequences were used: 
siFOXA1(1): 5′-GAGAGAAAAAAUCAACAGC 
dTdT- 3′ (sense) and 5′-GCUGUUGAUUUUUU 
CUCUCdTdT-3′ (anti-sense); siFOXA1(2): 5′-GC 
GAAGUUUAAUGAUCCACdTdT-3′ (sense) and 
5′-GUGGAUCAUUAAACUUCGCdTdT-3′ (anti-
sense); siAP-1(1): 5′-CGGACCUUAUGGCUAC 
AGUdTdT-3′ (sense) and 5′-ACUGUAGCCA 
UAAGGUCCGdTdT-3′ (anti-sense); siAP-1(2): 
5′-GGCAUGUGCUGUGAUCAUUdTdT-3′ 
(sense) and 5′-AAUGAUCACAGCACAUGCC 
dTdT-3′ (anti-sense); and siNS: 5′- UUCUCCGAA 

CGUGUCACGUdTdT-3′ (sense) and 5′-ACGUGA 
CACGUUCGGAGAAdTdT-3′ (anti-sense).

Quantitative RT-PCR (RT-qPCR)

ARPE-19 and A549 cells were treated with Dex 
(100 nM) for 16 or 24 h; then, the total RNA was 
extracted using Trizol (Invitrogen, Carlsbad, CA, 
USA) and reverse transcribed (RT) using an iScript 
cDNA synthesis kit (Bio-Rad Laboratories, 
Hercules, CA, USA) in a total volume of 20 μL. 
The RT product was used for qPCR analysis with 
specific primers. The RT-qPCR primer sequences 
are listed in Table 1.

Statistical analysis

The P-values for pathway analysis (Kyoto 
Encyclopedia of Genes and Genomes (KEGG)) 
were obtained using Fisher’s extract test, which is a 
proportion test that assumes a binomial distribution 
and independence for the probability of any gene to 
belong to any set.28 Statistical analysis of the 
RT-qPCR results was performed using a Student’s 
two-tailed t-test; *P < 0.05 represents a significant 
difference (vs vehicle-treated control, n = 3).

Results

Differential gene expression mediated by GR in 
ARPE-19 and A549 cells

To explore the differing patterns of GR-mediated 
gene expression in two GR-responsive cell lines, 
ARPE-19 and A549, transcriptional analysis was 
performed on these cells following their treatment 
with Dex (Figure 1(a)). Eighty-six genes were dif-
ferentially expressed between the two cell lines 
(Figure 1(b)). There were four genes that showed 
altered expression following Dex treatment, when 
compared to the control, in both cell lines.  
In ARPE-19 cells, the expression of 15 and 8  
genes was increased and decreased, respectively, 

Table 1.  Primers used for RT-qPCR experiments.

Name Forward Reverse

ENACα AACGGTCTGTCCCTGATGCT TTGGTGCAGTCGCCATAATC
18S GAGGATGAGGTGGAACGTGT TCTTCAGTCGCTCCAGGTCT
FKBP5 AGGCTGCAAGACTGCAGATC CTTGCCCATTGCTTTATTGG
GILZ AGATCGAACAGGCCATGGAT TTACACCGCAGAACCACCAG

ENACα: epithelial sodium channel; FKBP5: FK506 binding protein 5; GILZ: glucocorticoid-induced leucine zipper.
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compared to the control (Figure 1(c), left panel). In 
A549 cells, 50 and 17 genes were upregulated and 
downregulated, respectively, compared to the con-
trol (Figure 1(c), right panel). RNA-seq analysis 
revealed that there were 19 ARPE-specific Dex-
regulated genes. Moreover, while 63 genes were 
found to be A549-specific, four genes showed sig-
nificantly different expression in both cell lines 
(Figure 1(d)). Based on the RNA-seq analysis, we 
confirmed the presence of cell-specific genes 

regulated by GR in ARPE-19 and A549 cells. 
These results suggest that the GR induced gene 
expression is cell type-specific.

Activation of cell type–specific signaling 
pathways by GR

To confirm the expression pattern of the cell  
type–specific genes, we performed pathway analysis 
using genes regulated by GR in A549 and ARPE-19 

Figure 1.  Differential gene expression induced by GR in ARPE-19 and A549 cells: (a) experimental setup for the identification of 
cell type–specific genes. (b) Heat map generated from RNA-seq analysis of ARPE-19 and A549 cells treated with Dex (100 nM) for 
16 h, showing the differential expression of GR-responsive genes between the two groups. Values represent the log2 fold change 
(FC) relative to the vehicle-treated control (CTR). GR target genes are divided into three groups: ARPE-19-specific genes, A549-
specific genes, and genes regulated by GR in both cell lines (non-specific genes). (c) The number of genes that were upregulated or 
downregulated by GR in ARPE-19 or A549 cells. (d) Venn diagram showing the number of genes that are ARPE-19-specific, A549-
specific, and non-specific.
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cells. Pathway analysis (KEGG) was performed 
using EnrichR and revealed that GR was associated 
with different pathways in ARPE-19 and A549 cells. 
Specifically, genes that were differentially regulated 
by GR in ARPE-19 cells were enriched for the PI3K-
Akt signaling pathway (P = 0.0076), extracellular 
matrix (ECM)–receptor interaction (P = 0.004), and 
axon guidance (P = 0.010) (Figure 2(a) and 
Supplemental Figure S1). In contrast, the genes that 
were differentially expressed following Dex treat-
ment in A549 cells were enriched for leishmaniosis 
(P = 0.0019), serotonergic synapse (P = 0.0063), 

and aldosterone-regulated sodium reabsorption 
(P = 0.0076) (Figure 2(b)). From the KEGG path-
way analysis, we selected a list of genes related to 
the three pathways with the highest enrichment 
scores from the RNA-seq results from each cell line. 
A heat map was generated to represent the signifi-
cantly different gene expression patterns of the two 
cell lines after Dex treatment (Figure 2(c) and (d)). 
This suggests that different sets of genes are 
expressed in a cell type–specific manner after Dex 
treatment, which could be mediated by different 
mechanisms.

Figure 2.  Activation of cell type–specific signaling pathways by GR. (a, b) Among the GR-responsive genes, ARPE-19-specific 
and A549-specific genes were categorized according to gene function via KEGG pathway analysis. Statistically significant pathways 
(P < 0.05) are listed. (c, d) Heat map showing the expression level of genes belonging to major pathways identified through KEGG 
analysis of GR target genes in ARPE-19 and A549 cells.
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Identification of cell type–specific genes 
regulated by GR

After identifying the presence of cell type–specific 
genes using transcriptome analysis, RT-qPCR was 
used to validate the genes selectively expressed in 
A549 and ARPE-19 cells, along with the genes reg-
ulated by GR in both cell types. After 16 and 24 h of 
Dex treatment in ARPE-19 cells, epithelial sodium 
channel (ENACα) expression increased by 38.6-
fold and 26-fold, respectively, compared to the 
vehicle-treated control. In A549 cells, there was 
only a 2-fold and 1.9-fold increase in ENACα 
expression after 16 and 24 h of Dex treatment, 
respectively (Figure 3(a) and Supplemental Figure 
S2). Thus, ENACα was defined as an ARPE-19-
specific GR target gene. In contrast, FK506 binding 
protein 5 (FKBP5) showed opposite expression 
patterns in both cell lines. ARPE-19 cells treated 
with Dex for 16 and 24 h exhibited 2.4-fold and 2.1-
fold higher FKBP5 expression, respectively, com-
pared to the control group. In contrast, the increase 
in FKBP5 expression in the A549 cells was 11.6-
fold and 12.3-fold after 16 and 24 h of Dex treat-
ment, respectively (Figure 3(b)). This suggests that 
FKBP5 is A549-specific. Unlike the above two 
cases, the expression of glucocorticoid-induced 
leucine zipper (GILZ) by Dex was significantly 
increased in both cell lines (Figure 3(c)).

FOXA1 acts as a pioneer factor for ARPE-19-
specific ENACα expression

Among the genes identified by RT-qPCR, ENACα 
was specifically expressed in ARPE-19 cells. With 

regard to ENACα expression, we hypothesized that 
there might be an underlying mechanism responsi-
ble for differential gene regulation in ARPE-19 and 
A549 cells, and that this might be attributed to a 
pioneer factor. To investigate the pioneer factor 
potentially involved in ENACα expression induced 
by Dex in ARPE-19 cells, we observed changes in 
the Dex-induced expression of ENACα after 
knocking down FOXA1 or AP-1 in ARPE-19 cells.

ARPE-19 cells deficient in FOXA1 showed sig-
nificantly reduced ENACα expression after treat-
ment with Dex for 8 or 24 h compared to the 
untreated group (Figure 4(a)). In contrast, AP-1 
knockdown in ARPE-19 cells resulted in no statis-
tically significant change in ENACα expression 
(Figure 4(b)). These results suggest that FOXA1 
plays a role as a pioneer factor to enable selective 
expression of ENACα in ARPE-19 cells, but not in 
A549 cells.

Discussion

Most GR-binding sites are constitutively open and 
accessible. However, the binding of pioneer factors 
to specific sites on genomic loci causes local chro-
matin accessibility and promotes the recruitment 
of other transcription factors. FOXA1 has been 
studied as a pioneer factor that interacts with ster-
oid receptors to bind to specific genomic loci. In 
particular, FOXA1 is the main factor interacting 
with ER during the development of breast can-
cer.23,30–32 FOXA1-mediated regulation of GR has 
been identified from the analysis of the MMTV 
promoter region, a chromatin domain regulated by 

Figure 3.  Identification of cell type–specific genes regulated by GR. (a, c) Expression of GR target genes (ENACα, FKBP5, and GILZ) 
in ARPE-19 and A549 cells determined by RT-qPCR. Cells were treated with Dex (100 nM) for 16 or 24 h before being harvested. 
Total RNA was analyzed by RT-qPCR. Levels of all mRNAs were normalized to that of 18S rRNA.
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GR. FOXA1 alters the chromatin structure, regard-
less of whether GR binds to MMTV.24 The binding 
of GR is enhanced by FOXA1, which optimizes 
the chromatin structure and mediates the binding 
of additional transcription factors associated with 
GR. In a FOXA1-dependent manner, FOXA1 and 
GR recruit related transcription factors, including 
NF1 and Oct1, leading to in an increase in tran-
scriptional activity of the genes.24 The interaction 
between NRs and transcription factors can be either 
dependent or independent of DNA binding. 
Mechanisms independent of DNA binding include 
the binding between GR and AP-1, a pro-inflam-
matory transcription factor, which is mediated 
through protein–protein interactions in the absence 
of GR responsive element (GRE). AP-1 also main-
tains the accessible chromatin structure, allowing 
the selective access of GR to specific sites. The 

loss of AP-1 significantly reduces the binding of 
GR to the DNA.33,34 This could be due to the fact 
that GR must bind with AP-1 to bind the DNA or 
because of the increased chromatin accessibility 
established by the activation of AP-1. In addition, 
AP-1 is recruited to the TR responsive element 
(TRE) inflammatory gene to induce transcription 
and serves as a pioneer for the subsequent recruit-
ment of GR.33,34 Regulators that involve in GR 
binding may be cell type-specific. The AP-1 motif 
was identified at the GR-binding site in hepato-
cytes, and the enrichment of motifs for other pro-
teins (e.g. SP1 and forkhead motifs) was 
confirmed.35 These results suggest that the role of 
this factor in the binding of GR to the chromatin is 
to provide cell type–associated specificity. In this 
study, we demonstrated that different genes are 
expressed in different cell types in response to a 
common activator (GR), resulting in the activation 
of different biological pathways. In addition, vari-
ous transcriptional mechanisms are involved in 
different cell types to control the expression of the 
same gene, suggesting that pioneer factors play an 
important role in these processes. One limitation of 
our study was that we used only two cell lines in 
our RNA-seq experiment. Follow-up studies can 
also aim to identify if there are additional patterns 
of GR-mediated gene expression in various tissue-
specific cell types. Another limitation of this study 
is that the existence of intracellular signaling path-
ways coupled with epigenetic regulators (e.g. coac-
tivators or corepressors) of cell type–specific gene 
expression was not considered. For example, 
receptor-mediated intracellular signaling cascades 
such as SGK1, ERK, and PKA have been reported 
as a mechanism regulating the expression of 
ENAC.36,37 Most recently, GR has been reported to 
activate transcription via the direct binding of a 
1.3-kilobase portion of the ENACα gene with 
CARM1 and p300.38

Conclusion

Our findings indicate that the expression of ENACα 
in ARPE-19 cells is regulated via FOXA1 and pro-
vide insights into the molecular mechanisms of the 
cell type–specific expression of GR-regulated 
genes. We also highlight the potential for the treat-
ment of clinical diseases (e.g. liddle syndrome, 
ulcerative colitis, and pulmonary edema) due to the 
imbalance of ENAC function.

Figure 4.  FOXA1 is a pioneer factor mediating ARPE-
19-specific expression of ENACα (a) ARPE-19 cells were 
transfected with non-specific siRNA (siNS) or two siRNAs 
targeting different sites of the FOXA1 mRNA (siFOXA1(1) 
and siFOXA1(2)) to knock down FOXA1 (left panel). Cells 
were treated with Dex (100 nM) for 8 or 24 h before being 
harvested, and ENACα expression in ARPE-19 cells was 
assessed by RT-qPCR. Total RNA was analyzed by RT-qPCR. 
All mRNA levels were normalized to that of 18S rRNA (right 
panel). (b) The expression of ENACα in AP-1-depleted ARPE-19 
cells (left panel) was assessed by RT-qPCR. Total RNA was 
analyzed by RT-qPCR. All mRNA levels were normalized to 
that of 18S rRNA (right panel).
n.s.: not significant.
*P < 0.05.
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