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CovidCTNet: an open-source deep learning approach to
diagnose covid-19 using small cohort of CT images
Tahereh Javaheri1,22, Morteza Homayounfar2,22, Zohreh Amoozgar3,22, Reza Reiazi 4,5,6,22, Fatemeh Homayounieh7, Engy Abbas8,
Azadeh Laali9, Amir Reza Radmard 10, Mohammad Hadi Gharib11, Seyed Ali Javad Mousavi12, Omid Ghaemi10, Rosa Babaei13,
Hadi Karimi Mobin13, Mehdi Hosseinzadeh14,15, Rana Jahanban-Esfahlan16, Khaled Seidi16, Mannudeep K. Kalra 7,
Guanglan Zhang1,17, L. T. Chitkushev1,17, Benjamin Haibe-Kains4,5,18,19,20, Reza Malekzadeh21 and Reza Rawassizadeh 1,17✉

Coronavirus disease 2019 (Covid-19) is highly contagious with limited treatment options. Early and accurate diagnosis of Covid-19 is
crucial in reducing the spread of the disease and its accompanied mortality. Currently, detection by reverse transcriptase-
polymerase chain reaction (RT-PCR) is the gold standard of outpatient and inpatient detection of Covid-19. RT-PCR is a rapid
method; however, its accuracy in detection is only ~70–75%. Another approved strategy is computed tomography (CT) imaging. CT
imaging has a much higher sensitivity of ~80–98%, but similar accuracy of 70%. To enhance the accuracy of CT imaging detection,
we developed an open-source framework, CovidCTNet, composed of a set of deep learning algorithms that accurately differentiates
Covid-19 from community-acquired pneumonia (CAP) and other lung diseases. CovidCTNet increases the accuracy of CT imaging
detection to 95% compared to radiologists (70%). CovidCTNet is designed to work with heterogeneous and small sample sizes
independent of the CT imaging hardware. To facilitate the detection of Covid-19 globally and assist radiologists and physicians in
the screening process, we are releasing all algorithms and model parameter details as open-source. Open-source sharing of
CovidCTNet enables developers to rapidly improve and optimize services while preserving user privacy and data ownership.

npj Digital Medicine            (2021) 4:29 ; https://doi.org/10.1038/s41746-021-00399-3

INTRODUCTION
In the era of communication, the current epidemic of highly
contagious Covid-19 (SARS-Cov-2) has negatively impacted
the global health, trade, and economy. To date, the mortality
rate of Covid-19 is estimated to be 35–45 times higher than
the pandemic influenza, accounting for more than 1,000,000
deaths1–4. Covid-19 has surpassed its predecessors SARS-CoV, and
MERS-CoV, in morbidity and mortality5. Unfortunately, the long-
term studies on SARS-CoV, the cause of SARS6, did not find
effective and safe treatments7. Lack of effective therapy under-
lines the importance of early diagnosis, rapid isolation, and strict
infection control to minimize the spread of Covid-19.
Currently, diagnosis is mainly based on the patient’s medical

history, RT-PCR, and CT imaging8–12. High error (30–35%) of RT-
PCR8,9,13, lack of distinction between viral contamination versus
disease-bearing individuals14 or false-positive/negative15 may
have contributed to the high prevalence of Covid-19 and the
dismal therapeutic outcomes. Here, CT imaging plays a critical role
in Covid-19 diagnosis since it not only detects the presence of
disease in the lung but also enables identifying the stage of the
disease by scoring the CT images9,16,17. CT imaging, however,
has its own limitations that need to be addressed. The lack of

specificity and the similarities between the lung lesions generated
by other types of viral infection or community-acquired pneumo-
nia (CAP) may contribute to misdiagnosis for Covid-1918–20.
We hypothesized that using robust tools such as machine
learning can resolve the CT imaging technical bias and corrects
for human errors17,21–26.
An appropriate machine learning framework for Covid-19

detection should (i) be able to assist radiologists and their staff
to rapidly and accurately detect Covid-19, (ii) be compatible with a
wide range of image scanning hardware’s, and (iii) be user friendly
to the medical community without computer-science expertize. In
our effort to address the clinical diagnostic needs in the Covid-19
pandemic crisis under institutional review board (IRB) approval (IR.
TUMS.VCR.REC.1399.007), we designed CovidCTNet framework.
CovidCTNet is composed of a pipeline of deep learning algorithms
trained on identifying Covid-19 lesions in lung CT images to
improve the process of Covid-19 detection.
While deep learning approaches used for Covid-19 detection

require large datasets27–29, CovidCTNet by employing BCDU-Net30

requires only a small sample size for training to achieve accurate
detection of Covid-19 without potential bias. For these reasons,
our model is significantly different from other models25,29,31,32
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which requires a large dataset of CT images. In our framework, we
first applied multiple pre-processing steps on CT images using
BCDU-Net30 which is designed based on the U-Net33,34, a well-
known convolutional network for biomedical image analysis.
BCDU-Net is an optimum network due to memory (LSTM cells),
allowing the model to remember the structure of the healthy lung.
In particular, the CovidCTNet used BCDU-Net to (i) clean images,
i.e., removing the image segments unrelated to infection, such as
heart, skin, or the bed of CT image device and (ii) train a noise
cancellation model, which was used by our model to extract
infection. Note that both Covid-19 and CAP are associated with a
lung infection, and visually they are very similar. Therefore, a
robust Covid-19 identification approach should distinguish them
accurately. Otherwise, classification algorithms cannot distinguish
Covid-19, CAP, and control lungs in the small dataset and from
original CT images. However, with the assistance of BCDU-Net,
our model cleaned the CT images from other tissues, except the
lung infection.
After the process of infection extraction, the result of CT images

was fed into a convolutional neural network (CNN) to classify the
given CT images as control, CAP, or Covid-19. All of our codes,
including details of model parameters, are clearly explained and
released as open-source. In this study, we developed the
CovidCTNet, which consists of a pipeline of deep learning
algorithms to accurately detect Covid-19 infection. A heteroge-
neous dataset was analyzed in this study to ensure that
CovidCTNet can address the needs of hospitals across the globe,
irrespective of the sample size, an imaging device (hardware), or
the imaging software.

RESULTS
Extraction of Covid-19 lesions from CT images
We assessed a dataset consisting of 16,750 slices of all CT scan
images from 335 patients. Among this dataset, 111 (5550 CT slices)
patients were infected with Covid-19 with a confirmed RT-PCR,
patient’s medical history, and radiologist diagnosis. The second
cohort was 115 (5750 CT slices) patients infected with CAP or
other viral sources with CT images that can be potentially

misdiagnosed for Covid-19. Our Control group consists of a
cohort of patients 109 (5450 CT slices) with healthy lungs or other
non-Covid-19/non-CAP diseases. Additionally, a cohort of 70 CT
scans was used from SPIE-AAPM-NCI lung nodule classification
challenge dataset35, a heterogeneous dataset that contains lung
cancer as well (summarized in Tables 1 and 2). 66 cases (21,888 CT
slices) out of 70 were randomly selected for training and validation
phases. Four cases served as a control for reader tests. CT images
were acquired from multiple institutions, including five medical
centers in Iran, a country that is highly affiliated with Covid-19 and
from publicly available dataset from lung nodule classification
(LUNGx) challenge, an archive generated by the University of
Chicago35,36.
The dataset was collected from 12 different CT scanner models

of five different brands. Our sample size was small and to achieve
a high performing model that is operational and unbiased, we
used BCDU-Net as the backbone of our model. To identify Covid-
19 in the lung as well as CAP lesion, we generated pseudo-
infection anomalies in the CT control images using Perlin noise37.

CovidCTNet mitigates the challenge of small dataset by
highlighting the infection
To test whether applying Perlin noise and using BCDU-Net is
necessary for preprocessing and if they increase the accuracy of
our model, we conducted a validation experiment. The 3D CNN
model was performed with and without the use of BCDU-Net and
Perlin noise. The implementation of BCDU-Net significantly
boosted the accuracy of the model and demonstrated the
importance of using Perlin noise and preprocessing steps. Figure
1 presents binary cross entropy (loss) and accuracy of the
CovidCTNet in different conditions. While the accuracy of the
model without using BCDU-Net and Perlin noise at the training
phase is very high, it drops significantly in the validation phase.
This confirms that the features and parameters that were selected
by the CNN model (without BCDU-Net) were not sufficient. In
addition, applying them significantly changes the accuracy of
training and validation, which demonstrates the need for
preprocessing in increasing the model robustness. Note that the
results shown in Fig. 1a, b were generated by training the model

Table 1. Detail information of the samples in multiple steps of analysis (preprocessing, train, validation, and test phases).

#Patient cohort Control Total Loss (binary cross-entropy) Optimizer = Adam
learning rate = 0.001

CT slices with
Perlin noise

CT slices without
Perlin noise

Patients CT slices

Preprocessing-train 9913 9914 60 19,827 0.3585

Preprocessing-validation 1031 1030 6 2061 0.3638

Details of individual samples and total cases that were used in preprocessing.

Table 2. Detail information of the samples in multiple steps of analysis (preprocessing, train, validation, and test phases).

#Patient cohort Control CAP Covid-19 Total

Patients CT slices Patients CT slices Patients CT slices Patients CT slices

Train 100 100 × 50 100 100 × 50 100 100 × 50 300 15,000

Validation 5 5 × 50 5 5 × 50 5 5 × 50 15 750

Reader test 4 4 × 50 10 10 × 50 6 6 × 50 20 1000

Total 109 109 × 50 115 115 × 50 111 111 × 50 335 16,750

A summary of individual samples and total cases that were used in the train, validation, and test phases. To maintain the balance in the dataset, a total number
of 100 cases were used for each of Control, CAP, and Covid-19 groups.
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with only 50 cases for each class, which proves the necessity and
usefulness of applying the BCDU-Net for a limited amount of data.
Figure 2 presents the extracted infection by BCDU-Net in 2D and
Fig. 3 presents the extracted infection by BCDU-Net in 3D. The
output of BCDU-Net (Fig. 3) will be fed to the CNN model as an
input. It can be seen from Figs. 2 and 3 how BCDU-Net reduces the
noninfectious parts of the CT image and highlights the infections
inside the lung.

CovidCTNet accurately detects Covid-19 from other lung
diseases
The output of the algorithm (a tensor such as the right side of Fig.
3b) was fed into the CNN classification algorithm. In CNN
assessment, the dataset was split in 95% to train the algorithm,
and 5% to validate the model in the hold-out. The area under
receiver operating characteristics (ROC) curve (AUC) for Covid-19
at the validation phase was 94%, with an accuracy of 93.33% when
CNN classified Covid-19 versus non-Covid-19 (two classes) (Fig. 4).
CNN achieved the accuracy of 86.66% when it classified Covid-19
versus CAP and Control (three classes). The detection sensitivity of
90.91% and specificity of 100% were recorded for Covid-19 (Fig. 4).

CovidCTNet outperforms radiologists
To test the classification quality of our framework, an independent
dataset consisting of 20 cases mixed of Control, Covid-19, and CAP
were assessed using our framework and in parallel four certified
and independent radiologists who were not involved in the
process of data collection. The average reader performance of four
radiologists showed a sensitivity of 79% for Covid-19 and
specificity of 82.14%. The CNN classification of CovidCTNet,
however outperformed the radiologists and achieved Covid-19
detection with sensitivity and specificity of 93 and 100%,
respectively. Table 3. details the comparison of radiologist
performance versus CovidCTNet.
Radiologists performance accuracy was 81%, while CovidCTNet

classification achieved a 95% accuracy when the question was
detecting between Covid-19 versus non-Covid-19 (2 classes).
When we asked to detect Covid-19 versus CAP versus control
(three classes), again our approach outperformed the radiologists
with an accuracy of 85% compared with human accuracy of 71%.
The AUC of the model in Covid-19 detection versus reader test
was 90% (Fig. 5). The accuracy, sensitivity, and specificity of the
model showed a significantly higher validity compared to the
average of radiologists.

Fig. 1 BCDU-Net increases the robustness of the CNN model. a To show the effect of BCDU-Net on the preprocessing, the procedure was
done with and without applying BCDU-Net/Perlin noise. The outcome of the model is presented with respect to loss and accuracy. b The
confusion matrix and other classification related metrics in detail. The results shown in this figure are based on just 50 randomly selected
cases for each class of Covid versus non-Covid.
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Images of Covid-19 and CAP infection share structural
similarities
Despite some clear differences in Covid-19 and CAP infection
pattern, the high similarities in ground-glass opacities (GGO) and
consolidation on chest CT of Covid-19 and CAP (Fig. 4) makes

differential detection a challenge. Several suspicious and challen-
ging images are shown in Fig. 6.
The CAP CT slide (Fig. 6a) was misdiagnosed by radiologists

as Covid-19 or Control by radiologists but correctly by
CovidCTNet. Figure 6b is a control image that was correctly

Fig. 2 Covid-19 and CAP infection extraction by BCDU-Net. The filtered images (left) will be used for classification by CNN. An unprocessed
3D image of the whole lung infected with Covid-19 is shown in Fig. 3a. The same image was processed with BCDU-Net to remove non lung-
related parts and to extract and highlight the Covid-19 infection (Fig. 3b).

Fig. 3 Schematic representation of BCDU-Net module to detect the infection in CT images. a The original CT images visualized in point
cloud. b Reconstructed lung image acquired by feeding the CT slices (Fig. 8 middle part h) into BCDU-Net. The Covid-19 infection area is
highlighted in b.

T. Javaheri et al.

4

npj Digital Medicine (2021)    29 Published in partnership with Seoul National University Bundang Hospital



diagnosed by CovidCTNet and misdiagnosed by three radiol-
ogists. Figure 6c is a Covid-19. Its diagnosis posed a challenge
for three radiologists out of four and also for CovidCTNet. The
Control shown in Fig. 6d was misdiagnosed by two radiologists
and by CovidCTNet.

DISCUSSION
In recent studies the average sensitivity of radiologists to detect
the Covid-19 infection is reported to be approximately 70%20,
indicating the need for decision support tools to assist radiologists
in detecting Covid-19, especially in regions where there is limited
in the number of trained clinical staff or the comprehensive
expertize to detect Covid-19.
Due to the high value of patch-based classification38 we

implemented it as one of our models, which did not perform as
good as CovidCTNet on the small dataset. The CovidCTNet
improved the accuracy and consistency of lung screening for
Covid-19 detection through a ready-to-use platform with a
sensitivity of 93% and accuracy of 95% (in making a binary
decision, i.e., Covid-19 and non-Covid19). While the broad
similarity of patterns and image features of Covid-19 and CAP
posed a challenge for algorithm training, the high accuracy of the
model indicates the potential for CovidCTNet to be further refined
and adapted as a clinical decision support tool. In contrast to
state-of-the-art works17,25,26,29,31,32 the dataset we used in this
study is significantly smaller and highly heterogeneous. Adding
more CT images will increase the accuracy and performance of
the model.
Beyond optimizing and improving the Covid-19 detection,

CovidCTNet has the potential to significantly impact the clinical
workflow and patient care by offering a rapid, inexpensive, and
accurate methodology to empower healthcare workers during the
pandemic. Our radiologists are highly experienced from presti-
gious institutions. In an underrepresented region, it is not easy to
find an experienced radiologist and we believe these types of AI
systems will be significantly helpful to save lives. Importantly,
when an infection type is hard to be diagnosed by the human eye,
and when a consensus among radiologists cannot be made,

CovidCTNet can be operated as a reliable source of diagnosis. To
our knowledge, despite other promising efforts25,29,39, (summar-
ized in Table 4) CovidCTNet is an open-source framework that
allows researchers and developers to adjust and build other
applications based on it in a fraction of time. Besides, our
approach follows the guideline proposed by Mongan et al.40 for
developing an AI method for medical image analysis.
In future efforts, we intend to (i) increase other samples as the

CT scans using in this study are mostly from Iranian patients, (ii)
include other demographic details of patients including age,
gender and medical history to develop a predictive model, (iii)
testing the model with a larger number of CT scan databases to
further validate and broaden the application of our strategy.

METHODS
Pre-processing
In our effort to address the clinical diagnostic needs, with the written
informed consent of patients, under institutional review board (IRB)
approval (IR.TUMS.VCR.REC.1399.007, Tehran University of Medical

Fig. 4 Performance of CovidCTNet in detecting Control, Covid-19,
and CAP. The model’s AUC for Covid-19 detection is 0.94 (n= 15
cases). The accuracy, sensitivity, and specificity of the model are
shown. The model operation in three classes demonstrates the
detection of all three classes including Covid-19 versus CAP and
versus Control and in two classes indicates the detection of Covid-
19 as one class versus non-Covid-19 (CAP and Control) as
second class.

Table 3. Comparison of the accuracy of CovidCTNet versus
radiologists.

Precision Recall F1-score

Radiologist 1

Control 1 0.5 0.533

CAP 0.8 0.4 0.533

Covid-19 0.385 0.833 0.526

Accuracy 0.55

Radiologist 2

Control 0.5 0.5 0.5

CAP 0.889 0.8 0.842

Covid-19 0.714 0.833 0.769

Accuracy 0.75

Radiologist 3

Control 1 1 1

CAP 1 1 1

Covid-19 1 1 1

Accuracy 1

Radiologist 4

Control 0.25 0.5 0.33

CAP 0.66 0.6 0.63

Covid-19 1 0.5 0.66

Accuracy 0.55

All radiologist average

Control 0.68 0.625 0.624

CAP 0.837 0.7 0.751

Covid-19 0.774 0.791 0.738

Accuracy 0.71

CovidCTNet

Control 0.6 0.75 0.67

CAP 0.9 0.9 0.9

Covid-19 1 0.83 0.91

Accuracy 0.85

Table 2 summarizes the precision (positive predictive value), recall
(sensitivity), accuracy, and F-score of each radiologist in comparison to
the CovidCTNet.
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Sciences), we collected CT images. The CT images covered a variety of
image sizes, slice thicknesses, and different configurations of a range of CT
scanning devices. Depending on the device and the radiologist decision,
the number of scans (e.g., 60, 70, etc.), the image resolution (e.g., 512 × 512
pixels, 768 × 768 pixels, etc.), and pixel spaces in the CT images varied.
Together these factors allowed us to generate a heterogeneous collection
that accounts for differences in CT imaging that exist among the medical
community. This broad heterogeneity within the image collection aimed to
resolve the potential bias in image analysis towards a specific image
quality or types of CT imaging device40,41.
In the first step of pre-processing, the CT slices were resampled along

three axes (z, y, x) to account for the variety of voxel dimensions among
the CT slices (voxel is a single pixel, but in three dimensions). We used the
distances of 1 × 1 × 1 mm for all voxel dimensions. Our method unified CT
scans into the same scale and created a resampled dataset from the
original dataset, known as resampling to an isomorphic resolution42

(https://www.kaggle.com/kmader/finding-lungs-in-ct-data) (Fig. 8 upper
part). In the second pre-processing step, pixel value of the resampled CT
images (3D) was optimized to have a proper range of Hounsfield Units
(HU). In our dataset, the least dense object such as air takes a value of
−1000. Lung is an organ filled with air and thus acquires a HU value of
−700 to −600. Other organs that may interfere with our analysis include
water (HU of 0), fat (HU of −90 to −120) soft tissue (HU of 100–300), and
bone (HU of 300–1900).
Consequently, we filtered CT slices (2D) to remove non-lung tissue (e.g.,

skin, bone, or scanner bed) that may negatively impact our analysis and to
keep only the lung related parts with an HU value ranging from −1000 to
400. Next, a min-max normalization is applied to rescale the −1000 and
400 numerical ranges of pixels to a 0.0 and 1.0 scale (Fig. 7b). In the third
step of pre-processing, all CT slices of various pixel sizes were resized to a
uniform 128 × 128 pixels on their x and y dimensions but the number of
slices (z) remained intact (Fig. 7b).

Algorithms
The architecture of CovidCTNet is presented in detail in Fig. 8. To identify
Covid-19 in the lung from CAP lesion, we generated pseudo-infection
anomalies in the CT Control images using BCDU-Net30. The BCDU-Net
module played a critical role in allowing the detection of infections that
have numerous features in a small dataset. It helped us to increase the

accuracy and the rate of model convergence by using the initialization of
the model that is trained on the Kaggle dataset for lung segmentation
(https://www.kaggle.com/kmader/finding-lungs-in-ct-data). The BCDU-Net
was used in our model for two purposes, first cleaning images, by
removing tissues that are not related to lung infection, such as heart, skin,
or the bed of CT image device, and second canceling the noise, which is
used by our model for lung infection identification. To cancel the noise,
BCDU-Net focused on lung infection by generating Perlin noise37 (pseudo-
infection) and detecting infections. A subset of Control images mixed of
noisy and non-noisy were given to BCDU-Net as an input. At the same
time, the original Control images of noisy or non-noisy subsets were
targeted in the model as output, mimicking the Covid-19 and CAP
anomalies in the Control cases (Fig. 8 upper part). The motivation of using
artificial noise (to train the model for infection detection) was to simulate
both the healthy and infected state of the same lung. Therefore, the BCDU-
Net will learn the differences and how to extract infection from the CT
images. To learn how to clean the CT images, BCDU-Net received original
CT images without noise along with the images that have noise applied on
them. Afterward, the model learnt to identify and tried removing
unnecessary image contents such as heart tissue. By feeding the BCDU-
Net with noisy CT images, the model learnt to identify infections or lesions.
To this end, we specified the input which is a combination of original

healthy CT images and the CT images with noise. We defined the target of
our model to be the same input CT images but without noise.
Consequently, the output of BCDU-Net is de-noised and reconstructed
CT images from the original and noisy CT images. Reconstructing the CT
images helped the model to learn the pattern of the control lung and
reconstruct the original Control image as output by noise reduction (de-
noised) and infection removal (Fig. 8b, c). Thus, Covid-19 or CAP images
could not be reconstructed correctly at this stage. Identifying the Control
lung pattern led to recognition of non-control slices such as Covid-19 or
CAP. In the first step, the training phase (Fig. 8 upper part) starts by
randomly selecting a dataset of 66 control patients (21,888 slices) and
applying the pre-processing steps on their CT images (Fig. 8a, b). The
dataset was divided into two subsets: (i) the original CT images of
10,944 slices (Fig. 8c right), and (ii) CT images of 10,944 slices with applied
Perlin noise37 (Fig. 8c left). The BCDU-Net model was trained with two
noisy and non-noisy subsets of Control images and the trained model was
frozen at this step (Fig. 8d).
Next, we applied pre-processing to the entire dataset. To ensure fair

comparison, the images that were used in the pre-processing step (Fig. 8
upper part), were excluded from the validation step.
Afterwards these CT slices, including Control, CAP and Covid-19 were

resized (Fig. 8 middle part e, f) and fed into the frozen BCDU-Net model
(Fig. 8, middle part g). The output of the BCDU-Net is the de-noised CT
slices (Fig. 8, middle part h). The algorithm subtracted the output of BCDU-
Net, the lung slices without infection, (Fig. 8, middle part i) from the
preprocessed CT slices, infected lung with Covid-19 or CAP (Fig. 8, middle
part e, f) to acquire the infected areas of lung (Fig. 8, middle part i).
Because the outcome of subtraction (Fig. 8, middle part i) depicted the
highlighted infection area (Covid-19 and CAP) without other tissues or
artifacts (Fig. 8, middle part image in violet color and Fig. 3b), it provided a
reliable source for the infection classification as Covid-19 or CAP. Further
examples of the result of this step are shown in Fig. 2, which shows exactly
how Covid-19 and CAP infections were extracted by BCDU-Net. In other
words, an example of the subtracted data (violet CT slices resulted from
Fig. 8, middle part k) depicts the infection area in the lung (Fig. 3b).
In the validation, we observed that the subtraction resulted from original

non-infected CT slices versus the output of BCDU-Net was insignificant,
confirming the accuracy of detecting noise as an indication for the infected
area. The slices at z-axis were concatenated to generate a 3D CT image that
was the input of a three-dimensional convolutional neural network (CNN)
model (Fig. 8, middle part j). The outcome of CT slices was resized due to
high variation among the number of CT slices for each patient (Fig. 8,
middle part k). Resizing ensures that all CT images have equal sizes, which
is required by CNN to have a unified size (50 × 128 × 128). Here, 50 in the z-
axis indicates that all the patients’ CT slices were resized to 50 slices. These
3D images were already labeled by radiologists as Covid-19, CAP, or
control. To implement the classification algorithm, we used CNN. In the
final step, the result of Fig. 8 middle part k was fed into the CNN model
(Fig. 8, lower part l) as a training dataset. In the training phase, the model
learned to distinguish Covid-19, CAP, and control. CNN model was then
validated by using 15 cases that were selected randomly and were never
used before in any of the training and preceding steps. The output of the

Fig. 5 Comparison of the outcome of CovidCTNet versus reader
study. Performance of model and radiologists (reader) in a pool of
chest CT dataset mixed of control, Covid-19 and CAP. AUC of Covid-
19 is 0.90 (n= 20 cases). The accuracy, sensitivity, and specificity of
readers versus model are shown. The model operation in three
classes demonstrates the detection of all three classes including
Covid-19, CAP, and control separately and in two classes indicates
the detection of Covid-19 as one class versus CAP and control as
second class. While macroaverage takes the metric of each class
independently and computes their average, the microaverage
computes the average metric after aggregating the contributions
of all classes.
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CNN algorithm is a numerical value that classifies the given patient CT
images as Covid-19 or CAP or control (Fig. 8, lower part l).
The slices at z-axis were concatenated to generate a 3D CT image that was

the input of a three-dimensional convolutional neural network (CNN) model
(Fig. 8, middle part j). The outcome of CT slices was resized due to high

variation among the number of CT slices for each patient (Fig. 8, middle part
k). Resizing ensures that all CT images have equal sizes, which is required by
CNN to have a unified size (50 × 128 × 128). Here, 50 in the z-axis indicates
that all the patients’ CT slices were resized to 50 slices. These 3D images
were already labeled by radiologists as Covid-19, CAP, or control.

Fig. 6 Representative examples of CT images used to test the performance of CovidCTNet versus radiologists. a A CT image of CAP. This
image is misidentified as Covid-19 or control by two out of four radiologists and correctly diagnosed by CovidCTNet. b A CT image of control,
that was misdiagnosed by three out of four radiologists as Covid-19 or CAP and correctly diagnosed by CovidCTNet as control. c A sample of
Covid-19 that was detected as Control by CovidCTNet and as Control or CAP by three out of the entire panel of radiologists (four members). d
Image of control that was misdiagnosed by the CovidCTNet as CAP and by two radiologists as Covid-19 or control. Note that, in this figure one
single slide of the entire scan is shown as a representative of all CT images of a patient.

Table 4. Comparison of state-of-the-art Covid-19 classification approaches which used CT images.

Citation Characteristics Algorithm Outcome # of analyzed patients
(#of images)

Javaheri et al. U-net-based image preprocessing BCDU-Net and Perlin
noise exposure; CNN

AUC: 90% Sensitivity: 93%
Specificity: 100%

335 (16,750)

Bai et al.20 HU-based lung segmentation EfficientNet B4;CNN AUC: 87% Sensitivity: 89%
Specificity: 86%

1186 (132,583)

Mei et al.39 A joint model using Lung segmentation and
clinical data

ResNet-18; CNN; SVM;
Random Forest; MLP

AUC: 92%
Sensitivity: 84.3%
Specificity: 82.8%

905 (unknown)

Li et al.25 U-net-based lung segmentation Resnet50; CNN AUC: 96% Sensitivity: 90%
Specificity: 96%

3322 (4356)

Zhang et al.29 A joint model using Lung segmentation and
clinical data. U-net, DRUNET, FCN, SegNet and
DeepLabv3-based lung segmentation

3D Resnet-18; CNN AUC: 97% Sensitivity: 92%
Specificity: 85%

4154 (617,775)

This table provides a summary on existing models including their method, achieved AUC, sensitivity, and specificity. We report here the list of approaches that
rely on chest CT scans. The X-ray images were excluded from this list as they have been studied by Maguolo et al.41.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The raw image dataset generated or analyzed during this study is not publicly
available due to the patient privacy/consent. Datasets are available to qualified
researchers following completion of a Dataset License Agreement, which is available
from the corresponding author’.

CODE AVAILABILITY
To allow full reproducibility of our claims43,44 all codes are available at https://
github.com/mohofar/covidctnet. The repository contains all necessary informa-
tion of model instruction and code execution. For model validation, some CT
images of all three groups (Covid-19, CAP, and control) are included in the
dataset.

Received: 12 May 2020; Accepted: 10 December 2020;

Fig. 7 Schematic representation of the pre-processing phases. a Each patient’s CT image (3D) was resampled to isomorphic resolution,
while x and y are the image coordinates and z represents the number of slices. b All CT slices (2D) with different sizes were resized to have
128 × 128 pixels on the x and y axis, but the z axis that depicts the number of slices remained intact. Here, a 512 × 512 pixels CT slice is resized
into a 128 × 128 pixels CT slice.

Fig. 8 Multistep pipeline of deep learning algorithms to detect Covid-19 from CT images. Upper part, Training step of the model for
learning the structure of Control CT slices. Middle part, Images subtracting and lung reconstructing from CT slices with highlighted Covid-19
or CAP infection (violet color). The results of step “i” are a 2D image. The slices at z axis concatenate to generate 3D CT image, the input of
CNN model. Lower part, CNN model classifies the images that were constructed in the previous stage. To integrate this pipeline into an
application the user needs to start from stage (middle part) and then the CNN algorithm recognizes whether the given CT images of a given
patient presents Covid-19, CAP, or control. The number outside the parentheses in CNN model, present the number of channels in the
CNN model.
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