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Objective: Although previous studies have shown that gut microbiota may be

involved in the occurrence of deep venous thrombosis (DVT), the specific link

between the two remains unclear. The present study aimed to explore this

question from a genetic perspective.

Materials and methods: Genome-wide association study (GWAS) summary

data of DVT were obtained from the UK Biobank (N = 9,059). GWAS summary

data of the gut microbiota were obtained from the Flemish Gut Flora Project

(N = 2,223) and two German cohorts (FoCus, N = 950; PopGen, N = 717).

All the participants were of European ancestry. Linkage disequilibrium score

(LDSC) regression has great potential for analyzing the heritability of disease or

character traits. LDSC regression was used to analyze the genetic correlation

between DVT and the gut microbiota based on the GWAS summary data

obtained from previous studies. Mendelian randomization (MR) was used to

analyze the genetic causal relationship between DVT and the gut microbiota.

We used the random effects inverse variance weighted, MR Egger, weighted

median, simple mode, and weighted mode to perform MR analysis. We

performed a sensitivity analysis of the MR analysis results by examining

heterogeneity and horizontal pleiotropy.

Results: Linkage disequilibrium score analysis showed that Streptococcaceae

(correlation coefficient = −0.542, SE = 0.237, P = 0.022), Dialister (correlation

coefficient = −0.623, SE = 0.316, P = 0.049), Streptococcus (correlation

coefficient = −0.576, SE = 0.264, P = 0.029), and Lactobacillales (correlation

coefficient =−0.484, SE = 0.237, P = 0.042) had suggestive genetic correlation

with DVT. In addition, the MR analysis showed that Streptococcaceae had a

positive genetic causal relationship with DVT (P = 0.027, OR = 1.005). There

was no heterogeneity or horizontal pleiotropy in the MR analysis (P > 0.05).
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Conclusion: In this study, four gut microbes (Streptococcaceae, Dialister

Streptococcus, Lactobacillales) had suggestive genetic correlations with DVT,

and Streptococcaceae had a positive causal relationship with DVT. Our

findings provide a new research direction for the further study of and

prevention of DVT.
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Introduction

Deep venous thrombosis (DVT) is a venous
thromboembolic (VTE) disease that includes superficial
thrombophlebitis and pulmonary embolism (PE). DVT most
often occurs in the deep veins of the lower extremities, but it
can also occur in the deep visceral veins of the upper extremities
and vena cava (1). DVT is a common complication in almost all
inpatients and an important cause of PE and even death, with
a higher incidence in patients with traumatic conditions (2, 3).
DVT can occur due to internal diseases and as a complication
of surgical procedures and is particularly common in patients
undergoing orthopedic surgery (4–6). DVT is a common
post-operative complication in patients undergoing major
orthopedic surgery such as total hip replacement, total knee
replacement, or hip fracture surgery (HFS) (5). In retrospective
studies, the incidence of DVT after arthroscopic knee surgery
was 0.24%, while in prospective studies, it was 2.9% (7). The
incidence of DVT in patients with hemophilia undergoing
major orthopedic surgery was reported to be 10% (5). The
incidence of DVT after posterior spinal surgery has increased
more rapidly than expected (8). DVT is a major hidden danger
for medical diseases and perioperative management, which
seriously threatens the life and health of patients. However,
currently, there is no clear and effective treatment for DVT.
The prevention of DVT is the main focus of clinicians, and a
comprehensive and in-depth understanding of the related risk
factors is key to preventing DVT.

Venous thrombosis (DVT, PE) is a common and serious
disorder associated with both genetic and acquired risk
factors. Genetic risk factors can be subdivided into strong,
moderate, and weak. Strong risk factors include deficiencies in
antithrombin, protein C, and protein S. Moderately strong are
Factor V Leiden, prothrombin 20210A, non-O blood group,
and fibrinogen 10034T. There are many weak genetic risk
factors, including fibrinogen, factor XIII, and factor XI variants
(9). DVT is a common complication in patients undergoing
orthopedic surgery, and genetic risk factors and high heritability
greatly increase the risk of DVT (10). Inherited hypercoagulable
states are present in the majority of patients with VTE diseases
(11). DVT most often arises from the convergence of multiple

genetic and acquired risk factors, with an estimated incidence
of 56–160 cases per 100,000 population per year (12). Studies
have found that women with hereditary antithrombin deficiency
have a significantly increased risk of venous thromboembolism
after pregnancy and a significantly increased risk of DVT during
their second pregnancy (13, 14). Methylenetetrahydrofolate
reductase (MTHFR) gene mutations may cause an imbalance
in vasorelaxation and vasoconstriction factors, leading to the
occurrence of DVT. The frequency of the MTHFR 677TT
genotype may be related to DVT pathogenesis (15). It can be
seen that genetic factors play an important role in the occurrence
of DVT. Understanding the genetic traits related to DVT has
potential value for further studies.

Gut microbiota is a bacterial community that colonizes
the human gut and is interdependent with the human
body throughout life. In recent years, the gut microbiota
has been found to be related to immune, metabolic, and
neurological characteristics; drug metabolism; and cancer (16).
Environmental factors, such as diet and drug use, play important
roles in the composition of the gut microbiota. Studies based
on twins in families and within populations show that genetic
components also play an important role in determining the
composition of the gut microbiota and the proportion of
bacteria in the gut (17). The gut microbiota is associated
with many diseases, such as spondyloarthropathy (SpA),
osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis
(OP) (17–20).

Deep venous thrombosis and PE are common causes of
morbidity and mortality in VTE (21). Studies have found that
several diseases with an increased risk of VTE, including DVT,
are related to an imbalance in the gut microbiota characterized
by a decrease in symbiotic anaerobic bacteria and an increase in
the number of pathogenic bacteria, the most common of which
is gram-negative Enterobacteriaceae (ENTERO) (22). Bacterial
lipopolysaccharides (LPS) derived from the gut microbiota
play an important role in hypercoagulability and venous
thromboembolism. As one of the links between microbiota and
hypercoagulability, LPS activates endothelial cells and platelets
by binding toll-like receptors, leading to activation of the
coagulation cascade (22). Microbiota metabolites, including
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trimethylamine N-oxide (TMAO), remain associated with post-
incident VTE patients, highlighting the possible involvement of
gut microbiota in VTE risk and relapse (21). Gut microbiota-
dependent TMAO shows a U-shaped association with VTE
(23). The composition of gut microbiota may affect the human
coagulation system (24). Key determinants of thrombotic
risk, FVIII and VWF levels, have also been shown to
be controlled by gut microbiota-derived pathogen-associated
molecular patterns (PAMPs) that can emanate from the gut
space (25). Interaction of these gut-derived PAMPs with toll-
like receptor 2 (TLR2) on hepatic sinusoidal endothelial cells
induces increased VWF/FVIII secretion in mice. This effect
was dependent on TLR2 and gut commensals, and VWF levels
were significantly reduced in both TLR2-deficient and germ-
free mice (26). A study found that several forms of vitamin K
(menaquinones) are synthesized by Bacteroides, Enterobacter,
Veillonella, and Eubacterium lentum, which are common
members of the microbiota (intestinal microflora). Excessive
vitamin K synthesized by the microbiota can be absorbed
more than usual along the intestinal lymph vessels together
with lipids, thus affecting the coagulation cascade and venous
thrombosis (27). Although previous studies have shown a link
between gut microbiota, thrombosis, and DVT, no studies have
explored the genetic association of gut microbiota with DVT.

Linkage disequilibrium score (LDSC) regression has been
applied to existing genome-wide association study (GWAS)
summary data to assess the heritability of diseases and
traits, which can correct for polygenic inheritance effects and
confounding factors in GWASs. Mendelian randomization
(MR) is a new strategy for investigating causation between
different traits based on Mendel’s laws of inheritance (28). In
MR studies, exposure is regarded as an intermediate phenotype,
which is determined by genotype, and the differences in
genotype [generally single-nucleotide polymorphisms (SNPs)]
are used as instrumental variables (IVs) to study the association
effect between genotypes and diseases to simulate the association
between exposure and disease. Therefore, MR studies are
not affected by the confounders of traditional epidemiological
methods (such as retrospective studies) and reverse causality
(29). In this study, we used LDSC and MR to analyze the genetic
correlation between DVT and gut microbiota to broaden the
research horizon on DVT and provide new research directions
for DVT prevention.

Materials and methods

Genome-wide association study
summary data of deep venous
thrombosis

The GWAS summary data for DVT were obtained from
the UK Biobank (UK Biobank fields: 20002). In short, the

UK Biobank participants were of European ancestry. The UK
Biobank contains the ancestry genetic association maps for 118
non-binary traits and 660 binary traits for a total of 452,264
participants (males and females). In total, 9,059 DVT cases and
443,205 controls were included in our study. The Affymetrix
UK BiLEVE Axiom and Affymetrix UK Biobank Axiom arrays
were used for genotyping. We excluded individuals who were
identified by the UK Biobank as outliers based on either
the genotyping missingness rate or heterogeneity, whose sex
inferred from the genotypes did not match their self-reported
sex, and who were not of European ancestry. Finally, we
removed individuals with missingness >5% across variants
that passed our quality control procedure and those that had
a missing phenotype for 40 or more traits. An estimated
90 million genetic variants were identified in the Haplotype
Reference Consortium, 1000 Genomes, and UK10K projects.
After quality control, 62,394 genotype variants and 9,113,133
variable estimates were obtained. In previous studies, all
participants signed an informed consent form and obtained
approval from the ethics committee. Detailed information on
genotyping, estimation and quality control can be found in a
previous study (30).

Genome-wide association study
summary data of the gut microbiota

Genome-wide association study summary data of the gut
microbiota were obtained from a previous study (31). In short,
participants of European ancestry included those from the
Flemish Gut Flora Project (FGFP) (N = 2,223) and two German
cohorts (FoCus, N = 950; PopGen, N = 717). Previous studies
have provided additional information on the age, sex, height,
body mass index, and waist-to-hip ratio distribution of the
FGFP cohort (31). SHAPEIT3 was used for genotyping the
FGFP data. The UK10K and 1000 Genome Project phase 3
samples were used as reference panels, and IMPUTE4 was used
for interpolation (32). According to the quality control of the
genotype and microbiome data and considering the missing data
for the covariates, a total of 2,223 individuals were identified,
and a total of 7,711,310 SNPs were included after filtering.
All single-nucleotide variants at an inclusive association score
test threshold of P < 1 × 10−5 in the FGFP dataset were
used in a targeted meta-analysis, including two independent
German cohorts. An Illumina Omni Express + Exome array
and Affymetrix Genome-Wide Human SNP Array 6.0 were used
for genotyping the FoCus and PopGen cohorts, respectively.
Previous studies have provided basic information on the age
and sex of participants in the FoCus and PopGen cohorts
(33, 34). Quality control and interpolation were performed
for genotyping of the two cohorts. In previous studies, all
participants signed an informed consent form and approval was
obtained from the relevant ethics committee. Ultimately, 74
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gut microbiota samples were included in our study. Detailed
information regarding the data, genotyping, quality control, and
imputation can be found in a previously published study (31).

Linkage disequilibrium score
regression

Linkage disequilibrium score estimates genome-wide
genetic correlations only from GWAS summary data and is
not affected by sample overlap (32). LDSC is essentially a
linear regression, and its input data are the results of GWASs;
the independent variable in the regression is the LD score
of SNP sites, and the dependent variables are the core of the
algorithm. A custom statistic conforming to the chi-square
distribution was defined, and the relationship between the LD
score and chi-square statistic was fitted using linear regression
to determine whether there were confounding factors in the
GWAS results. LDSC can calculate each variant’s ability to tag
other variants locally, which means higher LD scores suggest
a higher possibility of tag casual sites. When LDSC was used
for genetic correlation estimation, it quantified the genetic
covariance between two traits by regressing the product of the
z-scores from two studies of traits against the LD score for each
SNP (35). Both polygenicity and confounding biases, such as
cryptic relatedness and population stratification, can yield an
inflated distribution of test statistics in GWAS. However, the
current methods cannot distinguish between inflation from
a true polygenic signal and bias. The LDSC quantifies the
contribution of each by examining the relationship between the
test statistics and LD. The LDSC regression intercept can be
used to estimate a more powerful and accurate correction factor
than the genomic control (36).

The basic principle of the LDSC approach is to directly
estimate heritability and genetic correlation from GWAS
summary data using the deviation of the observed χ2 test
statistic for an SNP from its expected value under the null
hypothesis of no association. An SNP tagging more of its
neighbors, and thus having a higher LD score, is more likely to
tag one or more causal sites that affect the phenotype. If genetic
correlations are statistically and quantitatively significant, then
we can determine that total phenotypic correlations cannot be
fully attributed to environmental confounders (37). Under a
polygenic model, in which effect sizes for variants are drawn
independently from distributions with variance proportional to
1/(p(1 – p), where p is the minor allele frequency, the expected
χ2 statistic of variant j is:

E
[

x2∣∣ `j
]
= Nh2`j/M + Na+ 1

where N is the sample size, M is the number of SNPs, such that
h2/M is the average heritability explained per SNP, a measure

of the contribution of confounding biases, such as cryptic
relatedness and population stratification, and

`j = 6kr2 jk

is the LD score of variant j, which measures the amount of
genetic variation tagged with j (36). This relationship holds for
meta-analyses and ascertained studies of binary phenotypes, in
which case h2 is on the observed scale. Consequently, if we
regress the χ2 statistics from GWAS against the LD score, the
intercept minus one is an estimator of the mean contribution of
the confounding bias to inflation in the test statistics (36).

In contrast to the genomic restricted maximum likelihood
approach, the LDSC method does not require individual-level
genotype data but instead uses GWAS summary statistics,
regressing association test statistics of SNPs on their LD scores
(38). The LD score of an SNP is the sum of LD r2 measured
with all other SNPs and can be calculated in a reference sample
of the same ethnicity when individual genotype data are not
available for the GWAS sample under the assumption that the
GWAS sample has been drawn from the same ethnic population
as the reference sample used to calculate the LD scores (38). This
method exploits the relationship between the association test
statistic and the LD score expected under polygenicity. LDSC
is a powerful tool for evaluating genetic correlations of complex
diseases and traits using GWAS summary data.

According to the standard method recommended by the
developer, LDSC analysis software1 was used to evaluate the
genetic correlation between DVT and gut microbiota. A P-value
of < 0.05 was considered suggestive of genetic correlations.

Mendelian randomization analysis

We further performed an MR analysis on gut microbes that
were found to be genetically related to DVT. Three assumptions
of MR must be met to obtain impartial results: (1) the genetic
IVs should have a strong link to the exposure; (2) the genetic
IVs are not associated with confounders linked to the chosen
exposure and outcome; and (3) genetic IVs influence the
outcome only through exposure and not via other biological
pathways (39).

To ensure the accuracy and robustness of the conclusions,
we employed a series of quality control steps to select the
valid IVs. First, we obtained SNPs associated with gut microbes
(P < 1 × 10−5) (40). Second, because strong LD among
the selected SNPs may lead to biased results, the clumping
process (r2 < 0.001, clumping distance = 10,000 kb) was
carried out to eliminate the LD between the included IVs
(18). Third, we excluded SNPs associated with the outcome

1 https://github.com/bulik/ldsc
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TABLE 1 Genetic correlation between gut microbiota and deep venous thrombosis.

Gut microbiota Correlation coefficient SE P-value FDR

Streptococcaceae Deep venous thrombosis −0.542 0.237 0.022 0.899

Dialister −0.623 0.316 0.049 0.899

Streptococcus −0.576 0.264 0.029 0.899

Lactobacillales −0.484 0.237 0.042 0.899

(DVT) (P < 1 × 10−5). Fourth, the PhenoScanner database2

was used to assess whether the selected SNPs were associated
with confounders (41). We considered the risk factors and
potential confounders of DVT (obesity, age, sex, smoking,
physical activity, use of lipid-lowering therapy, Factor V Leiden,
cancer, recent major surgery and study, and for women only
the use of oral contraceptives, use of hormone-replacement
therapy, and menopausal status) (42). Fifth, palindromic SNPs
with intermediate allele frequency were excluded. Sixth, when
SNPs were not available in the GWAS results, proxy SNPs were
identified using the LDlink online platform.3

We used the random effects inverse variance weighted
(IVW), MR Egger, weighted median, simple mode, and weighted
mode to perform the MR analysis. Random effects IVW was the
main method used, and the weighted median, simple mode, and
weighted mode were used as supplementary methods. The MR
analysis results were dominated by the random effects IVW. We
used Cochran’s Q statistic for MR-IVW analyses and Rucker’s
Q statistic for MR Egger analyses to detect heterogeneity, and
P-value > 0.05 was considered to indicate no heterogeneity
(43). We used the MR Egger method to assess the extent
to which directional pleiotropy may affect risk estimates by
intercept tests, and P-value > 0.05 was considered to indicate
no horizontal pleiotropy (41). Because MR Egger may show
lower accuracy in some cases, the MR pleiotropy residual sum
and outlier (MR-PRESSO) method was also used to assess
outlier SNPs and potential horizontal pleiotropy (41). The
distortion test embedded in the MR-PRESSO analysis can detect
outliers present in the MR analysis. The global test embedded
in the MR-PRESSO analysis can detect horizontal pleiotropy,
with P-value > 0.05 considered to indicate no horizontal
pleiotropy (28).

Results

Genetic correlation estimation

Linkage disequilibrium score was used to analyze the genetic
correlation between DVT and gut microbiota. After LDSC
regression analysis, we obtained the results of the genetic

2 http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner

3 https://ldlink.nci.nih.gov/

correlation evaluation between the 74 gut microbiota and DVT.
The LDSC analysis results of the 74 gut microbiota samples
and DVT are shown in Supplementary Table 1. Considering
the multiple testing burden, we used a correlation threshold
of 0.05/74 = 0.00068. However, in our LDSC analysis, no
gut microbiota met this condition. In addition, our false
discovery rate was not ideal, but it is a very strict statistical
criterion. Therefore, we considered the gut microbiota with a
P-value in the range of 0.00068–0.05 as a suggestive association.
Among the 74 gut microbiota, four taxa had suggestive
genetic correlations with DVT: Streptococcaceae (correlation
coefficient = −0.542, SE = 0.237, P = 0.022), Dialister
(correlation coefficient = −0.623, SE = 0.316, P = 0.049),
Streptococcus (correlation coefficient = −0.576, SE = 0.264,
P = 0.029), and Lactobacillales (correlation coefficient =−0.484,
SE = 0.237, P = 0.042) (Table 1 and Figure 1).

Genetic causal estimation

After a series of quality controls and removing a smoking-
related SNP (rs2952251), we finally obtained 16 SNPs as IVs
for the MR analysis of Streptococcaceae and DVT, including
three palindromic SNPs (rs395407, rs6563952, and rs76717940).

FIGURE 1

Genetic correlation analysis between deep venous thrombosis
and gut microbiota. Abscissa: the number of gut microbiota,
arranged in number order for the gut microbiota (74 gut
microbiota). Ordinate: P-value of the results of the genetic
correlation analysis between deep venous thrombosis and gut
microbiota. Null: The linkage disequilibrium score regression
showed the gut microbiota that had no suggestive genetic
correlation with deep venous thrombosis, that is, ineffective gut
microbiota (P-value > 0.05).
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We obtained 12 SNPs as IVs for MR analysis of Dialister
and DVT, including one palindromic SNP (rs517089). We
obtained 17 SNPs as IVs for the MR analysis of Streptococcus
and DVT, including two palindromic SNPs (rs395407 and
rs6563952). After removing a smoking-related SNP (rs2952251),
we obtained 18 SNPs as IVs for the MR analysis of
Lactobacillales and DVT, including four palindromic SNPs
(rs111552159, rs1962325, rs74352383, and rs76717940). None of
the SNPs were proxied.

The random effects IVW results showed that
Streptococcaceae (P = 0.043, OR = 1.003) had a positive genetic
causal relationship with DVT. The weighted median results
also showed that Streptococcaceae (P = 0.027, OR = 1.005)
had a positive genetic causal relationship with DVT. The MR
Egger, simple mode, and weighted mode analyses showed
that Streptococcaceae had no genetic causal relationship with
DVT (P > 0.05). In addition, random effects IVW, MR Egger,
weighted median, simple mode, and weighted mode showed
that Dialister, Streptococcus, and Lactobacillales had no genetic
causal relationship with DVT (P > 0.05) (Figures 2, 3).

The MR-IVW and MR Egger tests showed that our MR
analysis results had no heterogeneity (P > 0.05). The results
of the MR Egger test of horizontal pleiotropy showed that our
MR analysis results had no horizontal pleiotropy (P > 0.05).
The MR-PRESSO global test results also showed that our MR
analysis results showed no horizontal pleiotropy (P > 0.05). The
MR-PRESSO distortion test results appeared to have no outliers
(Table 2).

Discussion

Deep venous thrombosis is a common complication of
various diseases and surgical procedures; in particular, DVT
is a common complication of orthopedic surgery. There is
currently no clear and effective preventive measure for DVT.
The gut microbiota is a complex and dynamic ecological
microbial community that settles in the human gut and is
called the "forgotten organ" (44). For the first time, we studied
the genetic correlation between DVT and gut microbiota
based on GWAS summary data from a large population
and found that Streptococcaceae, Dialister, Streptococcus,
and Lactobacillales had a suggestive genetic correlation
with DVT. There was a positive genetic causal relationship
between Streptococcaceae and DVT. In this study, the genetic
association of Streptococcaceae, Dialister, Streptococcus, and
Lactobacillales with DVT may be related to the mechanism of
DVT formation, and Streptococcaceae may be a high-risk factor
for DVT. These findings contribute to the further study of DVT,
and the regulation of Streptococcaceae may play a role in the
prevention of DVT.

There are trillions of microbes in the human body that
live in countless ecological environments in the host body

and have the highest density in the gastrointestinal tract (45).
The human gut is the natural habitat of a large and dynamic
bacterial community, which is inseparable from human health.
Gut microbiota is an important part of human life and plays
an important role in the structure and function of the human
body. Additionally, the gut microbiota plays an important
role in carbohydrate metabolism, energy production, and the
synthesis of cellular components. It can also process nutrients,
promote the development of the immune system, and stimulate
a variety of host activities (46). Individuals differ in their gut
microbiota; however, in general, family members tend to have
similar gut microbiota characteristics, which may be affected
by genetic and environmental factors (e.g., diet) (47). The
gut microbiota is the largest group of bacteria throughout the
human body and undergoes a series of changes in the process
of human growth and aging. Babies have a unique and unstable
gut microbiota, and their dominant anaerobic bacteria include
Bifidobacterium, Bacteroides, Clostridia, and Parabacteroides
(48). With increasing age, the diversity of the gut microbiota
increases, and the phylogenetic composition and function of this
community tend to be stable. The bacterial composition of the
adult intestinal epithelial barrier mainly includes Bacteroidetes,
Firmicutes, Actinobacteria and Proteobacteria (49).

Thrombosis refers to the coagulation of blood or
agglutination of some tangible components in blood to
form solid masses, which are mainly caused by damage to
vascular endothelial cells, abnormal blood flow, and increased
blood coagulation. Although thrombus formation can have
a hemostatic effect on ruptured blood vessels, in most cases,
it can cause a series of adverse events in the body, such as
blockage of blood vessels, embolism, heart valve deformation,
and extensive bleeding. Thrombosis is caused by complex
interactions between the coagulation system, the innate
immune system, and inflammation. Inflammation is related
to ecological disorders, increased intestinal permeability,
and production of specific metabolites (22). Thrombosis is
based on the cumulative effect of genetic and environmental
risk factors, and its pathogenesis is complex (50). The gut
microbiota is disturbed by various environmental and genetic
factors, which can activate vascular endothelial cells, platelets,
and inflammatory pathways of innate immune cells, thereby
releasing various coagulation proteins and leading to a pre-
thrombotic state (25). The intestinal epithelial barrier restricts
the microbiota in the intestinal lumen. When inflammation,
nutrition, antibiotics, and other factors impair the function
of the lumen, the intestinal epithelial barrier allows intestinal
microbial products and metabolites to enter the portal vein
and then enter the systemic circulation. This leads to various
pathological conditions, including potential thrombosis (51).
There is a potential correlation between the gut microbiota
and thrombosis, which also verifies the reliability of the
results of this study.
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FIGURE 2

Mendelian randomization (MR) analysis results of the exposures (Streptococcaceae, Dialister, Streptococcus, and Lactobacillales) and outcomes
(deep venous thrombosis). Five methods: random-effects inverse variance weighted, MR egger, weighted median, simple mode, and weighted
mode.

One of our important findings in this study is that there
is not only a suggestive genetic correlation but also a positive
causal genetic relationship between Streptococcus and DVT.
Streptococcaceae is an important group that includes three
genera: Streptococcus, Lactococcus, and Lactovum. According
to the data from “The Catalog of Life in 2013,” Streptococcus
contains 67 species, Lactococcus contains five species, and
Lactovum contains one species (52). Group A Streptococcus can
not only trigger immune-mediated platelet activation through
the M1 protein, leading to platelet aggregation and platelet-rich
thrombosis, but also cause knee septic arthritis to progress to
venous thrombosis in the tibia and fibula (53, 54). Streptococcus
spp. may be correlated with thrombosis. Increasing evidence
indicates that the gut microbiota is related to the pathogenesis
of liver cirrhosis (LC) complications. The abundance of
Streptococcaceae in the stool of patients with LC and patients
with advanced LC complicated by hepatic encephalopathy is
higher than that of healthy people, and Streptococcaceae is
generally highly abundant at the family level (55, 56). The
abundance of Streptococcaceae in the stool of patients with

acute-on-chronic liver failure is also higher than that in healthy
people (57). Portal vein thrombosis (PVT) is a well-known
complication of LC caused by the stagnation of portal vein blood
flow due to abdominal infection, surgery, trauma, hereditary or
acquired pre-thrombosis disease state, and vascular endothelial
injury (58). Compared with that in LC patients without PVT,
the incidence of some prothrombin genotypes, including the
Factor V Leiden G1691A mutation, methylenetetrahydrofolate
reductase (MTHFR) C677T mutation, and the prothrombin
G20210A mutation, is higher in LC patients with PVT (59).
Studies have found that anticardiolipin antibodies are also
common in LC patients with PVT and may be a potential risk
factor for PVT caused by Bacteroides fragilis bacteremia (59).
PVT in LC patients is related to genetics, thrombosis, and the gut
microbiota. We can also infer that PVT caused by thrombosis
in LC patients is potentially related to the gut microbiota and
the abundance of Streptococcaceae in the gut. Previous studies
have shown that Streptococcaceae are a high-risk factor for
DVT. The results of this study indicate that Streptococcaceae
had a positive genetic causal relationship with DVT, indicating
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FIGURE 3

Mendelian randomization (MR) analysis of the exposures (Streptococcaceae, Dialister, Streptococcus, and Lactobacillales) and outcomes (deep
venous thrombosis). (A) Scatter plot of Streptococcaceae and deep venous thrombosis; (B) scatter plot of Dialister and deep venous
thrombosis; (C) scatter plot of Streptococcus and deep venous thrombosis; (D) scatter plot of Lactobacillales and deep venous thrombosis.

that Streptococcaceae could promote the occurrence of DVT,
which is consistent with the previous literature. The positive
causal genetic relationship between Streptococcaceae and DVT
provides a new research direction for the prevention of DVT.

Another important finding of this study is the suggestive
genetic correlation between Dialister and DVT. Dialister is a
non-motile, non-spore-forming, sugar-free obligate anaerobic,
gram-negative coccus. There are currently four species of
the genus Dialister: Dialister pneumosintes, Dialister invisus,
Dialister micraerophilus, and Dialister propinicifaciens (60).
Dialister produces propionic acid in the gut (61). Recent studies

have shown that the abundance of Dialister was significantly
reduced in pediatric patients with juvenile idiopathic arthritis,
adult idiopathic nephrotic syndrome, spinal cord injury,
autism spectrum disorder, depression, and Henoch-Schönlein
purpura but was positively correlated with quality of life (62–
67). Dialister pneumosintes is a small non-fermenting gram-
negative anaerobic bacterium commonly found in the oral,
nasopharynx, intestinal, and vaginal flora (68). It has been
reported that three groups of blood cultures were performed on
patients with postpartum vaginosis and ovarian venous purulent
thrombosis, and Dialister platelets were isolated from the three
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TABLE 2 Sensitivity analysis of the MR analysis results of gut microbiota and deep venous thrombosis.

Heterogeneity test Pleiotropy test MR-PRESSO

Cochran’s Q-Test
(P-value)

Rucker’sQ-Test
(P-value)

Egger Intercept
(P-value)

Distortion
test

Global test

Exposure Outcome IVW MR-Egger MR-Egger Outliers P-value

Streptococcaceae Deep venous
thrombosis

0.356 0.296 0.673 NA 0.488

Dialister 0.987 0.975 0.989 NA 0.978

Streptococcus 0.107 0.077 0.978 NA 0.173

Lactobacillales 0.781 0.713 0.943 NA 0.919

blood culture bottles by pure culture (68). Dialister platelets may
have a certain correlation with thrombosis, which also reflects
the reliability of the results of this study.

We also found that Lactobacillales was genetically correlated
with DVT. Lactobacillales are a functional group of acid-
resistant and gram-positive bacteria that are mainly divided into
bacilli and the phylum Firmicutes, which play an important
role in human nutrition and exist as symbionts in the gut (69).
Lactic acid bacteria rely on toll-like receptor 2 and protein kinase
C, which have protective effects on intestinal epithelial barrier
function (70). During HIV infection, maintaining the ratio of
gut Lactobacillales is beneficial for restoring and protecting
the immune system (71). Stool Lactobacillus counts in type 2
diabetes patients are low (72), and Enterococcus hirae WEHI01
can improve the symptoms of type 2 diabetes by increasing
the abundance of Lactobacillales in rats (73). Lactobacillus casei
can improve the symptoms of experimental RA by suppressing
the inflammatory immune response and can be used as an
effective nutritional regulator to treat OA by reducing pain,
inflammatory responses, and articular cartilage degradation
(74). Although there have been previous case reports of PVT
and liver abscesses caused by Lactococcus lactis (75), there is
no evidence of an association between Lactobacillales and DVT.
Our findings suggest that the abundance of Lactobacillales has
a suggestive genetic correlation with DVT, providing a new
direction for further research on DVT.

Studies have found that traditional Chinese medicines
(TCMs) can differentially modulate gut microbiota based on
their nature. Antidiarrheal TCMs of different natures showed
distinct effects on the gut microbiota. Hot-natured TCMs
have no influence on the gut microbiota, warm-natured TCMs
have a moderate influence, cool-natured TCMs have a strong
influence, and cold-natured TCMs substantially change the
structure of the gut microbial community (76). Dietary nutrients
have regulatory effects on the gut microbiota. Current research
shows that dietary fibers, including arabinoxylans, galacto-
oligosaccharides, inulin, and oligofructose, promote a range
of beneficial bacteria and suppress potentially detrimental
bacterial species (77). Modulation of gut microbes will be

increasingly used to promote overall health and help treat
diseases (78). The gut microbiome is an important consideration
in cardiovascular health and disease, with gut barrier defects
leading to the transfer of gut microbes to the aorta to
trigger inflammation and microbe-derived metabolites that
induce inflammatory signaling pathways and renal dysfunction
(79). Moreover, (poly)phenols have the capacity to promote
beneficial gut bacteria through direct and collaborative bacterial
utilization and their inhibitory action on potentially pathogenic
species. The (poly)phenol duplibiotic effect could participate
in blunting metabolic disturbance and gut dysbiosis and has
therapeutic potential (80). Dietary cellulose can prevent gut
inflammation by modulating lipid metabolism and the gut
microbiota (81). In addition, studies have found that gut
microbes can modulate platelet function and thrombosis risk
(82). Gut microbes directly regulate platelet hyperreactivity and
thrombotic potential through the production of trimethylamine
N-oxide (TMAO). Studies in animal models have found
that increasing gut microbes and dietary nutrients produced
by TMAO can modulate platelet hyper-responsiveness and
thrombotic potential in vivo. Trimethylamine (TMA) is a
precursor of TMAO production in the liver and is abundant
in animal products such as eggs, liver, beef, and pork. The
dietary supplement choline is a nutrient that contains TMA. In
mice, dietary supplementation with TMAO or choline increased
plasma TMAO levels, ADP-induced platelet aggregation and
shortened the rate of clot formation in vivo. Unrecognized
mechanistic links between specific dietary nutrients, gut
microbes, platelet function, and thrombotic risk provide new
potential therapeutic targets and nutritional interventions for
the prevention of cardiovascular events and DVT (82). TMAO
levels could have clinical utility for identifying individuals who
might benefit from antiplatelet prophylaxis therapies, and it
is speculated that targeting this microbial pathway has the
potential to reduce blood clot formation without the bleeding
complications of other antiplatelet therapies (82). We speculate
that gut microbiota could be regulated by TCMs, dietary
cellulose, and TMAO, thereby preventing the occurrence of
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DVT to a certain extent. However, further research is needed to
confirm this hypothesis.

Our study analyzed genotype data from GWAS summary
datasets with a large sample size. LDSC has a strong genetic
estimation ability, and MR has a strong genetic causal inference
ability, so the results of our study are reliable. However, this
study has certain limitations. First, all subjects in this study
were of European descent, and the results of this study should
be interpreted with caution when extended to individuals of
different ethnicities. Second, the SNP set related to the gut
microbiota comes from previously published GWAS research,
and the GWAS data on the gut microbiota available on different
platforms are very limited; therefore, we could only analyze
limited gut microbiota at certain taxonomic levels. As some
gut microbiota may have been overlooked, more GWASs of the
gut microbiota are needed to illustrate the interaction between
gut microbiota and host genetics. Third, as the data are from
different populations, the results may be affected by some
confounding factors, and further research on data from the same
population may be needed in the future.

Conclusion

Based on the GWAS summary data from a large population,
we analyzed the genetic correlation between DVT and the
gut microbiota and found that Streptococcaceae, Dialister,
Streptococcus, and Lactobacillales have suggestive genetic
correlations with DVT. There was a positive genetic causal
relationship between Streptococcaceae and DVT. Our results
provide a new direction for further research on DVT. We will
continue to study the specific relationship between these gut
microbes and DVT and explore their potential value in the
pathogenesis and prevention of DVT.
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