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Advances in microfabrication enable the tailoring of surfaces to achieve optimal sort-
ing, mixing, and focusing of complex particulate suspensions in microfluidic devices.
Corrugated surfaces have proved to be a powerful tool to manipulate particle motion
for a variety of applications, yet the fundamental physical mechanism underlying the
hydrodynamic coupling of the suspended particles and surface topography has remained
elusive. Here, we study the hydrodynamic interactions between sedimenting spherical
particles and nearby corrugated surfaces, whose corrugations are tilted with respect
to gravity. Our experiments show three-dimensional, helical particle trajectories with
an overall drift along the corrugations, which agree quantitatively with our analytical
perturbation theory. The theoretical predictions reveal that the interaction of the
disturbance flows, induced by the particle motion, with the corrugations generates
locally a transverse anisotropy of the pressure field, which explains the helical dynamics
and particle drift. We demonstrate that this dynamical behavior is generic for various
surface shapes, including rectangular, sinusoidal, and triangular corrugations, and we
identify surface characteristics that produce an optimal particle drift. Our findings
reveal a universal feature inherent to particle transport near patterned surfaces and
provide fundamental insights for future microfluidic applications that aim to enhance
the focusing or sorting of particulate suspensions.
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Interactions between particles and nearby boundaries make possible a variety of processes
that depend, for example, on adsorption, reactions, or sensing (1–6). The optimal
performance of these physical systems is crucially determined by the fluid-mediated
coupling between the constituents in the flow and the confining surfaces. Thus, controlling
and predicting hydrodynamic flows in microfluidic systems establish the foundation
for various applications, such as mixing, sorting, and focusing of complex biological
or synthetic samples (4–6). Unraveling the underlying physical mechanisms is expected
to pave the way toward laboratory-on-a-chip devices for technological and biomedical
applications, which aim, among others, toward the study of fundamental chemical and
physical processes, the analysis of intracellular phenomena (7), and diagnostic tools for
disease detection (8, 9).

Current microfluidic tools relevant for these applications rely on various physical
principles, such as the filtration of specific constituents, or the use of external, e.g.,
magnetic, electric, or gravitational, fields for directed particle motion (4, 6, 10). Further-
more, the range of small-scale flows and geometries includes exploiting the emergence
of hydrodynamic forces due to inertia (11–13); the presence of pillar arrays in a channel
(14–16), i.e., a method referred to as “deterministic lateral displacement”; or the specific
channel wall properties that can be, for example, elastic (17) or hydrophobically patterned
(18). In addition, the use of corrugated or herringbone structures on channel walls has
been demonstrated to allow for rapid mixing in pressure-driven laminar streams (19); the
focusing of synthetic (20) and biological (21) constituents; and the separation of different,
heterogeneous mixtures composed of, e.g., soft and stiff cells (22, 23), heavy and light
colloids (20), or particles of different sizes (24, 25).

The latter topographically patterned systems exploit surface corrugations to generate
transverse pressure gradients in pressure-driven microfluidic channel flow, which induce
a helical circulation of the fluid streamlines. This phenomenon has received substantial
attention (19, 20, 24, 25); however, the impact of the patterned surfaces on the motion
of suspended particles has remained elusive. One common feature of these experiments is
the observation of oscillatory, or “zig-zag,” particle trajectories drifting along the nearby
corrugated walls (20, 21, 24, 25), yet the details of the underlying physics, the role of
the patterned shape, and its consequences for, e.g., sorting and focusing, remain largely
unaddressed.
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To remove the effect of the helical fluid flow on particle
transport in pressure-driven microfluidic channels with surface
corrugations from the hydrodynamic coupling between the par-
ticle and the corrugated surface, the related scenario of particle
sedimentation could provide physical insights. In this case, the
primary driving force is gravity, rather than pressure gradients,
although even here, the impact of surface corrugations has not
been studied to date. Thus, the hydrodynamic coupling between
suspended particles and nearby patterned surfaces poses a funda-
mental, open question in the field of transport at low Reynolds
numbers, which is a feature of many physical systems.

Here, we use experiments and theory to study the sedimen-
tation of spherical particles nearby corrugated surfaces, whose
corrugations are tilted relative to the gravitational force. By mon-
itoring the in-plane motion of the particles, our experiments
reveal oscillatory, or zig-zag, particle dynamics with an overall drift
along the surface corrugations, reminiscent of earlier experiments
(20, 21, 24, 25). More importantly, we measure the full three-
dimensional trajectories and demonstrate that surface corruga-
tions, in fact, generate helical motion of spherical particles, which
goes beyond the prevailing, mostly two-dimensional, picture of
particle transport near surfaces and lays the foundation for elu-
cidating the underlying physics. The particle trajectories and the
physical mechanisms of this intricate behavior can be rationalized
by a perturbation theory for the hydrodynamic flows. We further
quantify, theoretically and experimentally, the particle drift as a
function of surface shape and wavelength, which allows us to
identify and unravel both an optimal and a universal transport
behavior.

Results

Helical Particle Trajectories. We monitor spheres sedimenting in
a viscous fluid near surfaces with corrugations that are tilted with
respect to gravity (see Fig. 1 A and B and Methods for details of the
experimental setup). First, we measure the in-plane motion of the
particles (obtained from the front view [xy] of the experiment).

Our experiments show oscillatory, or zig-zag, particle trajectories
near periodic, sinusoidal surfaces leading to an overall drift along
the surface corrugations (Fig. 1C ). This dynamical behavior is
reminiscent of earlier (unexplained) experimental observations of
colloidal (20, 24, 25) and cellular transport (21) in pressure-driven
flows nearby surface corrugations and, therefore, appears to be
a phenomenon that is generic for a wide range of experimental
systems involving patterned surfaces. Subsequently, we refer to
motion along surface corrugations, if the particle moves in the
direction of the negative y axis, and to motion across surface
corrugations, if the particle moves in the direction of the positive
y axis. Our findings demonstrate that a sphere drifts along the
tilted surface corrugations, while sedimenting past a groove (dark
background color in Fig. 1C ), and across the corrugations, while
moving past a surface ridge (light background color in Fig. 1C ).
The particle drifts significantly farther along the grooves than
across the ridges, resulting in an overall drift perpendicular to the
direction of gravity (forcing).

It is important to note that the particle is confined only by one
surface in an otherwise unbounded domain. Most significantly, by
tracking the particles in three dimensions, our experiments show
that the particle trajectory exhibits helical motion (Fig. 1D). It
is well known that a sphere near a vertical planar wall sediments
only parallel to the wall (and the gravitational field) (26, 27),
and thus, the surface corrugations make this intricate observed
behavior possible by generating motion perpendicular to the
applied forcing. So far, helical trajectories have been observed only
for sedimenting objects with, e.g., irregular (28, 29) and helical
shapes (30). We demonstrate here that spheres can also follow a
helical trajectory due to hydrodynamic coupling with the nearby
surface structure.

To theoretically characterize the particle motion, we rely on
the Stokes and continuity equations for the low Reynolds number
hydrodynamic flows and a perturbation theory for a small surface
roughness amplitude, which allows calculating the roughness-
induced velocities of a spherical particle sedimenting near the
surface corrugations (31) (see Methods for the theory and Fig. 1B
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Fig. 1. Particle sedimentation near a corrugated surface. (A) Experimental setup. The particle is placed, using a tweezers, nearby the corrugated surface that is
placed along one wall in a container of castor oil. Images are taken from the front (xy) and the side (xz, not shown) to track the particle motion. (B) Model setup.
Shown is the side view of a spherical particle of radius a near a corrugated surface Sw , which is characterized by the shape function H(x, y), wavelength λ, and
amplitude A. The particle is at position rS = (xS , yS)

T and a distance h from the reference surface S0. The sphere sediments due to gravity g with translational
and rotational velocities U and Ω, respectively. Lower panel shows the front view of a 3D-printed surface with sinusoidal corrugations, which are tilted at an
angle of 45◦, with wavelength λ = 6 mm and amplitude A = 0.15 mm. (C) Two-dimensional experimental and theoretical trajectories of a spherical particle
of radius a = 1.5 mm nearby periodic, sinusoidal corrugations with wavelength λ = 6 mm and amplitude A = 0.15 mm. The initial particle–surface distance
is h0 � 0.15 mm. The gray shaded areas indicate the height of the underlying surface. The surface corrugations are tilted at an angle of 45◦. Note that the
ranges of the x and y axes differ by two orders of magnitude (x/λ ∈ [−1.6, 8] and y/λ ∈ [−0.1, 0.1]). (D) Three-dimensional experimental and theoretical helical
trajectories of a spherical particle of radius a = 1.6 mm nearby a surface with two sinusoidal corrugations, tilted at an angle of 45◦, of wavelength λ = 6 mm
and amplitude A = 0.15 mm. The initial particle–surface distance is h0 � 0.2 mm. The color scale indicates the y position of the particle.
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for a model sketch). Our theoretical predictions of the particle
trajectories quantitatively agree with our experimental measure-
ments (Fig. 1 C and D). In particular, we find good agreement
between our theory and experiments for both the in-plane motion
and the full three-dimensional trajectories. Using this theoretical
framework we can now understand the mechanism for the dis-
placements.

Roughness-Induced Pressure and Flow Fields. While our find-
ings, both experimental and with simulations, show that the
sphere exhibits a helical trajectory and moves along the cor-
rugations near grooves and across the corrugations near ridges,
the underlying physics still pose an open, unexplained question,
which we now address theoretically by deriving the roughness-
induced hydrodynamic flow and pressure fields for the near-wall
dynamics (Methods and SI Appendix).

Our findings suggest the following physical mechanism: As the
particle sediments near the wall, it produces a disturbance flow
and, consequently, interacts hydrodynamically with the nearby
surface structure, H (x , y). This interaction promotes the gen-
eration of a spatially varying pressure field (Fig. 2 A and B
and SI Appendix, Fig. S1 A and B). In particular, the pressure field
near a particle located above a surface groove, xS = 3λ/4 (Fig.
2A), indicates a pressure decrease behind the particle and an
increase of pressure in front of the particle, similar to what is ex-
pected for a sphere translating parallel to a planar wall (27). How-
ever, the presence of a nearby tilted surface ridge also generates a

transverse anisotropy in the pressure field at xS (corresponding to
x/λ= 0) along the y direction, which is larger for y/λ > 0where
the surface ridge in front of the particle is closer to the particle,
and therefore we find that ∂yp(1)(xS , yS ; h)> 0, where p(1) is
the roughness-induced pressure. Consequently, the tilted surface
ridge ‘pushes’ fluid (see Fig. 2C ) and, consequently, the particle
along the grooves (dark background color in Fig. 2C ).

This picture changes for a particle located above a surface ridge,
e.g., xS = 5λ/4 (Fig. 2 B and D). In this case, the pressure is
higher for y/λ < 0 [corresponding to ∂yp

(1)(xS , yS ; h)< 0],
where, from the perspective of the sedimenting particle, the sur-
face slope along the force direction is positive [∂xH (x , y)> 0],
and lower for y > 0, where the slope is negative [∂xH (x , y)< 0],
and hence the surface height decreases. The latter effectively opens
up space for the fluid to flow (Fig. 2D), leading to particle motion
across the ridge.

The generation of transverse anisotropy in the pressure
field explains the oscillatory motion of the particle but does
not yet explain the overall drift of the particle along the
corrugations. To investigate this, we compute the transverse
pressure gradient [∂yp(xS , yS ; h)] along the particle trajectory
C : (xS (t), yS (t), h(t)) of Fig. 1C. In particular, we find that the
magnitude of the transverse pressure gradient produced by the
particle as it moves in a groove is larger than that produced by
the particle moving above a surface ridge. While sedimenting past
a groove, the particle is on average closer to the “average” surface,
S0, than it is when sedimenting past a ridge (Fig. 3B), leading

Fig. 2. Pressure and flow fields produced by a particle sedimenting near a surface with two sinusoidal corrugations. (A and B) Contour plots of the rescaled
pressure p/(μU(0)

x �/h2) with � =
√

2ah. The velocity of a sphere sedimenting near a planar wall is U(0)
x = 2Δρga2/(9μR(0)

‖ ), where g is the gravitational

acceleration, Δρ = ρp − ρf is the density difference between the particle and the fluid, and R(0)
‖ is the dimensionless resistance to parallel motion due to the

planar wall. The black and white lines indicate minima and maxima of the corrugated surface, respectively. (C and D) Streamlines of the flow fields u/U(0)
x in the

xy plane (at z = 0.18 mm) for the sphere located at h = 0.2 mm, yS = 0, and two different positions: (A and C) xS = 3λ/4 and (B and D) xS = 5λ/4. Streamlines
are colored according to the norm of the rescaled fluid velocity and gray shaded areas indicate the height of the underlying surface shape (color bar as in
Fig. 1C). Here, x and y are measured from the particle center (xS , yS), which is indicated as a black dot. We use geometric parameters a = 1.5 mm, λ = 6 mm,
and A = 0.15 mm.
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Fig. 3. Impact of corrugation shape on particle trajectories. (A) Images of 3D-printed surfaces with two corrugations of wavelength λ = 6 mm. From Top Left:
rectangular, sinusoidal, triangular, and sawtooth shapes. (B) Side view (xz plane) of surface shapes and experimental (dots) and theoretical (black line) trajectories
(h(t), xS(t)), where h(t) is the shortest distance between the particle surface and the reference surface S0, of a sedimenting particle (with a = 1.6 mm and
h0 � 0.2 mm) along the sinusoidal surface. (C) Trajectories (xy plane) of particles (with a = 1.6 mm and h0 = 0.2 mm) sedimenting near the surfaces in A. The
green dots correspond to experiments and the black lines to the theory. δ is the lateral drift of the particle from its initial position. The surface corrugations are
tilted at an angle of 45◦. Note that the ranges of the x and y axes differ by two orders of magnitude (x/λ ∈ [−2, 4] and y/λ ∈ [−0.025, 0.025]). (D) Comparison
of the particle’s lateral drift δ near different surface shapes (trajectories from C). Here, dots correspond to experiments and lines to the theoretical predictions.

to a symmetry breaking of the transverse pressure gradient with∫
C
∂yp

(1)(xS , yS ; h)ds > 0, where s is the arc length along the
path C. Hence, the full three-dimensional information of the
particle trajectory is required to elucidate the underlying physical
mechanisms.

To study the dynamics of the helical trajectories in more detail,
we first consider the effect of the shape of the surface corru-
gations and quantify particle trajectories near surfaces with two
wavelengths of rectangular, sinusoidal, triangular, or sawtooth-
shaped corrugations (Fig. 3A). In Fig. 3 B and C, the trajectories
are shown in the xz and xy planes, respectively (see SI Appendix,
Fig. S4 for the three-dimensional trajectories). Our perturbation
theory quantitatively captures the three-dimensional experimen-
tal trajectories near these different shapes. We note that small
deviations of the three-dimensional (3D)-printed surface struc-
ture (SI Appendix, Fig. S.2) or variation in the particle–surface
distance (due to a tilt of the surface with respect to gravity
or a nonplanar surface) are sources of experimental error when
comparing the experimental results and theoretical predictions.

Irrespective of surface shape, the trajectories in the xy plane dis-
play oscillations, characterized by particle motion along the tilted
corrugations near surface grooves and across them near ridges, and
exhibit an overall drift δ along the corrugations (Fig. 3C ). For all
surface shapes, the turning point of the particle in the transverse
direction occurs when the surface height vanishes H (x , y) = 0.
The geometric details of the surface structure become manifest in
the shape of the particle trajectory. We observe that the curvature
of the turning point is related to the gradient of the surface height.

Very sharp turning points, corresponding to a large curvature of
the particle trajectory, occur for the rectangular surface at all tran-
sitions between ridges and grooves and for the sawtooth surface
where the surface height gradient is infinite, at x/λ= 0.5 and
1.5. Alternatively, the turning point of the particle motion along
the sawtooth surface at x/λ= 1, where the gradient is smaller, has
a smaller curvature. The particle trajectories during turning for the
sinusoidal and triangular surfaces show an intermediate curvature.

Our results further demonstrate that the overall drift δ depends
on the shape of the surface grooves (Fig. 3D). Particles experience
the largest drift sedimenting near the rectangular surface and ex-
perience the smallest drift sedimenting near the sawtooth surface.
This result may be rationalized by the magnitude of the gradient
of the height of the surface at the reversal point, as larger surface
height gradients generate larger pressure gradients that push the
particle along the grooves.

Trajectories as a Function of Surface Geometry. In addition to
the shape of the surface corrugations, our system is characterized
by three dimensionless geometric parameters:

λ

a
,

A

λ
,

h0
a

(
or

〈h〉
a

)
, [1]

where h0 denotes the initial particle–surface distance and 〈h〉 is
the particle–surface distance averaged over the particle trajectory.
Therefore, we investigate the drift of particles along corrugated
sinusoidal surfaces by keeping the parameter A/λ= 0.018 fixed
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Fig. 4. Particle trajectories and drift as a function of surface geometry. (A) Slope of particle trajectories k as a function of 〈h〉 − A for λ/a = 3, 6, and 9 (indicated
by red squares, blue circles, and purple triangles, respectively). Open and solid symbols correspond to particle radii of 1.6 and 2.0 mm, respectively. Surfaces
have sinusoidal corrugations oriented at 45◦ spanning the entire surface with A/λ = 0.018. Upper Inset shows the surface corrugations along x/a with height AH
for λ/a = 3, 6, and 9. Lower Inset shows the slope k as a function of 〈h〉/a for the same data. The solid colored lines indicate where the average particle–surface
distance is the same as the surface amplitude, 〈h〉/a = A/a, for each value of λ/a. The black dashed line indicates 〈h〉/a = 0.13 and the gray dotted-dashed line
indicates 〈h〉/a = 0.4. (B) Comparison of particle trajectories from data in A for λ/a = 6 and 〈h〉/a = 0.13. Experimental data are dark blue and light blue dots
for a = 1.6 mm and a = 2.0 mm, respectively. The theoretical particle trajectory is shown by the solid black line. The slope of the trajectory is k. (C) Comparison of
slopes k of experimental data from A at 〈h〉/a = 0.13 ± 0.02 and 〈h〉/a = 0.4 ± 0.06 with theoretical predictions of the slopes at 〈h〉/a = 0.13 and 0.4. Asterisks
and diamonds correspond to the data for 〈h〉/a = 0.13 and 0.4, respectively. Error bars on experimental data indicate the SD of the measured slopes.

so that the surface height gradients are the same for surfaces
with varying wavelength (Fig. 4 A, Upper Inset). We conduct
experiments with particles of radii a = 1.6 mm and a = 2.0 mm
and surface wavelength-to-particle radius ratios λ/a = 3, 6, and
9. We now use periodic, sinusoidal surfaces with corrugations
spanning the entire surface, allowing us to robustly extract the
slope k of the trajectory.

Most significantly, we discover that the particle motion be-
comes universal for a fixed A/λ and given λ/a . This becomes
manifest in the slope of the particle trajectories (Fig. 4A), where
measurements of particles of two sizes (open and solid symbols)
overlap for a given λ/a . In particular, we find good agreement
between the trajectories for both particle sizes with the theoretical
prediction (Fig. 4B and SI Appendix, Fig. S5), which demon-
strates that the trajectories are fully determined by the three
dimensionless parameters A/λ, λ/a , and 〈h〉/a .

Furthermore, we identify two regimes that dictate the overall
particle drift. When the average particle–surface distance is inside
of the surface corrugations, corresponding to 〈h〉 − A< 0 (to the
left of the solid black line in Fig. 4A), the shortest-wavelength
surface (λ/a = 3) creates the largest drift. At 〈h〉 − A� 0.1 mm,
when the particles move mostly outside of the surface corru-
gations, we observe a reversal of this trend. When the average
particle–surface distance is outside of the surface corrugations (to
the right of the purple line, A/a = 0.16, in Fig. 4 A, Lower Inset),
the longest-wavelength surface causes the largest drift.

To rationalize the change of the slope k as a function of
λ/a , we compare the experimental observations to the theo-
retical prediction for 〈h〉/a = 0.4 and 0.13 (indicated by the
gray dotted-dashed and black dashed lines in Fig. 4 A, Lower
Inset, respectively). Both theory and experiments for 〈h〉/a = 0.4
show a monotonic increase of the slope with increasing λ/a . For
〈h〉/a = 0.13, the theory predicts a nonmonotonic behavior of
the slope as a function of λ/a and deviates from experiments
at large λ/a or large A. In this regime, the theory breaks down
as the average particle–surface distance becomes smaller than
the surface amplitude, 〈h〉 − A< 0, meaning that the particle
enters the surface corrugations (see Methods for a derivation of
the perturbation theory and its validity).

Optimal Particle Drift. Having established a quantitative under-
standing of the relevant nondimensional parameters of our system
(Eq. 1), we now measure the overall particle drift for different
wavelengths λ, by keeping the surface amplitude, A= 0.15 mm,
and the particle radius, a = 1 mm, fixed (Fig. 5A). As before,
we first consider surfaces with corrugations spanning the entire
surface and vary the particle–surface distance 〈h〉. We find that
particles nearest to the surface have a maximal slope k of their
trajectories, which decreases as they move farther from the wall. In
addition, we observe, reminiscent of our earlier findings (Fig. 4A),
that the current system exhibits two distinct regimes: 1) For
〈h〉/a � 0.2, the particle begins to enter the surface corrugations
(A/a = 0.15) and, therefore, experiences the largest drift for the
smallest-wavelength surface, which has the steepest surface height

/

rectangular

sinusoidal

theory

experiments

/ = 3

/ = 6

/ = 9

theory

experiments

A B

Fig. 5. Optimal particle drift. (A) Slope k of particle trajectories as a func-
tion of the average particle–surface distance 〈h〉. Open symbols connected
by solid lines correspond to theoretical predictions and solid symbols are
experimental measurements. Surfaces have sinusoidal corrugations, which
are oriented at 45◦, spanning the entire surface with amplitude A = 0.15 mm
and varying wavelength λ. Particles have a radius of a = 1 mm. Inset shows
the surface corrugations along x/a with height AH. (B) Particle drift δ induced
by surface corrugations of different shapes as a function of the wavelength λ.
Surfaces have two corrugations that are oriented at 45◦ (Fig. 3). Open symbols
connected by solid lines correspond to theoretical predictions and solid
symbols are experimental measurements for a particle at an initial particle–
surface distance of h0 � 0.2 mm. Particles have a radius of a = 1.6 mm. Error
bars on experimental data represent the SD of the measured drift for three
different trajectories at each wavelength.
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gradient (Fig. 5 A, Inset). 2) Most importantly, farther from
the surface, 〈h〉/a � 0.2, the intermediate-wavelength surface
λ/a = 6 (Fig. 5A, blue circles) causes the largest drift. Both the
theoretical predictions (open symbols) and the experimental mea-
surements exhibit this cross-over to a nonmonotonic transport
behavior.

To investigate the nonmonotonic particle drift in more detail,
we consider surfaces with two corrugations of different shapes
(rectangular and sinusoidal; Fig. 3 A and B), a particle of radius
a = 1.6 mm, and a fixed initial distance h0 � 0.2 mm. Our
findings show that the drift δ becomes maximal at λ/a ∼ 3
to 4, depending on the surface shape (Fig. 5B). In particular, for
small and large wavelengths λ the corrugated surface approaches
the shape of a planar wall and, therefore, the drift becomes small.
Both experiments and theory reveal that the overall drift for a
rectangular surface shape is larger than that for a sinusoidal shape,
irrespective of the surface wavelength λ/a and particle–surface
separation distance h0/a (not shown). These results demonstrate
that the corrugation geometry can be tuned to optimize the
transport behavior of the relevant constituents.

Conclusions

By combining sedimentation experiments with a perturbation
theory, we have quantified the three-dimensional, helical particle
trajectories and resulting drift of particles sedimenting nearby
tilted surface corrugations of different shapes. We have demon-
strated that the overall drift persists for various surface shapes
and can be optimized as a function of shape and wavelength.
Our theoretical findings further demonstrate that the helical near-
surface dynamics are induced by anisotropic pressure fields, which
result from the coupling of the hydrodynamic flows produced
by the sedimenting particles with the surface corrugations. The
projection of the three-dimensional helical particle motion to the
two-dimensional oscillatory near-surface motion, as quantified
here, has been observed in various other experiments, ranging
from colloidal (20, 24, 25) to biological (21) samples. Therefore,
we anticipate that it is a universal feature inherent to transport
processes near patterned surfaces, which we have rationalized here
using a hydrodynamic theory.

In this work, we identified helical transport behavior of spheri-
cal particles sedimenting close to surface corrugations. This behav-
ior becomes perturbed by various aspects of the specific setup. In
particular, as the sedimentation velocity of a sphere near a planar
wall approaches that in an unbounded fluid (Ub) at large particle–
surface distance, h/a � 1, as U

(0)
x /Ub � 1− 9a/(16h) (32),

we anticipate that the helical behavior becomes negligibly small at
(h − A)/a � 1. Our study showed that at (h − A)/a � 1 the
slope of the trajectories is O(10−4).

While our experiments relied on the use of millimeter-sized
particles, the predictions also apply for low–Reynolds-number
flows at the micro- and nanoscales. At smaller scales, Brownian
effects may become relevant, and we expect to observe a signature
of helical transport behavior only as long as the time it takes for
a particle with diffusivity D to diffuse one wavelength, λ2/D ,
is much longer than the time it takes to cross one wavelength
due to couplings with the surface roughness, λ/(εU (0)

x ), leading
to ε�D/(λU

(0)
x )∼ kBT/(λFg), where ε= A/a . Here, kB

is the Boltzmann constant, T is temperature, and Fg is the
force acting on the sphere due to gravity. Equivalently, we find
a criterion for the particle size such that Brownian effects are neg-
ligible: a �

√
3kBT/(4πλAgΔρ), where g is the gravitational

acceleration and Δρ denotes the density difference between the

particle and the fluid. For our system, we find that Brownian
motion is negligible for a larger than ∼1 nm. It could, however,
become important for less dense colloids sedimenting at a lower
velocity.

Moreover, we note that the helical behavior is expected to
vanish if the roughness amplitude of the surface material β, which
appears as a randomly structured surface on top of the corruga-
tions (31), is of the same order as the surface amplitude, β � A. In
this case, hydrodynamic coupling with the surface heterogeneities
entails a change of the particle velocities and randomizes the
particle motion.

Future research should address the impact of pressure-driven
flows, herringbone surface structures (19–21), particle shape
(33, 34), and elasticity (22, 23) on the helical transport behavior
and near-surface drift, which could pave the way toward novel
technologies for the sorting and focusing of particles or biological
cells. The latter could allow for a noninvasive visualization of cells
and the study of intracellular biological processes. Furthermore,
our study has revealed that details of the surface manifest
themselves in the particle trajectories, which may allow for a
characterization of surface properties, reminiscent of “passive
microrheology.” We further anticipate that the addition of local
microstructures to existing sensing systems could help to steer
particles toward sensors and thereby enhance their signal for
technological applications.

Methods

Experimental Methods. In our experiments, 3D-printed corrugated surfaces
(2.5 × 10.5 cm) are placed vertically in a container (8.5 × 8.5 × 10.5 cm) of
castor oil (density ρ= 950 kg · m−3 and viscosity μ= 0.85 Pa · s) (Fig. 1A). We
use stereolithography (Formlabs Form 2) to fabricate two types of corrugated
surfaces (see SI Appendix for details of the 3D-printing process). One type of
surface has flat sections before the corrugations begin and after they stop (with
corrugations having various shapes and wavelengths). These surfaces are used
for Figs. 1 C and D, 2, 3, and 5B. In general, these surfaces are advantageous
for measuring the detailed particle trajectories and the particle displacement
δ, as the particle has a defined initial and final z position. The second type
of surface (Figs. 4 and 5A) does not have the flat sections, and instead the
corrugations span the entire length of the surface. These surfaces enable a more
robust measurement of the slope k of the particle’s trajectory. We are restricted to
either having the flat sections before and after few corrugations or having no flat
section but many corrugations because the total sedimentation length that can
be imaged by the camera is limited. All corrugations are oriented at 45◦ relative
to gravity, g (Fig. 1B). We examine the effect of changing the corrugation angle
in SI Appendix, Fig. S6.

Using a tweezers, a particle (Delrin acetal resin [McMaster-Carr]) is placed
nearby the corrugated surface just below the oil–air interface and then released.
Since our system is at a low Reynolds number, the effect of the tweezers on the
flow is important only at small time and length scales. To minimize the effect of
the initial release, we allow the particle to sediment ∼10 times its radius before
recording its trajectory. In some experiments, to control the initial distance of
the particle relative to the surface, we adhere coverslips of varying thicknesses
near the top of the corrugated surface and place the particle in contact with the
coverslip.

We image the trajectory of the particle at 30 frames per second from the front
and the side to track its position in the xy and xz planes, respectively. Images are
processed using MATLAB (MathWorks) to find the position of the particle in each
frame.

We use two methods to measure the particle–surface distance h0 or 〈h〉.
For the printed surfaces with flat sections before the surface corrugations, we
measure the distance between the particle and the flat wall, h0, from the side view.
For surfaces with corrugations spanning the entire surface, we find the average
particle–surface distance 〈h〉 over the particle’s entire trajectory by measuring the
ratio of the particle’s settling speed Uw , relative to the settling speed in bulk Ub,
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and infer the ratio 〈h〉/a from the theoretical prediction of the velocity of a sphere
near a planar wall (see SI Appendix and SI Appendix, Fig. S3 for the validation of
this method).

Theory: Roughness-Induced Velocities, Pressure, and Flow Fields. To
theoretically characterize the particle motion, we consider a sphere of radius
a sedimenting with translational velocity U and rotating at angular velocity Ω
nearby a corrugated surface, Sw . The particle is located at a distance h and
position rS = (xS , yS)

T with respect to a planar reference surface S0 (Fig. 1B).
The corrugated surface is described by z = AH(x, y) with shape function H(x, y)
and amplitude A. The flow and pressure fields, u(x, y, z) and p(x, y, z), obey the
Stokes and continuity equations,

μ∇2u =∇p and ∇ · u = 0. [2]

In the comoving frame of reference attached to the particle, the no-slip boundary
conditions are u =−U on the corrugated surface Sw and S∞, which denotes
the bounding surface at infinity, and u =Ω ∧ r on the surface of the sphere
Sp. Subsequently, we consider a small surface amplitude with A = εa � h,
which allows expanding the flow and pressure fields in the small parameter
ε, i.e., u = u(0) + εu(1) +O(ε2) and p = p(0) + εp(1) +O(ε2), and sim-
ilarly the translational and rotational velocities, U = U(0) + εU(1) +O(ε2)

andΩ=Ω(0) + εΩ(1) +O(ε2). Furthermore, we can simplify the boundary
condition via a domain perturbation approach (31, 35) and arrive at u(0) =
−U(0) on S0 and

u(1) =−U(1) − aH(x, y)
∂u(0)

∂z

∣∣∣
z=0

≡ u(1)
S0

on S0, [3]

where we have introduced the effective slip velocity at the planar wall u(1)
S0

.

Here, u(0) denotes the flow field produced by the sedimentation of a sphere
near a planar wall, which can be obtained analytically for arbitrary h/a using
a bispherical coordinate representation (26, 36–38). Following our previous
work (31), we exploit the Lorentz reciprocal theorem (39, 40), which relates two
problems with the same geometry but different boundary conditions, to compute
the roughness-induced velocities, U(1) and Ω(1). Therefore, we introduce as
an auxiliary problem a sphere translating and rotating near a planar wall with
associated velocity and pressure fields, û and p̂, respectively. The reciprocal
partially theorem (39, 40) then relates the auxiliary problem, with û and stress
field σ̂ =−p̂I+ (∇û + (∇û)T)/2, to our first-order problem, with u(1) and
σ(1), via

∫
S

n ·σ(1) · û dS =

∫
S

n · σ̂ · u(1) dS. [4]

Here, we abbreviated the sum of all surfaces by S = S0 ∪ Sp ∪ S∞ and n is the
outward-pointing normal vector to the surface.

Simplifying Eq. 4 (see ref 31 for details), we obtain the velocities of a sphere
near a corrugated wall via (U, Ω)T = M · (F, L)T , where F and L denote the
applied force and torque, and the mobility obeys

M = M(0) − ε

∫
S0

aH(x, y)KdS +O(ε2). [5]

Here, the second term on the right-hand side corresponds to the roughness-
induced mobility and the coupling tensor K depends on the zeroth-order prob-
lem only (31). To calculate trajectories of sedimenting particles, we set F = Fg,
which denotes the force on the particle due to gravity, and L = 0. We compute
the mobility (Eq. 5) by relying on a bispherical coordinate representation of u(0),
p(0) and û, p̂ (26, 36–38) and evaluate the integral numerically. Details can be
found in the supplemental material of ref. 31, where a validation of our theory
with a boundary integral method is presented.

We then numerically evaluate the equation of motion, dr/dt = U(0) +

εU(1), where t denotes time and the instantaneous particle position is r(t) =
(xS(t), yS(t), h(t))T .

In addition, we derive the roughness-induced pressure and flow fields. There-
fore, we consider the lubrication regime, i.e., h/a � 1, which allows simplifying
the Stokes and continuity equations (Eq. 2). To leading order in h/a, the zeroth-
order problem u(0) is well known (27, 41, 42). To calculate u(1) we first derive the
“generalized” Reynolds equation for the roughness-induced pressure p(1) (see
SI Appendix for a detailed derivation), again working in the reference frame of
the particle:

0 =U(1) · ez +
h3

p

6μ
∇2

‖p(1) + hp∇‖ · u(1)
S0

− h2
p

2
∇‖ ·

(
hp

2μ
∇‖p(1) +

u(1)
S0

+ aΩ(1) ∧ ez

hp

)
,

[6]

where the surface of the sphere is approximated by a parabola hp(x, y) =
h + (x2 + y2)/(2a) and we have abbreviated the in-plane gradient by ∇‖ =

(∂/∂x, ∂/∂y, 0)T . Eq. 6 further depends on the effective slip at the planar wall,
u(1)

S0
, which is obtained from the zeroth-order flow field within the lubrication

approximation via Eq. 3. Using the roughness-induced velocities U(1) and Ω(1)

as input, we solve Eq. 6 for p(1)(x, y) numerically with a finite-element method
[in Mathematica (43)] and compute the flow field u(1)(x, y, z). Details of the
numerical evaluation are provided in SI Appendix.

Data Availability. Source data and computer code are available on GitHub
at https://github.com/ckurzthaler/materials sedimentation patterned surface
(44).
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