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Abstract
The neurological diseases primarily include acute injuries, chronic neurodegeneration, and others (e.g., infectious diseases 
of the central nervous system). Autophagy is a housekeeping process responsible for the bulk degradation of misfolded 
protein aggregates and damaged organelles through the lysosomal machinery. Recent studies have suggested that autophagy, 
particularly selective autophagy, such as mitophagy, pexophagy, ER-phagy, ribophagy, lipophagy, etc., is closely implicated 
in neurological diseases. These forms of selective autophagy are controlled by a group of important proteins, including 
PTEN-induced kinase 1 (PINK1), Parkin, p62, optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), and nuclear fragile 
X mental retardation-interacting protein 1 (NUFIP1). This review highlights the characteristics and underlying mechanisms 
of different types of selective autophagy, and their implications in various forms of neurological diseases.
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AD  Alzheimer’s disease
PD  Parkinson’s disease
PINK  PTEN-induced kinase 1
OPTN  Optineurin
NBR1  Neighbor of BRCA1 gene 1
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acting protein 1
NDP52  Nuclear domain 10 protein 52
PAS  Phagophore assembly site
ULK  UNC51-like kinase
PI3K III  Class III phosphatidylinositol 3-kinase
LAMP2A  Lysosome-associated membrane protein 2
hsc70  Heat shock cognate 70

Hsp70  Heat shock protein 70
HIP  Hsc 70-interacting protein
HOP  Hsp70–Hsp90 Organizing Protein
TAX1BP1  Tax1-Binding Protein 1
PEX5  Peroxin 5
BBB  Blood–brain barrier
DFCP1  Double FYVE domain-containing protein
WIPI1  WD Repeat Domain, Phosphoinositide 

Interacting 1
ARIH1  Ariadne RBR E3 Ubiquitin Protein Ligase 1
SIAH1  Siah E3 Ubiquitin Protein Ligase 1
MUL1  Mitochondrial E3 Ubiquitin Protein Ligase 

1
OPA1  Fission through optic atrophy 1
DRP1  Dynamin-related protein
AMPK  5′ AMP-activated protein kinase

Cellular and Molecular Life Sciences

Weilin Xu, Umut Ocak, and Liansheng Gao have equally 
contributed to this work as co-first authors.

 * Jianmin Zhang 
 zjm135@zju.edu.cn

 * Anwen Shao 
 21118116@zju.edu.cn; anwenshao@sina.com

1 Department of Neurosurgery, Second Affiliated Hospital, 
School of Medicine, Zhejiang University, Hangzhou, China

2 Department of Emergency Medicine, Bursa Yuksek Ihtisas 
Training and Research Hospital, University of Health 
Sciences, 16310 Bursa, Turkey

3 Department of Emergency Medicine, Bursa City Hospital, 
16110 Bursa, Turkey

4 State Key Laboratory for Diagnosis and Treatment 
of Infectious Diseases, Collaborative Innovation Center 
for Diagnosis and Treatment of Infectious Diseases, 
First Affiliated Hospital, College of Medicine, Zhejiang 
University, Hangzhou 310009, Zhejiang, China

5 Brain Research Institute, Zhejiang University, Hangzhou, 
China

6 Collaborative Innovation Center for Brain Science, Zhejiang 
University, Hangzhou, China

7 Burrell College of Osteopathic Medicine, Las Cruces, NM, 
USA

http://orcid.org/0000-0001-9986-6290
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-020-03667-9&domain=pdf


1370 W. Xu et al.

1 3

mTOR  Mammalian target of rapamycin
CMA  Chaperone-mediated autophagy
ROS  Reactive oxidative species
Nrf2  Nuclear factor erythroid 2–related factor 2
USP8  Ubiquitin-Specific Peptidase 8
LIR  LC3-interacting regions
UBA  Ubiquitin-associated
UBD  Ubiquitin-binding domain
CCPG-1  Cell-cycle progression gene 1
NIX  NIP3-like protein X
FAM134B  Family with sequence similarity 134
member B  Bcl2L13, BCL2-like 13
PGAM5  Phosphoglycerate mutase 5
TRIM50  Tripartite Motif Containing 50
BER  Base excision repair
DSB  Double-strand breaks
Bnip3  BCL2/adenovirus E1B interacting protein 3
AMBRA1  Autophagy/Beclin 1 regulator 1
FUNDC1  FUN14 domain-containing 1
PMI  p62–SQSTM1-mediated mitophagy inducer
DUB  Deubiquitinating enzyme
RNS  Reactive nitrogen species
VSM  Vacuolar sequestering membrane
MIPA  Micropexophagy-specific apparatus
ATM  Ataxia-telangiectasia mutated
RHD  Reticulon homology domain
GABARAP  Gamma-aminobutyric acid receptor-associ-

ated protein
GIM  GABARAP-interacting motif
LD  Lipid droplet
RTN3  Reticulon 3
CCPG1  Cell-cycle progression 1
ATL3  Atlastin GTPase 3
RTN3L  Long isoform of RTN3
HDAC6  Histone deacetylase 6
ALFY  Autophagy-linked FYVE domain-contain-

ing protein
ESCRT   Endosomal sorting complex required for 

transport
MPTP  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine
PARP-1  Mitochondrial intermembrane space
ALS  Amyotrophic lateral sclerosis
ERRα  Estrogen-related receptor α
GABA  γ-Aminobutyric acid
LDL  Low-density lipid
TBI  Traumatic brain injury
HD  Huntington’s disease
VCP  Valosin-containing protein

Introduction

Neurological diseases

The nervous system is regarded as our body’s command 
center. any impairment or interruption in the nervous 
system would induce a dysfunctional physiological state, 
named neurological diseases [1]. Neurological diseases can 
be categorized as acute injuries (e.g., ischemic or hemor-
rhagic stroke, spinal cord injury, and traumatic brain injury), 
chronic neurodegeneration [e.g., Alzheimer’s disease (AD) 
and Parkinson’s disease (PD)], and others (e.g., brain 
tumors, center nervous system infectious disease, etc.) [2, 
3]. The underlying molecular mechanisms involve neuronal 
apoptosis, neuroinflammation, oxidative stress, autophagy, 
etc. [4, 5]. For example, deposits of massive amyloid-β 
peptide lead to neuroinflammation and oxidative stress in 
patients with AD, which finally cause neuronal apoptosis 
[6–8]. Furthermore, growing evidence suggests that mito-
chondrial dysfunction, redox imbalance, massive deposits of 
aberrant proteins (i.e., α-synuclein), and damage of the ubiq-
uitin–proteasome system contribute to the pathophysiology 
of PD [9, 10]. Moreover, stroke, defined as a lack of blood 
supply to the brain or the presence of blood spreading into 
the brain and subarachnoid space, would cause dysfunction 
of the mitochondria, endoplasmic reticulum, peroxisome, 
etc., further introducing oxidative stress and inflammation, 
and finally causing cell death [11, 12]. Therefore, strategies 
and programs to treat neurological diseases could signifi-
cantly reduce the global burden.

Autophagy

Autophagy was first described by Sam L. Clark Jr. as ‘self-
eating’ in 1957, which was confirmed by Christian de Duve 
who found the debris of intracellular organelle structures 
within lysosomes [13, 14]. Autophagy can be activated by 
stress (stroke, trauma, etc.) or nutrient deprivation. The 
main physiological functions of autophagy not only include 
degradation or recycling of long-lived proteins, but also the 
elimination of dysfunctional or broken organelles, such as 
the mitochondria, peroxisomes, or ribosomes [15]. There 
are three different types of autophagy reported in mamma-
lian cells according to their method of substrate delivery: 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy [16]. On the other hand, autophagy could also be 
regarded as a non-selective pathway for recycling nutrition, 
but as a selective way to remove dysfunctional and damaged 
organelles [17].
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Macroautophagy

There remains much to be uncovered regarding autophagy-
related genetic proteins, and their involvement in different 
steps of autophagy in yeast, most of which are conserved 
in mammals (Fig. 1) [18, 19]. The process of autophagy 
starts with the assembly of phagophore assembly site 
(PAS). Then, the UNC51-like kinase (ULK) complex 
assembles to the PAS [20]. After that, the class III phos-
phatidylinositol 3-kinase (PI3K III) complex helps to form 
the nucleation of autophagy [21]. Following nucleation, 
the formation of an Atg5–Atg12–Atg16-like 1 (Atg16L1) 
complex is required to facilitate cargo recognition and 
autophagosome membrane elongation [22].

Microautophagy

Microautophagy is a catabolic process, in which the dys-
functional or superfluous proteins and organelles are deliv-
ered directly to the endosomal/lysosomal lumen (Fig. 1) 
[23]. However, in mammalian cells, the detailed molecular 
mechanisms engaged in the process of microautophagy are 
still not well understood. However, the process of micro-
autophagy largely depends on the endosomal sorting com-
plexes required for transport (ESCRT) I and III systems 
and the protein chaperone, hsc70 [24].

Chaperone‑mediated autophagy (CMA)

The main function of CMA is to degrade the proteins with a 
KFERQ motif [25]. Nearly 30% of cytosolic proteins contain 
the KFERQ motif [26]. The lysosome-targeted proteins with 
a KFERQ motif are first transferred to a lysosome-associated 
membrane protein 2 (LAMP2A)-containing complex on 
the lysosomal membrane with the help of chaperones (heat 
shock cognate 70 (hsc70), heat shock protein 70 (Hsp70)), 
and co-chaperones, including HSP40, Hsc 70-interacting 
protein (HIP), Hsp70–Hsp90 Organizing Protein (HOP), 
Hsp90. Then, the target proteins are unfolded and degraded 
under the assistance of a complex of proteins in the lysoso-
mal lumen, including Hsc70 [27].

Selective autophagy

Selective autophagy (mitophagy, pexophagy, ER-phagy, 
ribophagy, and lipophagy) is a process in which a lysoso-
mal-targeted cargo is selectively recognized and degraded, 
relying on receptor proteins that bind Hsp70–Hsp90 Organ-
izing Protein (HOP) [28] (Fig. 2). Many proteins contribute 
to the process of selective autophagy. For example, when 
mitophagy is triggered, Parkin is phosphorylated and acti-
vated by PTEN-induced kinase 1 (PINK1), which can fur-
ther activate and build ubiquitin chains, while autophagy 
receptors, such as nuclear domain 10 protein 52 (NDP52), 

Fig. 1  Three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy
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SQSTM1 (p62), optineurin (OPTN), and Tax1-Binding 
Protein 1 (TAX1BP1), target dysfunctional mitochondria to 
autophagosomal membranes [29, 30]. In pexophagy, peroxin 
5 (PEX5) and PEX14 are the peroxisome resident proteins 
that initiate the pexophagy process [31]. Additionally, selec-
tive autophagy is also involved in many pathophysiological 
processes. For example, the improvement of mitophagy or 
pexophagy could alleviate the inflammation and oxidative 

stress after various cellular stresses, and ultimately prevent 
the cells from dying [32, 33]. The development of neuro-
logical diseases leads to the production of many dysfunc-
tional and superfluous organelles (mitochondria, endoplas-
mic reticulum, peroxisome, etc.), which would introduce 
severe conditions, such as oxidative stress, neuroinflamma-
tion, blood–brain barrier (BBB) disruption, and neuronal 
apoptosis [34, 35]. Therefore, selective clearance of these 

Fig. 2  The autophagy process of five common types of selective autophagy: a the process and regulatory mechanism of mitophagy; b the regula-
tory mechanism of pexophagy, ER-phagy, ribophagy, and lipophagy
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organelles is critical to improving neurological functions in 
patients with neurological diseases.

Mitophagy

General introduction of mitochondria and mitophagy

Any disturbance or impairment of the mitochondria would 
lead to its dysfunction, which would then result in a sharp 
increase of reactive oxidative species (ROS). Redundant 
ROS would promote the release of pro-apoptotic factors 
and finally cause cell death [36, 37]. Mitophagy, the selec-
tive degradation of dysfunctional mitochondria defined 
by Lemasters in 2005, is essential for maintaining cell 
survival [38]. Furthermore, mitophagy is a process of 
macroautophagy, and involves three key steps: (1) assem-
bly of phagophore assembly site (PAS); (2) formation of 
mitophagosome by targeting and engulfment of dysfunc-
tional mitochondria; (3) formation of mitolysosome by fus-
ing with lysosome [39–41]. Until now, most of the studies 
focused on exploring the molecular mechanisms to under-
stand how phagophores are formed, and how dysfunctional 
mitochondria are recognized.

Many proteins are reportedly involved in the process of 
mitophagy. One of the most important proteins is PINK1, 
which is a mitochondrially localized kinase. The main 
function of PINK1 is to sense the damage of mitochon-
dria, then activate Parkin, and help it translocate from the 
cytoplasm to the damaged mitochondria [42–45]. Parkin 

is an ubiquitin ligase, and normally remains in a “closed” 
state by hiding the enzyme domain [46]. When mitophagy 
is triggered, PINK1 will phosphorylate and activate Par-
kin, which can further activate and build ubiquitin chains. 
Another group of important proteins is autophagy recep-
tors (Table  1), which assist the autophagy machinery 
in selectively targeting the mitochondria. These recep-
tors share two important regions to direct mitochondria 
to autophagy machinery: LC3-interacting regions (LIR) 
and ubiquitin-binding domains (UBDs). As of now, 
five autophagy receptors have been reported, including 
NDP52, OPTN, p62, TAX1BP1, and NBR1 [47, 48]. How-
ever, of these five receptors, only NDP52 and OPTN are 
essential to initiate mitophagy, while others, such as p62, 
TAX1BP1, and NBR1, have a minor role in mitophagy 
[49]. NDP52 and OPTN not only target dysfunctional 
mitochondria to autophagosomal membranes, but also 
facilitate the formation of autophagosomal membranes 
by recruiting key factors, including ULK1, double FYVE 
domain-containing protein (DFCP1), WD Repeat Domain, 
Phosphoinositide Interacting 1 (WIPI1), etc. [49]. With the 
exception of the ubiquitination pathway, mitophagy can be 
initiated by mitophagy receptors, which target damaged 
mitochondria directly to autophagosomes for further deg-
radation. Mitophagy receptors include NIP3-like protein 
X (NIX/Bnip3L), BCL2-like 13 (Bcl2L13), BCL2/adeno-
virus E1B interacting protein 3 (Bnip3), autophagy/Beclin 
1 regulator 1 (AMBRA1), FUN14 domain-containing 1 
(FUNDC1), and cardiolipid [39, 50, 51].

Table 1  The selective autophagy receptors

NDP52 nuclear domain 10 protein 52; OPTN optineurin; OPTN optineurin; NBR1 neighbor of BRCA1 gene 1; NUFIP1 nuclear fragile X mental 
retardation-interacting protein 1; CCPG-1 cell-cycle progression gene 1; NIX NIP3-like protein X; FAM134B family with sequence similarity 
134, member B; RTN3 reticulon 3; ATL3 Atlastins 3; FUNDC1 FUN14 domain-containing 1; Bcl2L13 BCL2-like 13

Selective autophagy Receptors Refs.

Mitophagy Nuclear domain 10 protein 52 (NDP52) [93]
Optineurin (OPTN) [93]
Neighbor of BRCA1 gene 1 (NBR1) [91, 92]
SQSTM1(p62) [86, 95]
TAX1BP1 [93]
BCL-2-like protein 13(BCL2L13) [131]
BCL2/adenovirus E1B 19 kDa interacting protein 3(BNIP3) [134, 137, 333]
FUN14 domain-containing 1 (FUNDC1) [135]
NIP3-like protein X (NIX) [101]

Pexophagy NBR1 [177]
SQSTM1 or p62 [175, 191, 192]

Ribophagy Nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) [200]
ER-phagy (reticulophagy) Family with sequence similarity 134, member B (FAM134B) [214, 215]

Reticulon 3 (RTN3) [208]
Cell-cycle progression gene 1 (CCPG1) [210]
Atlastins 3 (ATL3) [211, 213]
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Mitophagy could be triggered by various stimuli, such 
as starvation, hypoxia, stroke, or development. Considering 
the different physiological context of mitophagy, it can be 
categorized into three different types: basal, programmed, 
and stress-induced. Basal mitophagy means that the cells 
would degrade old or abnormal mitochondria under normal 
physiological conditions [52, 53]. Mitophagy that occurs in 
different cell types during development is considered ‘Pro-
grammed mitophagy’ [54–56]. Stress-induced mitophagy 
refers to the acute degradation of mitochondria as a result 
of severe extracellular stress [57].

Molecular pathways of mitophagy

Mitophagy pathways are classified as PINK1–Parkin-medi-
ated and Parkin-independent (Fig. 2a).

PINK1–Parkin‑mediated mitophagy PINK1–Parkin-medi-
ated mitophagy depends on the ubiquitination pathway [58], 
and is initiated with the activation of PINK1. PINK1 func-
tions to sense mitochondrial damage signaling. Normally, 
PINK1 is delivered into the mitochondria with the help of 
TOM and TIM complexes, which are the inner and outer 
membrane translocases [59]. The N-terminal of PINK1, 
which is located on the inner membrane, would be cleaved 
by proteases [60–63], and the C-terminal is released back to 
the cytosol, and degraded in an N-end manner [64]. There-
fore, the successful import of PINK1 maintains PINK1 at 
reduced activity. However, membrane potential dissipation 
prevents the importation of PINK1 into the mitochondria, 
disrupting the stability of PINK1 [57, 65, 66]. Next, PINK1 
is activated via autophosphorylation [67–69], dimerization 
[70], and accumulation [59].

In healthy mitochondria, Parkin closes its enzyme domain 
via intramolecular interaction. To fully activate Parkin, func-
tional PINK1 must complete two important phosphoryla-
tion processes, one is S65 in the Ubl domain of Parkin [71, 
72] and another is an analogous S65 residue on ubiquitin 
(referred herein as pUb) [73–75]. The phosphorylation by 
PINK1 changes Parkin’s conformation, facilitates its interac-
tion with mitochondria, and activates its E3 ligase activity 
[76, 77]. Afterwards, Parkin acts as an ubiquitin enzyme that 
works on the proteins of the mitochondrial outer membrane. 
PINK1 phosphorylates Poly-Ub chains, which act as an ‘eat 
me’ signal for further recognition.

Phosphorylated poly-Ub is recognized by autophagy 
receptors (p62, OPTN, etc.), which can promote the for-
mation of the autophagosome by binding with LC3. TBK1 
reportedly facilitates OPTN binding to Ub chains by phos-
phorylating OPTN and promotes the efficacy of mito-
chondrial clearance [78]. Moreover, OPTN and NDP52 
can promote the synthesis of autophagosomal membranes 
through the recruitment of some key components of 

autophagosome biogenesis (WIPI1, ULK1, and DFCP1) 
[49]. In a recent study, Abudu et al. showed that NIPSNAP1 
(nipsnap homolog 1) and NIPSNAP2, which are consid-
ered mitochondrial matrix proteins, act as “eat me” signals 
for damaged mitochondria to maintain sustained recruit-
ment of SQSTM1-like receptors (SLRs) to ensure efficient 
mitophagy [79].

Parkin‑independent mitophagy Surmounting evidence 
showed that other ubiquitin E3 ligases, such as ariadne RBR 
E3 Ubiquitin Protein Ligase 1 (ARIH1), Gp78, siah E3 
Ubiquitin Protein Ligase 1 (SIAH1), and mitochondrial E3 
Ubiquitin Protein Ligase 1 (MUL1), participate in promot-
ing mitophagy, with the exception of Parkin [80–84]. These 
ubiquitin E3 ligases perform their functions by interacting 
with the mitochondrial membrane, generating ubiquitin 
chains, and promoting the recruitment of autophagy recep-
tors (OPTN, NDP52, p62, etc.). These receptors then inter-
act directly with LC3 and attach Ub-tagged organelles into 
autophagosomes [49].

Role of  autophagy receptors in  mitophagy Moreover, 
some ubiquitin-independent mitochondrial proteins, such 
as BCL2L13, NIX, BNIP3, and FUNDC1, interact directly 
with LC3 and GABARAP on autophagosomal membrane 
without ubiquitination, and mediate mitophagy [85]. 
BCL2L13 is a functional homologue of Atg32 in mam-
mals with an LIR motif, which interacts directly with LC3 
to promote mitophagy in a Parkin-independent manner 
[86]. Besides, other proteins, such as NIX, BNIP3, and 
FUNDC1, are outer mitochondrial membrane proteins, and 
act as mitophagy receptors, which mediate mitochondrial 
clearance in response to different mitochondrial stresses. 
The NIX plays an especially important role in programmed 
mitophagy during differentiation [54–56, 87]. NIX-deficient 
cells accumulate mitochondria, leading to increased apop-
tosis and developmental defects [88]. LIR motif phospho-
rylation enhances NIX association with LC3 under stress 
conditions [89]. Although the signaling cascade of NIX-
mediated mitophagy is not yet determined, Rheb, a small 
GTPase, may be involved, as its mitochondrial localization 
and physical interaction with NIX regulate mitochondrial 
removal and maintenance of energy metabolism [90].

Different from other receptors, BNIP3 participates in the 
regulation of mitochondrial dynamics by inducing mito-
chondrial fission through optic atrophy 1 (OPA1) disassem-
bly and release, and by recruiting dynamin-related protein 
(DRP1) to mitochondrial outer membrane [91, 92]. BNIP3 
mediates PINK1 stabilization by inhibiting its proteolytic 
cleavage [93]. Both NIX and BNIP3 sustain mitochondrial 
homeostasis through regulation of Parkin recruitment, sug-
gesting crosstalk between mitophagy receptors and the 
PINK1–Parkin pathway [94].
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FUNDC1 acts as a conserved mitophagy receptor and 
mediates mitophagy when there is a deficiency in oxygen 
and blood [95]. FUNDC1 interacts with both fission and 
fusion machinery components, regulating mitochondrial 
dynamics. Mitochondrial phosphatase phosphoglycerate 
mutase 5 (PGAM5) dephosphorylates FUNDC1, thereby 
disrupting its physical association with OPA1, and inhibit-
ing mitochondrial fusion under hypoxic conditions. In turn, 
FUNDC1 translocates to ER–mitochondrial contact sites, 
mediating DRP1 recruitment and mitochondrial fragmenta-
tion. Thus, FUNDC1 coordinates mitochondrial morphology 
and mitophagy under stress. FUNDC1 may also serve as an 
ULK1 adaptor; their interaction promotes ULK1 relocation 
on mitochondria, allowing de novo phagophore biogenesis 
[96].

Taken together, the diverse repertoire of receptor and 
adaptor molecules highlights the existence of compensa-
tory mechanisms that regulate mitochondrial numbers in 
response to environmental and/or intracellular signals. The 
complex interplay between mitophagy pathways ensures 
energy metabolism and tissue homeostasis. Thus, mainte-
nance of mitochondrial function, through a fine-tuned mito-
chondrial quality control system, is critical for cellular and 
organismal survival [97].

Regulation of mitophagy: activation and inhibition

Impaired mitophagy is believed to be a key factor resulting 
in many pathological conditions. However, overactivation 
of mitophagy is also harmful for the cell hemostasis [98, 
99]. Therefore, maintaining the balance of promotors and 
inhibitors is quite important for mitochondrial quality and 
cell hemostasis.

Studies aiming to discover pharmacological reagents 
capable of promoting the clearance of dysfunctional or dam-
aged organelles are becoming more prevalent [100]. Positive 
activators of autophagy, such as rapamycin and metformin, 
regulate the activity of 5′ AMP-activated protein kinase 
(AMPK) and mammalian target of rapamycin (mTOR), 
and assist in preserving energy metabolism, possibly by 
balancing mitochondrial clearance and biogenesis [101, 
102]. Rapamycin administration reportedly exerted positive 
effects on regulating mitochondrial quality by maintaining 
energy homeostasis and stress resistance in mammalian cells 
[103, 104]. Metformin supplementation triggers mitophagy 
by increasing the activity of Parkin, and by downregulat-
ing P53 levels [105]. In addition, some other natural com-
pounds, such as urolithin A, resveratrol, and antibiotics, also 
maintain mitochondrial integrity by inducing mitophagy. 
Moreover, the mitophagy triggered by these compounds 
exerts protective and anti-aging effects by restoring energy 
hemostasis in both mammals and yeast [106–110]. PMI 
(p62–SQSTM1-mediated mitophagy inducer), one type 

of artificial chemical, can stabilize nuclear factor eryth-
roid 2–related factor 2 (Nrf2) and induce p62-mediated 
mitophagy [111]. Ubiquitin Specific Peptidase 8 (USP8) is a 
cytoplasmic deubiquitinating enzyme (DUB), and functions 
as a promotor of mitophagy [112, 113]. USP8 has no effect 
on Parkin’s substrates. On the contrary, it deubiquitinates 
and stabilizes Parkin directly by removing K6-chains from 
Parkin [113].

In addition to promoting mitophagy, some negative regu-
lators of mitophagy have been determined. As the induction 
of mitophagy largely depends on ubiquitination (such as 
Parkin-dependent pathway), a growing number of research-
ers have placed their emphasis on DUBs to downregulate 
mitophagy. From the ~ 80 active DUBs discovered in mam-
mal cells [114], USP35, USP30, and USP15 exert direct 
deubiquitination effects on Parkin substrates, thus negatively 
regulating mitophagy [115]. Recently, Wang et al. [116] 
found that PTEN-L could act as an inhibitor of mitophagy 
by directly dephosphorylating Ub and Parkin.

Taken together, maintaining the balance of mitophagic 
promotion and inhibition is important for normal mitochon-
drial functions and cellular homeostasis. Studies attempt-
ing to discover new compounds with both biogenic and 
mitophagic abilities provide promise for developing novel 
therapeutic strategies on mitochondrial diseases [117]. 
Besides, the post-translational modifications for mitophagy 
can be concluded as ubiquitination/deubiquitination, acetyla-
tion/deacetylation, and phosphorylation/dephosphorylation 
[118].

Pexophagy

General introduction of peroxisome and pexophagy

Peroxisomes are heterogeneous and dynamic organelles, 
and vary in number, size, and function among different cell 
types and metabolic status. This versatile organelle primar-
ily functions to degrade fatty acids, such as very-long-chain 
and polyunsaturated fatty acids, and metabolize reactive 
oxygen species (ROS) [119–122]. Peroxisome homeostasis 
depends on the balance between the degradation and bio-
genesis of peroxisomes in different physiological contexts. 
Any disturbance of the integrity and number of peroxisomes 
would disrupt the homeostasis of cells, leading to cell death. 
Therefore, the selective removal of superfluous and damaged 
peroxisomes, known as pexophagy, is critical to maintain 
redox homeostasis [123].

The term pexophagy was first described by Klionsky in 
1997 [124]. Later, researchers found that pexophagy could 
be divided into two modes, macropexophagy and micropex-
ophagy [125–127]. In mammals, macropexophagy means 
that a single peroxisome is engulfed by autophagosomes to 
form a pexophagosome, which is fused with lysosomes and 
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then degraded for recycling. In micropexophagy, the per-
oxisome is engulfed by vacuolar sequestering membranes 
(VSMs) and micropexophagy-specific apparatus (MIPA) 
[128], which forms a lid over the cup-shaped VSMs cradling 
the peroxisomes [129].

Except for the proteins of core autophagy machinery, 
many specific proteins are reportedly involved in the pro-
cess of pexophagy, such as autophagy receptors (Fig. 2b). In 
mammalian cells, the NBR1 and SQSTM1/p62 are report-
edly the autophagy receptors for pexophagy [130]. These 
receptors share two similar functional domains. For exam-
ple, LIR binds to LC3, and thus delivers peroxisome to the 
autophagosome. The other is a ubiquitin-associated domain 
that allows itself to interact with ubiquitinated residues on 
the peroxisome [131]. Although SQSTM1 plays an impor-
tant role in pexophagy, it is not required for pexophagy when 
NBR1 is sufficient. However, SQSTM1 can increase the 
efficiency of NBR1-mediated pexophagy by binding with 
NBR1 [132]. Additionally, these two receptors are not only 
specific for pexophagy, they are also reported to participate 
in mitophagy, lysophagy, and ER-phagy [133–135]. Besides, 
PEX14 is reportedly involved in the pexophagic process by 
directly interacting with LC3-II under nutrient starvation 
[136]. NBR1 and/or SQSTM1/p62 reportedly facilitate the 
interaction between PEX14 and LC3-II by inducing a con-
formational alteration of PEX14, which allows LC3-II to 
interact with the transmembrane domain of PEX14 [137]. 
Recent studies show that PEX5 ubiquitination is an impor-
tant mechanism in initiating pexophagy in response to some 
stresses, such as peroxisomal dysfunction or oxidative stress. 
Furthermore, another important factor is ataxia-telangi-
ectasia mutated (ATM) kinase. Activation of ATM could 
phosphorylate and activate PEX5, which leads to PEX5 self-
ubiquitination and pexophagic promotion [138, 139].

Molecular mechanisms of pexophagy

Ubiquitination‑mediated pexophagy Growing evidence 
has shown that ubiquitination of some specific proteins 
is the requisite for selective autophagy [45, 140, 141]. 
Recently, PEX5 ubiquitination is found to be a key role in 
the pexophagy. Oxidative stress signaling phosphorylates 
and activates peroxisome-localized ATM, which activates 
PEX5 via phosphorylation at S141. Then, phosphorylated 
PEX5 can be ubiquitinated at K209 by the peroxisomal 
E3-ligases PEX2/10/12 and recognized by SQSTM1/p62, 
which targets peroxisomes for pexophagy [138].

Adaptor‑mediated pexophagy SQSTM1/p62 acts as 
an autophagy adaptor and has two important functional 
domains: LIR of the motif and a UBA domain at the C-ter-
minus [134, 142]. As an autophagy adaptor, SQSTM1/p62 
is the regulatory center for autophagic signaling pathways, 

and is always adapted as a biomarker for evaluating the level 
of autophagy [134, 143, 144]. In the process of pexophagy, 
the LC3-interacting region (LIR) of SQSTM1/p62 binds 
with LC3-II, and the Ubiquitin-Associated (UBA) domain 
connects with ubiquitinated regions of peroxisomes, result-
ing in pexophagy and engulfment of the peroxisome [145, 
146].

NBR1 is another mediator for pexophagy. NBR1 also 
contains LIR at the center of the protein and a UBA domain 
at the C-terminus [147, 148]. NBR1 upregulation report-
edly promotes pexophagy by recruiting peroxisomes and 
acting as a “see me” signal to be recognized by lysosomes 
[132]. Besides, p62 lacks a juxta-UBA (JUBA) domain that 
is required for subcellular localization, but it can promote 
the efficacy of NBR1-induced pexophagy by interacting with 
NBR1 [132].

ER‑phagy (reticulophagy)

The homeostasis maintained by ER is vital for both cellular 
activity and cell survival. Various exogenous or intracellular 
stresses, such as imbalance of calcium flux, oxidative stress, 
protein-folding dysfunction, and disruption in ER functions, 
which leads to the accumulation of unfolded or misfolded 
proteins, causing ‘ER stress’ [149–151]. One salvage meas-
ure that responds to the ER stress is the selective degrada-
tion of misfolding proteins or the ER membrane itself. The 
term “ER-phagy”, also known as “reticulophagy”, was first 
described by Bernales et al. in 2007, who also found that 
ER-phagy was induced by ER stress [152].

Many researchers, inspired by the study of mitophagy 
and pexophagy, have sought to discover the autophagy 
adaptors or ER-phagy receptors (Fig. 2b). Recently, fam-
ily with sequence similarity 134, member B (FAM134B) 
was reported to show advantages in facilitating the 
degradation of ER membranes [153]. FAM134B, an 
intramembranal ER-resident protein, is characterized by 
the presence of a reticulon homology domain (RHD). 
Khaminets et al. found that the FAM134 reticulon pro-
tein family could act as receptors to interact with LC3 
or gamma-aminobutyric acid receptor-associated protein 
(GABARAP), and promote the turnover of ER membrane 
(‘ER-phagy’). Reticulon 3 (RTN3), an RHD-containing 
protein, is located at ER tubules, and its major function 
is to facilitate the formation of ER tubules [154]. Among 
several splicing isoforms of RTN3, only the longest one 
is equipped with six LIR domains, which could bind LC3/
GABARAP, promote the segmentation of ER tubules, 
and finally lead to ER-phagy. In fact, RTN3 initiates 
ER-phagy mainly under conditions of energy or oxygen 
deprivation. However, RTN3 and FAM134B only exert 
their function as an ER-phagy receptor in the region they 
are located [155]. Additionally, a specialized ER-phagy 
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receptor, cell-cycle progression 1 (CCPG1), was discov-
ered, and acts in response to the massive accumulation 
of misfolded or aggregated proteins in the ER. CCPG1 
is a transmembrane protein, and resides in the ER. In 
yeast, it can prevent cells from cell-cycle arrest, hence 
the name [156]. As an autophagy receptor, CCPG1 has an 
LIR motif, which binds with LC3. Moreover, CCPG1 also 
has an FIR motif that interacts with autophagic proteins, 
RB1CC1/FIP200. Binding to RB1CC1/FIP200 increases 
the efficiency of ER-phagy [157]. Recently, Chen et al. 
have identified a new ER-phagy receptor, Atlastin GTPase 
3 (ATL3), which belongs to a family of dynamin-like 
GTPase. ATL3 has been shown to facilitate ER fusion. 
Besides, as an ER-phagy receptor, especially for tubu-
lar ER, ATL3 binds with GABARAP subfamily proteins 
through 2 GABARAP-interacting motifs (GIMs) [158].

Unlike other forms of selective autophagy, ER-
phagy has its own characteristics. First, most of the 
ER-phagy receptors are ER-resident proteins. For exam-
ple, FAM134B [153], the first ER-receptor identified 
in mammalian cells, is an intramembrane ER-resident 
protein which has an RHD at the N-terminal. Moreover, 
FAM134B possesses an LIR domain at C-terminal, which 
can bind to GABARAP/LC3. ATL3, a recently identi-
fied example of an ER-phagy receptor, has two trans-
membrane regions. This differs from other autophagy 
receptors, because the LIRs of ATL3 are specific GIMs, 
which can specifically bind to the GABARAP subfamily. 
Second, only some portions or fragments of the ER are 
involved in the selective degradation process, but not the 
entire organelle. Additionally, in other types of selective 
autophagy, such as mitophagy or pexophagy, the cargoes 
are wholly encapsulated by the autophagosome [159]. 
Thirdly, receptors mediate the selective autophagy of 
different sub-regions of the ER. For example, FAM134B 
primarily targets sheet-like ER for degradation, while the 
long isoform of RTN3 (RTN3L) and ATL3 has effects on 
tubular ER [153, 155, 160]. Fourth, different ER-phagy 
receptors exert their functions in different pathophysi-
ological contexts. For example, RTN3, FAM134B, and 
ATL3 are activated by nutritional deficiencies, while 
CCPG1 is activated by ER stress. Finally, different ER-
phagy receptors mediate ER-phagy in different cell types 
or tissues. For instance, FAM134B is located in embry-
onic fibroblasts and U2OS cells, and RTN3L is expressed 
in kidney and heart, while ATL3 mainly exert its func-
tions in the absence of RTN3L [161, 162].

The ER-phagy shows its physiological value in two 
ways: (1) some parts of the ER, which are dysfunctional 
or have accumulated unfolded or misfolded proteins, 
could be engulfed and degraded via ER-phagy; (2) ER-
phagy may represent an important response to ER stress 
[163].

Aggrephagy

Protein aggregation means the accumulation of unfolded or 
misfolded proteins, which twine together to form insoluble 
clumps. The aggregates are always detrimental to the cells, 
and cause a series of pathological problems, including AD, 
PD, etc. [164–166]. To be noted, aggregation reportedly 
acts in a protective role for the cell by isolating damaged or 
dysfunctional proteins in an insoluble form [167]. In cells, 
three systems are responsible for the quality of proteins: 
chaperone-assisted folding, proteasomal-dependent degra-
dation, and aggrephagy, a form of selective autophagy that 
participates in the degradation of ubiquitinated aggregates 
[168]. These proteins are labeled with ubiquitin (Ub), which 
binds to their adaptors. The subsequent process of aggre-
phagy can be briefly explained by the damaged or unfolded 
proteins that form aggregates, which is labeled by ubiquit-
ination. Then, the aggregates are recognized and engulfed 
by a double-membrane to form autophagosomes. Finally, the 
autophagosomes fuse with lysosomes for further degradation 
and recycling [169].

Like other forms of selective autophagy, aggrephagy 
depends on the functions of adaptors, such as SQSTM/
p62, NBR1, histone deacetylase 6 (HDAC6), and ALFY 
(autophagy-linked FYVE domain-containing protein) 
[170–173]. Ubiquitination of misfolded proteins is a key 
mediator in the recognition and degradation of protein 
aggregates by aggrephagy. Since all of these receptors pos-
sess one or more LC3 interaction regions (LIRs) and one 
ubiquitin-binding domain (UBA), the proposed role of these 
receptors in aggrephagy is to bridge LC3/GABARAP fam-
ily members with ubiquitinated substrates [174]. In both 
p62 and NBR1, the UBD that is located in the C-terminal 
region specifically recognizes Lys63-linked polyubiquitin 
substrates and forms a complex [175]. Simultaneously, 
the LC3-interacting motif in p62 and NBR1 promotes the 
delivery of complexes to form autophagosomes. Among 
these receptors, p62 is the only essential one for the regu-
lation of substrate ubiquitination [176]. Additionally, p62 
recruits a 400 KD autophagy-linked FYVE (ALFY) nuclear 
protein into the cytoplasm for autophagic degradation 
of aggregates. ALFY is crucial in facilitating interaction 
between p62-linked aggregates and the membrane-bound 
autophagosome, LC3 [177]. The ALFY C-terminal region 
has BEACH, FYVE, and WD40 domains, which are crucial 
to this peptide’s functional role in aggrephagy [178]. In par-
ticular, the binding of its WD40 domain to Atg5 is essential 
for ATG5–ATG12–ATG16L1 E3 ligase complex formation. 
Binding of its FYVE domain to PtdIns3P enhances pha-
gophore formation, while its BEACH domain binds to the 
p62-aggregate complex and acts as a scaffold between LC3 
in phagophores [173]. Under normal autophagy conditions, 
p62 and NBR1 aggrephagy receptors facilitate aggregate 
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degradation. Tripartite Motif Containing 50 (TRIM50) is 
an E3 ubiquitin ligase, and it reportedly increases the aggre-
gation of polyubiquitinated substrates in aggresomes. It 
enhances aggrephagy by increasing p62 expression and by 
influencing HDAC6-mediated misfolded protein retrograde 
axonal transport when proteasomal aggregate degradation is 
impaired [179]. Misfolded proteins generated in axons and 
dendrites are retrogradely transported to the lysosome-rich 
microtubule-organizing center (MTOC). In MTOC, they are 
packed into aggresomes, and are subsequently degraded in 
the lysosome [180]. These functions are regulated by histone 
deacetylase-6 (HDAC6). HDAC6 is a deacetylating enzyme 
that is crucial in microtubule transport machinery [181]. In 
aggrephagy, HDAC6 deacetylates α-tubulin, cortactin, and 
HSP-90 [182]. Furthermore, HDAC6 is actively involved in 
the sorting of polyubiquitinated misfolded proteins for the 
axonal retrograde transportation that uses Dynein-snapin, a 
motor–adaptor complex [183].

Others

Selective clearance of ribosome is known as ribophagy, 
which was first noted by Kraft et al. in 2008. They found 
that in the setting of nitrogen starvation, the components 
that formed the 60S subunit of ribosome are more likely 
to undergo degradation in a lysosomal-dependent manner 
than the control cytoplasmic proteins [184, 185]. Ubp3- 
and Bre5-dependent degradation of ribosomes has been 
observed in yeast upon starvation. In addition, Kraft et al. 
have reported that Rsp5 was also involved in the regula-
tion of ribophagy; however, it was not essential. Ribophagy 
has recently been identified in mammalian cells by Wyant 
et al. [186]. Indeed, their report has revealed the presence 
of a putative ribosome receptor-NUFIP1, which is required 
for ribophagy. NUFIP1 contains an LIR motif, and it can 
directly interact with LC3, thereby delivering ribosome to 
the lysosome for degradation. However, the ribosomal factor, 
which is recognized by NUFIP1, has not yet been identified. 
Therefore, more studies are necessary to focus on exploring 
the underlying mechanisms of ribophagy induction and its 
regulatory pathway.

Recently, it was reported that the LD can also be degraded 
in a lysosome-dependent pathway, known as lipophagy 
[187]. Lipophagy refers to a process in which LDs are iso-
lated and engulfed by an autophagosome, which then fuses 
with lysosomes to be degraded [188–190]. Interestingly, 
given that the volume of LDs is much larger (almost 200 μm) 
than that of lysosomes (0.1–1 μm), the autophagosome 
membrane always forms on the LDs surface and pinches 
off parts of the LD membrane to form autolysosomes [191]. 
Although it is regulated by hypothalamic metabolic neurons 
[192], as well as many other proteins, the detailed mecha-
nisms of lipophagy regulation remain unclear. Besides, what 

is currently known, is that lipophagy is quite important for 
cellular energy metabolism.

Moreover, the lysosomal system is the major organelle to 
receive cargo from the phagocytic, autophagic, and endo-
cytic pathways, and plays an important role in maintain-
ing nutrient and energy homeostasis. Therefore, the normal 
function of the lysosomal system is quite important for cel-
lular homeostasis [193]. Several studies have demonstrated 
the detrimental damage incurred by a dysfunctional lysoso-
mal system, rupture of lysosome membranes in neurodegen-
erative disorders, infectious diseases, and tumors. Limited 
damages can be repaired by the endosomal sorting complex 
required for transport (ESCRT) machinery. Otherwise, the 
lysosomes will be ubiquitinated and degraded by selective 
macroautophagy, known as lysophagy [194, 195]. Currently, 
growing studies showed that the stress-induced exposure 
of luminal glycans to the cytosol is the critical factor to 
induce ubiquitination [196]. The recognition and encapsu-
lation of ubiquitinated lysosomes by the double-membrane 
depends on the functions of adaptors, such as SQSTM1/p62, 
TAX1BP1, and NDP52 [197, 198].

Selective autophagy in neurological 
diseases: friends or foes?

There is growing evidence to suggest that there is a close 
relation between selective autophagy and neurological dis-
eases (Table 2). Until now, aggrephagy and mitophagy have 
been the most intensively investigated types of selective 
autophagy in neurological diseases, whereas other types are 
reported less. The protective or injurious effects of selec-
tive autophagy in the occurrence and development of CNS 
diseases differ from each other. Similarly, the role of selec-
tive autophagy in different stages during the development of 
CNS diseases is different, as well. Consequently, overactive 
or insufficient selective autophagy may damage cells. There-
fore, determining how to show the protective effect of selec-
tive autophagy on tissues (cells), and avoiding or reducing 
its damage to tissues (cells) to the greatest extent will likely 
be the focus of future research by scholars.

Parkinson’s disease

Parkinson’s disease is a neurodegenerative disease character-
ized by the degenerative loss of dopaminergic neurons in the 
pars compacta of the substantia nigra (SNpc). Its main path-
ological feature is the formation of eosinophilic inclusion 
bodies (Lewy bodies) in neurons, which are mainly com-
posed of α-nuclear synaptic proteins [199]. The Lewy bodies 
are more likely to form in aggregates due to genetic varia-
tion in both types of PD, which finally disrupts the cellular 
homeostasis, leading to pathology [200, 201]. Moreover, 
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cell-to-cell propagation of malformed α-synuclein causes 
the contamination of healthy cells [202]. Finally, patients 
manifest with typical motor disturbance once the pathol-
ogy causes the loss of more than 50% of dopaminergic 
neurons in the SNpc [203]. Once chaperone-mediated or 
proteasomal-dependent mechanisms fail to clear the aggre-
gates, selective autophagy can be an alternative way to 
clear them [204]. Pharmacological promotion of autophagy 
reportedly shows neuroprotective effects for PD via selec-
tive clearance of α-synuclein aggregates [205–207]. For 
the regulation of aggrephagy in PD, mutations in DJ-1 or 
alpha-synuclein (SNCA) have been indicated to suppress 
aggrephagy, whereas the upregulation of NBR1 and p62 pro-
motes aggrephagy [208]. Another recent study has shown 
that estrogen-related receptor α (ERRα) also participates in 
aggrephagy by restraining autophagy flux [209]. Besides, 
several studies show that mitochondrial dysfunction plays a 
key role in the pathogenesis of sporadic PD. In the sample of 
PDs, researchers found that dysfunction of electron transport 
complexes exists in almost 25% of patients with sporadic 
PD [210]. As a result, some agents, such as opiate analogue 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 
pesticides, can disrupt the function of the electron transport 

chain (ETC) and trigger a Parkinsonian phenotype in the 
models [211, 212]. Previous reports indicated that mito-
chondria within the SNpc neurons are more likely to be 
influenced by various stresses and damages. Therefore, any 
mitochondrial damage and accumulation of the damaged 
mitochondria cause progressive damage to the mitochondria 
along the whole life, unless the damaged mitochondria are 
labeled and selectively degraded via mitophagy. The genes 
encoding for α-synuclein, PINK1, DJ-1, and Parkin are all 
involved in mitophagy, which selectively degrade the heavily 
damaged mitochondria, thereby avoiding their toxic accu-
mulation [213, 214]. Consequently, any disturbance in the 
genetic expressions leads to mitophagic dysfunction, further 
causing neurodegeneration [215]. Three mechanisms are 
reportedly responsible for initiating mitophagy: ubiquitin-
mediated, cardiolipin-mediated, and transmembrane recep-
tor-mediated [47]. Oh et al. have reported that S-nitrosylated 
PINK1 (SNO-PINK1) can impair mitophagy, whereas mito-
chondrial insults stimulated by age- or environmental-related 
stresses lead to the increase of SNO-PINK1, which inhibits 
the activity of SNO-PINK1. Hence, the formation of SNO-
PINK1 and functional disturbance of mitophagy greatly lead 
to the pathogenesis of PD [215]. Besides, DNA damage is 

Table 2  The roles of selective autophagy in neurological diseases

AD Alzheimer’s disease, PD Parkinson’s disease, TBI traumatic brain injury, SCI spinal cord injury, HD Huntington’s disease

Types of diseases Selective autophagy Mechanisms

AD Mitophagy Inhibits Aβ and tau pathology and reverses cognitive deficits in models of AD
ER-phagy Promote degradation of Ab42 and AbPP
Lipophagy Reduce lipid droplet accumulation and decrease neuronal neurodegeneration
Others Clearance of accumulation of Aβ or tau

PD Mitophagy Impaired mitochondria and mitophagy contributes to the pathogenesis of PD
ER-phagy ATL3 reveals potential physiological relevance of reticulophagy in neurodegenerative diseases
Others Degradation of α-synuclein and Louis bodies formed aggregates

Stroke Mitophagy Mitophagy prevents mitochondrial production of ROS and mitochondria-mediated apoptosis, while 
excessive mitophagy contributes to cell death

Pexophagy Reducing infarct size of ischemic stroke by attenuating oxidative stress and inflammation
ER-phagy An important way to cope with ER stress and reduce ER-mediated apoptosis
Lipophagy Decrease lipoapoptosis and oxidative products by reducing polyunsaturated FAs and other excess and 

harmful lipids, while it can also induce pro-apoptotic signals in the adjacent cells
Ribophagy One mechanism is to preserve more energy for cells to go through the attack of stroke

TBI and SCI Mitophagy Reduces destructive cycle of mitochondrial damage, fuel deficiency, mitochondrial apoptosis and 
attenuates TBI-induced BBB disruption

Brain tumors Mitophagy Mitophagy inhibition upregulating cell death markers (Bax, Cyt-c and caspase-3). However, mitophagy 
can also contribute to the cell killing effects of AT 101 and enhance the temozolomide cytotoxicity of 
glioma stem cells

ER-phagy Pharmacologically induction of ER-phagy led to reduced phospholipids phosphatidylcholine (PtdCho) 
and phosphatidylethanolamine (PtdE) biosynthesis

Others Mitophagy Mitophagic PINK1/Parkin increasing improves neuroprotection in HD; clearance of dysfunctional 
mitochondria in motor neurons of ALS patients, and help to rebuild mitochondrial axonal transport; 
Reduce inflammation to counteract inflammasome activation in astrocytes in HIV patients

ER-phagy I1061T NPC1 is can be degraded by ER-phagy in Niemann–Pick type C disease
Others Decrease in both aggregated and soluble monomeric Htt species in HD
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very common in the progression of PD. Accumulated DNA 
damage leads to a series of biochemical cascades, ultimately 
resulting in cellular outcomes, such as mitophagy or cell 
death [216]. One possible way is through the ATM–AMPK 
axis. ATM, a master regulator of the DNA damage response, 
can either directly phosphorylate or activate AMPK, which 
can further promote mitophagy through phosphorylation 
[217]. Similarly, Chen et al. [158] revealed that ATL3 is the 
receptor and promotor of ER-phagy, as well as the media-
tor of ER fusion through its specific binding to GABARAP 
subfamily proteins, which suggests the potential role of ER-
phagy in neurodegenerative diseases.

Alzheimer’s disease

Alzheimer’s disease (AD), a type of neurodegenerative dis-
eases, is the major reason of dementia worldwide. The main 
clinical manifestations of AD typically begin with memory 
loss, but later presents with defects in cognitive and adap-
tive functioning [218–220]. AD is pathologically character-
ized by neuronal loss, intracellular deposits of hyper-phos-
phorylated tau protein, and the accumulation of amyloid-β 
(Aβ) in cerebral vasculature and brain parenchyma [221]. 
In addition, emerging evidence indicates that dysfunctional 
ER and mitochondria play a key role in the pathogenesis of 
AD [222–224].

The underlying molecular mechanisms of AD are still 
far from understood, but aggrephagy disturbance was 
reported to be a critical mechanism of AD. For example, 
the autophagy–lysosome pathway has been underlined as 
an important point for Aβ clearance [225]. In normal human 
CNS, there is no Aβ protein accumulation due to the higher 
rate of clearance compared to production, which reveals the 
critical role of autophagy for the degradation and produc-
tion of Aβ protein [226–228]. Moreover, growing evidence 
suggests that there is dysfunction of the autophagy–lyso-
somal system in early stages of AD (without accumulation 
of neurofibrillary tangles or Aβ proteins), and thus, normal 
maintenance of autophagy has been considered a promising 
regimen for treating AD [228].

It is well established that mitophagy is critical for degrad-
ing dysfunctional mitochondria and maintaining mitochon-
drial homeostasis, a critical process for normal neuronal 
function. Conversely, defects in mitophagy lead to AD 
[229–231]. In line with these, several studies have reported 
that dysfunctional and damaged mitochondria were found in 
the brain tissues from both AD patients and animal models 
[229, 232]. A deficiency in mitophagic activity has been 
shown in a Presenilin1 mutant AD model, which directly 
shows the potential role of mitophagy in AD [233]. Experi-
mental induced mitochondria dysfunction using treatment 
with agents or genetic alteration aggravates the manifestation 
of AD by increasing the deposit of Aβ and pTau aggregation 

[234–237]. The inhibitory role of mitophagy in the accu-
mulation of Aβ and tau proteins has been reported by Fang 
et al., resulting in reversed cognitive deficits in models of 
AD. Resultantly, impaired removal of defective mitochon-
dria has been suggested to be a critical factor in the patho-
genesis of AD, indicating that mitophagy may be a prom-
ising therapeutic strategy [230]. Besides, it was reported 
that mitophagy [238] and DNA damage [239] have been 
closely associated with the development and progression 
of AD [240]. AD also shows a reduction in base excision 
repair (BER) [241] and double-strand breaks (DSB) [242] 
repair, which can be sensed by DNA-damaged sensors, such 
as ATM or cGAS-STING pathway, which further activates 
mitophagy by modulating its downstream targets [243].

Similar to PD, aggrephagy has an important role in clear-
ing the abnormal proteins found in AD. It was reported that 
decreased Beclin1, defects in the lysosomal system, massive 
deposits of Aβ or tau proteins, and phosphorylation of P62 
all decrease the effects of aggrephagy and contribute to AD 
[244–249].

As mentioned above, any stress causing the massive 
deposit of abnormal proteins in the ER lumen causes ER 
stress. The cells increase its protein-folding ability to deal 
with mild ER stress, but once this fails, the cells turn to 
autophagy for help [250, 251]. The earliest evidence that 
ER participates in autophagy was from a report, suggest-
ing that ER acts as the source of autophagosome membrane 
[152]. However, ER can also be degraded by autophagy. The 
induction of severe ER-stress activates selective autophagy 
of ER, known as ER-phagy [152, 252]. The main function 
of ER-phagy is to isolate and degrade some parts of the ER 
with abnormal aggregates, which cannot be handled by other 
methods. What is the relationship between ER-phagy and 
AD? Accumulating evidence has shown that UPR activation 
markers are extensively increased in the brain tissues from 
AD patients and animal models [253, 254]. Lai et al. [255] 
also indicated that deposition of Aβ proteins inhibits the 
interaction between ER and microtubules in the hippocam-
pal neurons, which causes the dysfunction of ER and activa-
tion of the lysosomal–autophagy system. Besides, chemi-
cals that interfere with cholesterol metabolism within the 
ER reportedly increase the efficiency of Aβ42 clearance by 
autophagy, further indicating the close relationship between 
ER dysfunction and autophagy in AD [256]. Moreover, ini-
tiation of ER stress by with agents triggers autophagy, and 
greatly decreases the amount of mature APP and amyloid 
beta precursor-like protein 1 (APLP1), while autophagic 
inhibition contributes to the deposition of amyloid precur-
sor protein (APP) protein and APLP1 [257]. In addition, tau 
protein also assists in understanding the relationship of ER 
and autophagy in AD. Loewen and Feany [258] have found 
that induction of ER stress can sometimes reduce the harm-
ful effects of tau via introduction of autophagy.
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LDs are abundant in the neurons. They mainly include 
glycerophospholipids, sphingolipids, and cholesterol. The 
normal metabolism of these lipids is quite important for the 
maintenance of neuronal functions. For example, choles-
terol forms the main components of cell membranes and 
myelin, which is critical for synapse, dendrite formation 
[259, 260], and axonal guidance [261]. Several studies 
show that decreased cholesterol in neurons greatly affects 
neuronal activity and neurotransmission, causing the pro-
gressive degeneration of dendritic spine and synapse, which 
contributes greatly to the pathogenesis of AD [262–264]. 
Besides, sphingomyelinases have been shown to increase 
neuronal apoptosis by generating the pro-apoptotic mole-
cule, ceramide [265, 266]. Besides, the level of arachidonic 
acid increases in the brain tissue from AD model [266, 267]. 
Therefore, selective autophagy of dysfunctional lipids is 
another key therapeutic target in treating AD. Importantly, 
although enhancing lipophagy has previously been indi-
cated to reduce the accumulation of lipid droplets, and thus 
decrease neuronal neurodegeneration caused by the accumu-
lation of dihydroceramide desaturases [268], there is a lack 
of literary evidence supporting the direct relation between 
lipophagy and AD. Therefore, future studies are warranted 
to understand the relationship between lipophagy and AD.

Stroke

Stroke, one of the most common types of neurological 
diseases, is an acute cerebrovascular incident caused by 
either a sudden rupture of blood vessels feeding the brain 
(hemorrhagic stroke) or a failure of blood flow into the 
brain due to an abrupt blockage of blood vessels (ischemic 
stroke) [269]. Mitochondrial dysfunction contributes 
greatly to brain injury after stroke, as the mitochondria 
are the energy suppliers and important organelles in the 
regulation of oxidative metabolism and cellular apoptosis. 
As mentioned above, mitophagy is responsible for control-
ling the number and quality of mitochondria by degrad-
ing damaged and accumulated mitochondria. Besides, 
mitophagy is also important for maintaining the physi-
ological functions of mitochondria, such as mitochondrial 
fusion and fission, or oxidative metabolism. However, the 
exact molecular mechanisms regarding the involvement 
of mitophagy in stroke remain unclarified [270]. During 
ischemic stroke, mitophagy is critical for maintaining 
normal function of the mitochondria, while aggressive 
mitophagy leads to cell death. Shi et al. [98] have reported 
that NIX mainly controls the basal level of mitophagy in 
physiological conditions, while BNIP3 can induce exces-
sive mitophagy. The contribution of 12/15-lipoxygenase 
(LOX) to the disease pathogenesis through the increase 
of oxidative stress-related injury has been implicated, par-
ticularly in stroke. Besides, 12/15-LOX knockout has been 

shown to lead to increased macroautophagy, mitophagy, 
and pexophagy. It is widely accepted that inhibition of 
LOX provides protective effects in many diseases caused 
by ischemia or oxidative stress, and has also been pro-
posed to be the culprit behind enhanced macroautophagy 
in the absence of LOX [271]. Next, γ-aminobutyric acid 
(GABA), the primary inhibitory neurotransmitter, has 
been shown to inhibit selective autophagy pathways, as 
well as mitophagy and pexophagy in yeast through Sch9, 
which is the homolog of S6K1, a mammalian kinase asso-
ciated with oxidative stress [272]. Pexophagy, the selective 
degradation of dysfunctional or superfluous peroxisomes, 
is another selective type of autophagy that is essential 
for the maintenance of a balanced cellular redox state. 
After the stroke attack, the peroxisome population greatly 
increased, including the dysfunctional ones, and both lead 
to serious oxidative stress, neuroinflammation, and, ulti-
mately, neuronal death. Therefore, selective autophagy of 
dysfunctional or superfluous peroxisomes is a key target 
in alleviating brain injury after stroke. Although Zhu et al. 
have suggested that pexophagy can exhibit neuroprotective 
effects by reducing the infarct size after ischemic stroke 
[273], the particular role of peroxisomes and pexophagy in 
stroke has been grossly underestimated thus far. Therefore, 
more studies should be carried out to explore the impor-
tant role of peroxisomes in stroke.

The association between stroke and lipids, especially 
triglyceride and low-density lipids (LDLs), has been previ-
ously confirmed by prospective studies [274, 275], reveal-
ing that high triglyceride and ox-LDL levels substantially 
increase the risk of death and poor functional outcomes, 
both before and after stroke. Stroke is associated with a 
series of pathophysiological consequences, including 
apoptosis, inflammation, oxidative stress, and disruption 
in lipid metabolism. The alterations in lipid metabolism 
influence the amount of fatty acids (FA) and neutral lipid 
storage [276]. Massive accumulation of LDs is detrimental 
to homeostasis, as accumulation of neutral triglycerides 
(TGs) always promotes the metabolism of long-chain FA, 
which contributes to lipoapoptosis [277, 278]. Besides, 
oxidative stress increases the metabolism of polyunsatu-
rated FAs (PUFAs), whose products, such as malondial-
dehyde (MDA), can aggravate oxidative stress [279, 280]. 
Kirac et al. [281] showed that ischemia and reperfusion 
in the liver increase lipid-mediated inflammation. There-
fore, selective degradation of these types of superfluous 
and harmful lipids, namely lipophagy, can substantially 
reduce the brain injuries after stroke. Indeed, ischemic 
stroke reportedly induced the activation of lipophagy that 
occurred to effectively remove the lipid excess, modulate 
the lipid homeostasis, and counteract the intracellular TG 
overload [282]. However, induced excessive lipophagy can 
be a doubled-edged sword, because some products of LDs, 
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such as ceramides and PUFA-derived lipid mediators, are 
detrimental to the adjacent cells [283]. Nevertheless, more 
research is necessary to determine the exact functions of 
lipophagy in stroke.

In recent years, ER-stress has been shown to play an 
important role in the pathogenesis of stroke. Insults that 
disturb ER function result in ER-stress or ER dysfunction. 
Hence, selective autophagy of dysfunctional ER can be a 
promising target to reduce injury caused by stroke. Moreo-
ver, selective isolation and engulfment of the ER assist cells 
in dealing with severe ER stress, even without degradation 
by vacuolar proteases, suggesting that selective sequestration 
of the ER is a critical mechanism for the cells to go through 
ER stress [284]. Interestingly, the study of Carloni et al. 
[285] found that upregulation of ribophagy exerts neuropro-
tective effects for animals with neonatal hypoxic-ischemia. 
This can be explained by the reduction of ribosome biogen-
esis and protein translation, which can preserve more energy 
for cells to endure the damage induced by stroke.

Traumatic brain injury

Traumatic brain injury (TBI) is typically caused by an exter-
nal mechanical force. The brain injuries caused by TBI can 
be divided into two categories: primary brain injury that 
occurs at the time of the insult, and secondary brain injury, 
which includes neuronal apoptosis, inflammation, oxidative 
stress, etc. [286]. Selective autophagy has been implicated 
in traumatic brain injury (TBI), as well.

Numerous studies have revealed that mitochondria might 
be critical for the pathophysiology of TBI. As the main site 
of energy production and oxidative metabolism, any distur-
bance of mitochondrial functions would lead to fuel defi-
ciency, oxidative stress, and even induction of apoptosis, 
which is the key process of neural damages in TBI [287, 
288]. Hence, mitophagy can alleviate secondary brain inju-
ries by selective degradation of damaged mitochondria after 
TBI [289]. Wu et al. [290] have used mitochondrial divi-
sion inhibitor-1 (Mdivi-1) to inhibit the key regulator of 
mitochondrial fission, Drp1, and have reported that it can 
extenuate TBI-induced blood–brain barrier (BBB) disrup-
tion and cell death by inhibiting dysfunctional autophagy, 
but by activating mitophagy. Likewise, Liu et al. [291] have 
reported increased mitophagy after TBI, which dimin-
ished the TBI-mediated intestinal epithelial cell damage, 
and improved intestinal permeability via ERK/Nrf2/HO-1 
signaling. Mitophagy can negatively regulate IL-1β secre-
tion, and thus inflammatory activation, to protect against 
TBI-triggered immunopathology [289]. The neuroprotective 
effects of mitophagy have also been demonstrated in spinal 
cord injury, which can be induced by inhibition of miRNA-
124 or autophagy inducers, such as rapamycin [292–294].

Others

In addition to the aforementioned neurological diseases, 
selective autophagy has been implicated to play an important 
role in other neurological diseases as well, such as Hunting-
ton’s disease (HD), amyotrophic lateral sclerosis (ALS), and 
infectious diseases of the CNS.

Huntington’s disease is an autosomal dominant neuro-
degenerative disease characterized by motor and cognitive 
impairment. The marked pathological features of HD include 
the formation of Huntingtin (Htt) aggregates and inclusions, 
which are mainly composed of Htt fragments with prolonged 
polyglutamine sequences (PolyQ). Some researchers have 
demonstrated that aggrephagy initiation greatly decreases 
the level of aggregated and soluble monomeric Htt spe-
cies [295, 296]. Moreover, K63-ubiquitinated Htt has been 
shown to facilitate the target of aggregates by autophagy 
receptors, such as optineurin or p62 [297–299]. Besides, in 
preclinical HD models, growing studies have pointed to the 
role of mitochondrial Htt (mHtt) in mitochondrial functions 
and mitophagy [300]. Similarly, Valosin-containing protein 
(VCP), a mHtt-binding protein, is reportedly recruited to 
the mitochondria, leading to impaired mitophagy in models 
of HD [301].

Niemann–Pick disease type c is another rare, but fatal 
neurodegenerative disease, which is induced by genetic 
mutations in NPC1 (I1061T NPC1). The NPC1, a multipass 
transmembrane glycoprotein, is required for intracellular 
lipid delivery. Interestingly, Schultz et al. [302] suggested 
that I1061T NPC1 is selectively cleared by ER-phagy.

Amyotrophic lateral sclerosis is a neurodegenerative 
disease characterized by selective and progressive death of 
the motor neurons. Ubiquitinated inclusion bodies can be 
seen in the cytoplasm of these neuronal cells. Many stud-
ies have shown that mitochondrial dysfunction is a key fac-
tor in the pathogenesis of this disease. Studies have shown 
that mitophagy has a protective effect on ALS [303]. Spe-
cifically, dysfunction of mitophagy, due to ALS-associated 
mutants, is considered vital for causing mitochondrial dys-
function and accumulation, a prevalent feature in the motor 
neurons of ALS patients. Besides, aberrant mitochondrial 
axonal delivery is thought to be another factor contributing 
to the pathogenesis of ALS. Mitochondria from the soma 
are anterogradely transported to sites where the metabolism 
is vigorous, whereas abnormal functions of transportation 
lead to neuronal defects [304, 305]. Moreover, it is reported 
that autophagy was closely associated with DNA repair to 
promote neurodegeneration in ALS [306]. ALS can cause 
p62 mutations in or around the LC3 domain of p62, leading 
to autophagic defects and the accumulation of mutant p62, 
while the accumulation of p62 impairs the DNA damage 
response [307, 308]. Therefore, autophagy could be a prom-
ising target in treating ALS.
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Mitochondrial dysfunction is also associated with infec-
tive processes [309], as the mitochondria have a number of 
roles in resisting bacterial infection, including the produc-
tion of bactericidal ROS [310] and inflammasome acti-
vation [311]. Indeed, infections result in mitochondrial 
damage through an unknown mechanism, leading to the 
release of mitochondrial DNA (mtDNA) and mitochon-
drial ROS (mtROS) from the damaged mitochondria, 
which are thought to work as danger signals [312, 313]. As 
mentioned earlier, mitophagy is a regulatory mechanism of 
cells, which functions to eliminate damaged mitochondria 
to maintain mitochondrial homeostasis against stress and 
apoptosis [314, 315]. Among many others, HIV infection 
has been the most studied CNS infectious disease associ-
ated with mitophagy thus far. It is well known that HIV 
enters the CNS during the early stages of the infection, 
resulting in neurodegeneration and neurocognitive impair-
ment. In HIV-productively infected astrocytes, mitophagy 
is crucial for cell death resistance. Moreover, mitophagy 
can reduce inflammation to counteract inflammasome acti-
vation; however, impaired mitophagy may favor inflam-
masome-mediated cell death in abortively infected cells 
[316]. In human primary neurons, HIV proteins, includ-
ing gp120 and Tat, can cause neuronal degeneration, and 
thus, neurocognitive impairment by favoring the balance 
of mitochondrial dynamics toward enhanced fragmenta-
tion by activating mitochondrial translocation of DRP1 to 
the damaged mitochondria. Hence, a failure in completing 
the mitophagy process leads to neuronal damage [317].

From bench to bedside: neuroprotection 
of selective autophagy

Although neuronal autophagy is greatly decreased when 
compared with other tissues, the normal development 
and functions of the CNS are more dependent on basal 
autophagy than that of other tissues [318]. The cellular 
division in the CNS is mainly located at developmental 
stages, and mature neurons have a limited or null poten-
tial of proliferation, which indicates that damaged orga-
nelles and misfolded proteins cannot be redistributed and 
removed by division, and finally accumulate in the neu-
rons, unless they are successfully removed by autophagy 
[319, 320]. However, the cytoprotective role of autophagy 
in neuronal tissues was firmly proved by establishing 
CNS-specific autophagy-deficient animal models [321]. 
The neural tissue-specific knockout models for essential 
autophagy genes show significant signs of neurodegen-
eration, including growth retardation, progressive motor 
deficits, abnormal reflexes, and often premature death 
[322–324].

Homeostatic and housekeeping functions 
of autophagy in CNS

Different from other cell types, the normal functions of neu-
ronal cells greatly depend on basal autophagy, as they are 
post-mitotic and suffer from aggregation of toxic proteins 
and damaged organelles over an extended period [325, 326]. 
Basal autophagy showed an important role in the regula-
tion of axonal, dendritic, and synaptic homeostasis [327]. 
For example, Komatsu et al. [324] reported that the loss 
of basal autophagy by specific knockout of the autophagic 
gene, Atg7, in Purkinje cells resulted in progressive dystro-
phy and degeneration of the axon terminals of these cells. In 
addition, Lee et al. [328] demonstrated the role of mTOR in 
regulating post-synaptic potentiation or depression, which 
suggested that the effects of autophagy are involved in syn-
aptic plasticity. Taken together, basal autophagy is relatively 
active in healthy neurons and maintains homeostasis via 
degradation of accumulated proteins and dysfunctional cell 
organelles.

Role of induced autophagy in neuroprotection

Growing evidence suggests that pharmacological induction 
of autophagic flux provides a promising clinical strategy for 
the treatment of neurological diseases. For example, rapamy-
cin and its analogues, known as the ‘rapalogues’, reportedly 
enhance autophagosome formation by suppressing the func-
tions of mTORC1, protecting against the toxicity of accu-
mulated proteins in vitro, and substantially reducing neu-
rodegeneration in fly and mouse models of HD and SCA3 
[295, 329–331]. However, the beneficial effects of rapamy-
cin treatment are greatly decreased in Drosophila models of 
HD and SCA3 when autophagy is inhibited [330, 332, 333]. 
Besides, virally delivered Beclin 1 reduced the neuropathol-
ogy in mouse models of AD and Parkinson/Lewy body dis-
eases [244, 334], which suggests that induction of autophagy 
enhances the neuroprotective effects of rapamycin. Consist-
ently, other chemical agents capable of inducing autophagy 
in an mTOR-independent manner, such as carbamazepine, 
the molecular chaperone trehalose, the inositol monophos-
phatase inhibitors lithium, or valproate, increase the degra-
dation of mutant huntingtin and protect against its toxicity in 
several models of neurodegeneration [335–337]. In addition, 
NAD+-induced mitophagy was also reported to reduce the 
cognitive loss of AD by enhancing the functions of sirtuins 
(SIRT1 to SIRT7), SARM1 (sterile alpha and TIR motif con-
taining 1), and PARP (poly[ADP-ribose] polymerase) pro-
teins [230]. Besides, decreased autophagy around the hema-
toma, exacerbation of neurological deficits, and brain edema 
in an intracerebral hemorrhage model with hyperglycemia 
indicate the beneficial role of autophagy in ICH with hyper-
glycemia [338]. For selective autophagy, the neuroprotective 
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role of mitophagy has also been reported by many studies. 
Its underlying mechanisms include mitochondrial clearance 
and inhibition of downstream oxidative stress, apoptosis, and 
inflammation [339, 340]. One study showed that rapamycin 
could attenuate mitochondrial dysfunction via activation of 
mitophagy in experimental ischemic stroke [341]. In addi-
tion, several mitophagy-related proteins, such as beclin1 and 
Parkin, were all reported to be beneficial in the treatment 
of ischemic brain injury [342, 343]. Moreover, the neuro-
protective effects of mitophagy have also been reported in 
hemorrhagic stroke by many studies [344, 345].

Potential clinical values of selective autophagy 
in neurological diseases

Some clinical trials have been set to explore the potential 
therapeutic effects of autophagy in human diseases. For 
example, hydroxychloroquine (HCQ) is reported to be a 
clinically approved autophagy inhibitor, and has been used 
in cancer clinical trials (NCT00813423, NCT01023737, 
et al.) [346]. Besides, there are also some clinical trials stud-
ying the clinical significance of mitophagy and pexophagy 
in human diseases (NCT02472340 and NCT03856866). 
However, clinical translational applications of these drugs 
remain in the early stages. Current limitations include dif-
ficulties in methodology and selective drug development. 
One of the most challenging aspects regarding the transla-
tion of autophagy is the difficulty in dynamically evaluat-
ing autophagy in vivo. This limitation is quite important, 
as it decides the diagnosis and monitors the efficiency of 
any autophagy-based intervention. At the experimental 
level, tandem macroautophagy reporter mRFP-GFP-LC3 or 
intraventricular delivery of adeno-associated viruses to the 
brain have been reported to be useful methods in monitor-
ing autophagy [347]. However, autophagy reporters are not 
available for use in the clinical setting yet. Therefore, devel-
oping methods for monitoring autophagy will also be impor-
tant for the clinical translation of autophagy-based drugs.

Conclusions and perspectives

In this review, we comprehensively discussed the under-
lying mechanisms of selective autophagy and its roles in 
neurological diseases. Basically, selective autophagy may 
be responsible for the organelle turnover, and it turns out 
to be an energy-efficient, fast, and precise way to deal with 
unwanted materials. Physiological selective autophagy is 
triggered by various stresses to maintain cellular homeo-
stasis. Until now, a number of studies have mainly focused 
on the mechanisms of selective autophagy; however, some 
types of autophagy (ribophagy, ER-phagy, pexophagy, etc.) 
are still far from being understood. For example, no specific 

adaptors or receptors for ribophagy have been identified. 
Likewise, the process by which LDs are recognized and 
transported to the lysosomes remains unknown.

In addition to the mechanisms behind selective autophagy, 
we discussed the crosstalk between selective autophagy 
and other cellular processes, as selective autophagy exhib-
its a close relationship with apoptosis, neuroinflammation, 
oxidative stress, etc. Besides, most of the current studies 
focus on the regulation of non-selective autophagy, whereas 
activation of general autophagy is far from understanding 
the whole lysosomal–autophagy system in the cells [348]. 
Therefore, achieving control of selective autophagy may be 
a promising strategy in preventing and treating neurologi-
cal diseases. However, understanding the mechanisms of 
selective autophagy that are behind neurological diseases 
has been limited to preclinical animal studies with no clini-
cal evidence reported thus far. Indeed, it is mandatory to 
determine how selective autophagy mechanisms occur in the 
human body. We need to understand the underlying mecha-
nisms of selective autophagy, and the selective autophagy-
connected crosstalk mechanisms. Broader selective reagents 
and therapeutic targets for the manipulation of selective 
autophagy are necessary. Finally, further elucidation of 
selective autophagy, as well as its crosstalk mechanisms 
under pathologic neurological conditions is warranted.
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