
J Pathol Inform  Editor-in-Chief:
   Anil V. Parwani ,	 Liron Pantanowitz, 
   Pittsburgh, PA, USA	 Pittsburgh, PA, USA 

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS 
HTML format

Original Article

How useful are delta checks in the 21st century? A stochastic-
dynamic model of specimen mix-up and detection

Katie Ovens, Christopher Naugler1

Bachelor of Health Sciences Program, Faculty of Medicine, Room G503, O’Brien Centre for the BHSc, 3330 Hospital Drive N.W, Calgary, Alberta T2N 4N1, 1Department 
of Pathology and Laboratory Medicine University of Calgary and Calgary Laboratory Services C414, Diagnostic and Scientific Centre 9, 3535 Research Road NW, Calgary-
Canada

E-mail: *Christopher Naugler- christopher.naugler@cls.ab.ca 
*Corresponding author

Received: 02 November 11	 Accepted: 22 November 11	 Published: 29 February 12

This article may be cited as:
Ovens K, Naugler C. How useful are delta checks in the 21st century? A stochastic-dynamic model of specimen mix-up and detection. J Pathol Inform 2012;3:5.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2012/3/1/5/93402

Copyright: © 2012  Ovens K.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

Abstract
Introduction: Delta checks use two specimen test results taken in succession in order 
to detect test result changes greater than expected physiological variation. One of the 
most common and serious errors detected by delta checks is specimen mix-up errors. 
The positive and negative predictive values of delta checks for detecting specimen mix-
up errors, however, are largely unknown. Materials and Methods: We addressed this 
question by first constructing a stochastic dynamic model using repeat test values for 
five analytes from approximately 8000 inpatients in Calgary,  Alberta, Canada. The analytes 
examined were sodium, potassium, chloride, bicarbonate, and creatinine. The model 
simulated specimen mix-up errors by randomly switching a set number of pairs of second 
test results. Sensitivities and specificities were then calculated for each analyte for six 
combinations of delta check equations and cut-off values from the published literature. 
Results: Delta check specificities obtained from this model ranged from 50% to 99%; 
however the sensitivities were generally below 20% with the exception of creatinine for 
which the best performing delta check had a sensitivity of 82.8%. Within a plausible incidence 
range of specimen mix-ups the positive predictive values of even the best performing delta 
check equation and analyte became negligible. Conclusion:  This finding casts doubt on 
the ongoing clinical utility of delta checks in the setting of low rates of specimen mix-ups.
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INTRODUCTION

Laboratory error remains a serious problem,[1] with 
specimen mix-up errors constituting one of the most 
serious preanalytic errors. In an attempt to detect 
specimen mix-up errors, it is common practice for 
laboratories to use delta check algorithms.[2,3] Delta 
checks compare the current test result with a previous 
result for the same test obtained over a short period of 
time (within 96 hours) from the same patient. If the 

change in the value of the analyte exceeds an expected 
physiological range, the result is flagged as a possible 
error.[2] Different delta check algorithms employ various 
equations including absolute differences in analyte levels, 
percentage changes, and rate changes (see the Results 
section). The calculation of these values is generally 
automated within analyzer software or Laboratory 
Information Systems.

A variety of delta check algorithms have been 
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described;[2,4-6] however brief perusal of the references 
to this paper will show that much of the work on delta 
checks was performed several decades ago. Modern 
technologies such as bar-coding and automated specimen 
processing have undoubtedly decreased the incidence of 
specimen mix-up errors but the potential effect of this 
on the positive and negative predictive values of delta 
checks has not been explored.

In order to determine these positive and negative 
predictive values two pieces of information are necessary. 
First we must know the sensitivity and specificity of 
the various delta checks for detecting specimen mix-
ups. Second, we need to know the expected incidence 
of specimen mix-ups in the population studied. The 
sensitivity of delta checks could be estimated in part 
from data on the follow-up of positive delta checks. 
Previous work has suggested false-positive rates as high 
as 70%.[4] However the determination of the specificity 
of delta checks is much more difficult with little 
information available.[7] The reason for this, of course, is 
that other mechanisms to detect these mix-up errors are 
lacking and so there is no practical mechanism to detect 
false-negative delta checks. The only viable method to 
estimate the specificity of delta checks is to employ a 
modeling approach which intentionally introduces errors 
into a database of repeat measurements and then tests 
the ability of delta checks to detect these errors.[8]

In this paper we follow this modeling approach by first 
obtaining a data set of repeated measurements of actual 
patient results and then using a simple computer program 
to introduce mix-up errors into this dataset (by switching 
pairs of second results). Because these introduced errors 
are known, we can then apply delta check equations 
to determine both sensitivity and specificity for each 
equation and each analyte. Finally, using literature values 
for the range of actual specimen mix-up errors, we can 
estimate positive and negative predictive values.

MATERIALS AND METHODS

Acquisition of Patient Data
Following ethics approval by the University of Calgary 
Conjoint Health Research Ethics Board, data were 
obtained from the Laboratory Information System (LIS) of 
Calgary Laboratory Services. Calgary Laboratory Services is 
the sole provider of laboratory services to the 1.4 million 
residents of Calgary, Alberta, Canada and the surrounding 
area, performing approximately 15.8 million chemistry tests 
per year. We queried the LIS for patient test results for 
potassium, sodium, chloride, bicarbonate, and creatinine, 
performed within the previous 12 months on hospitalized 
patients where two measurements of the same analyte 
were available within a 96-hour period. Test results were 
then anonymized by removing all identifying information.

Computer Model
Between 8135 and 8432 pairs of test results were obtained 
for each analyte considered. These results were entered 
into an Excel database along with the time interval 
between the two tests. A stochastic dynamic model was 
then written in Visual Basic which ran as a macro within 
the spreadsheet. This program simulated specimen mix-
up errors by switching a subset of the pairs of second 
results. This resulting “error rate” could be changed 
by the operator and was set at 1% for the subsequent 
modeling, a number chosen so as to be higher than 
any reasonable estimate of real specimen mix-up errors 
already existing in the patient data. The data were then 
run through a series of delta check algorithms in order to 
attempt to detect the errors that had been introduced. 
The results of each algorithm were presented in truth 
table format to calculate sensitivity and specificity. 
Because errors were introduced at random, we were 
concerned that certain iterations of the model may have 
introduced simulated mix-up errors that were more 
or less amenable to detection by certain delta checks. 
Therefore, each iteration of the model was run 10 times 
and the mean values and ranges were reported. A copy 
of the Visual Basic program (without patient data) is 
available by emailing the corresponding author.

RESULTS

Six combinations of delta check equations and cut-off 
values were obtained from the published literature and 
tested with our model. Mean sensitivities and specificities 
from 10 replicated model runs are given in Table 1. The 
specificities of individual delta checks ranged from 50% 
to 99%, with most equations giving results above 90%. 
However, the sensitivities were generally much lower with 
most values falling below 20%. The exception to this was 
creatinine, in which the best performing delta check had 
a sensitivity of 82.8%.

As Table 1 also shows, the optimal delta check equations 
tended to be different for each analyte. No delta check 
equation provided both the best sensitivity and specificity 
for an individual analyte. 

The positive and negative predictive values of delta checks 
may be of greater practical interest than sensitivities and 
specificities. Positive and negative predictive values are 
contingent upon the prevalence of the condition in the 
population (here the rate of specimen mix-ups). We do not 
know the true rate of mix-up errors in modern laboratories 
but the rate is thought to be less than 1 in 1000.[9,10] Table 
2 shows that as the rate of mix-ups drops below 1 in 1000 
the associated positive predictive value of even the best 
performing delta check becomes negligible. A positive 
predictive value of 58% with a 1% specimen mix-up rate 
is comparable to the positive predictive value of 50% 
estimated in an older study also using a 1% mix-up rate.[8]
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DISCUSSION

Delta checks are commonly used in a laboratory setting 
to detect specimen mix-up errors.[1,2] This makes it 
important to determine the most effective delta check 
equations for detecting these important errors. In this 
paper, we used a stochastic dynamic modeling approach 
to provide estimates of delta check sensitivities and 
specificities for five common analytes. We found that 
with the exception of creatinine, sensitivities tended to 
be low. An obvious weakness in our approach was that we 
tested only single analytes and did not use delta checks 
from multiple analytes in combination.[11] The number 
of possible combinations of equations and cut-off values 

is very large in a multivariate approach and therefore it 
would not be practical to test all possible combinations. 
However, preliminary analyses showed that combinations 
of delta checks showed only marginal increases above the 
sensitivity of creatinine alone. Additionally, it should be 
noted that our analysis refers only to the ability of delta 
checks to detect specimen mix-up errors and not the 
ability to detect other preanalytical or analytical errors.

We also ran the model with variations in cut-off levels 
for each analyte. Examination of the resulting receiver 
operator curves showed that the literature cut-off values 
we used in the model were close to the optimum cut-off 
values for each analyte.

The finding of superior sensitivities for creatinine 
compared to the other analytes examined could be 
explained by the fact that electrolytes are actively 
regulated within a narrow physiologic range but 
creatinine, as a metabolic by-product dependent on both 
muscle mass and renal function, would be expected to 
show greater interindividual variation. Similarly, the tight 
homeostatic control of electrolytes within an individual 
could explain the high specificities observed when 
specimen mix-up errors occur.

Based on plausible specimen mix-up rates obtained from 
the published literature, our model suggests that the 
positive predictive values of delta checks are currently 

Table 1: Comparison of the sensitivity and specificity of four delta check equations (two with two 
different cut offs)

Equation 
(references)

(X1-X2/X2)* 
100% (2,5)

(X1-X2) (5,6) (X1-X2/X2)/
time*100% (5,6)

(X1-X2)/time 
(5,6)

(X1-X2/X2)/
time*100% (5,6)

(X1-X2)/time (5,6)

Potassium
Cut-off 20% 1.4 mmol/l -116-178%/day 10 mmol/l/day 264%/day -5-5.8 mmol/l/day
Sensitivity 18.6 (16.3-19.7) 10.2 (8.8-12.5) 3.2 (2.3-4.6) 1.1 (0.8-1.3) 4.1 (3.6-4.5) 3.2 (2.1-3.7)
Specificity 93.6 (93.5-93.6) 98.5 (88.5-98.7) 98.7 (98.6-98.8) 99.5 (99.5-99.5) 96.3 (96.2-96.4) 98.6 (98.5-98.6)

Sodium
Cut-off 5% 7 mmol/l -15-20.5%/day 44.4 mmol/l/day 31.7%/day -27.7-28 mmol/l/day
Sensitivity 11.2 (9.6-11.5) 20.4 (19.2-22.6) 7.2 (6.1-9.0) 2.8 (2.4-3.3) 7.4 (5.2-9.2) 7.0 (5.9-7.7)
Specificity 98.7 (98.7-98.9) 97.4 (97.3-97.6) 98.0 (97.9-98.1) 99.4 (99.3-99.4) 95.3 (95.2-95.4) 98.0 (97.9-98.1)

Chloride
Cut-off 7% 10 mmol/l -9.4-10.9%/day 17.2 mmol/l/day 16.6%/day -9.9-10.7 mmol/l/day
Sensitivity 10.5 (8.5-11.7) 16.8 (14.2-19.1) 27.2 (24.1-28.9) 16.1 (15.7-18.7) 17.7 (15.7-18.7) 27.2 (24.1-28.9)
Specificity 99.0 (99.0-99.0) 97.2 (97.1-97.3) 86.9 (86.8-87.0) 93.0 (93.0-93.1) 91.8 (91.8-91.9) 86.9 (86.8-87.0)

Creatinine
Cut-off 50% 11 mmol/l -50-53.5%/day 17.7 mmol/L/day 77.3%/day -8.1-8.7 mmol/l/day
Sensitivity 26.0 (23.7-27.9) 77.7 (77.2-79.2) 44.7 (41.6-46.8) 67.0 (64.4-71.7) 34.1 (31.6-36.7) 82.8 (81.4-83.4)
Specificity 97.8 (97.7-97.8) 69.2 (69.0-69.2) 90.0 (90.0-90.0) 72.2 (71.9-72.6) 92.7 (92.6-92.9) 50.0 (59.5-50.2)

Bicarbonate
Cut-off 35% 7 mmol/l -29.4-51.2%/day 14.7 mmol/l/day 70.8%/day -7.4-11.5 mmol/l/day
Sensitivity 8.5 (7.5-9.2) 16.6 (14.2-18.4) 22.0 (20.1-24.6) 13.0 (10.9-14.2) 12.8 (11.6-14.2) 22.8 (19.8-26.0)
Specificity 98.7 (9.8-9.9) 98.0 (97.9-98.1) 88.8 (88.7-88.9) 95.4 (95.3-95.5) 94.1 (94.0-94.2) 90.1 (90.0-90.2)

Sensitivities and specificities are the means of 10 replicates of the model, with the range given in parentheses. X1: Current test result, X2: Previous test result, Time: Time interval 
between current and previous result

Table 2: Example positive predictive values and  
negative predictive values of the highest 
sensitivity (82.8%) and highest specificity (99.4%) 
delta checks

Rate of specimen  
mix-ups

PPV of best 
delta check

NPV of best 
delta check

1% (1 in 100) 58.2% 99.8%
0.1% (1 in 1,000) 12.1% 100%
0.01% (1 in 10,000) 1.4% 100%
0.001% (1 in 100,000) 0.1% 100%
0.0001% (1 in 1,000,000) 0% 100%

PPV: Positive predictive values, NPV: Negative predictive values
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very low. As modern techniques such as specimen bar-
coding further reduce the rate of mix-up errors, the 
very low positive predictive values estimated by our 
model must be weighed against the effort involved in 
investigating false-positive delta checks to determine if 
this quality assurance strategy warrants ongoing use by 
clinical laboratories 

CONCLUSION

Our model suggests that delta checks have widely varying 
sensitivities depending on the particular equation and 
analyte examined. In all cases the positive predictive 
values are anticipated to be very low and will decrease 
as modern technologies further reduce the incidence of 
specimen mix-up errors.
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