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Abstract 

Background:  Cerebrospinal fluid (CSF) is mainly produced by the choroid plexus (CP) located in brain ventricles. 
Although derived from blood plasma, it is nearly protein-free (~ 250-fold less) and contains about 2–20-fold less free 
amino acids, with the exception of glutamine (Gln) which is nearly equal. The aim of this study was to determine 
which amino acid transporters are expressed in mouse CP epithelium in order to gain understanding about how this 
barrier maintains the observed amino acid concentration gradient.

Methods:  Expression of amino acid transporters was assessed in isolated choroid plexuses (CPs) by qRT-PCR followed 
by localization studies using immunofluorescence with specific antibodies. The impact of LAT2 (Slc7a8) antiporter 
deletion on CSF amino acids was determined.

Results:  The purity of isolated choroid plexuses was tested on the mRNA level using specific markers, in particular 
transthyretin (Ttr) that was enriched 330-fold in CP compared to cerebral tissue. In a first experimental round, 14 out 
of 32 Slc amino acid transporters tested on the mRNA level by qPCR were selected for further investigation. Out of 
these, five were considered highly expressed, SNAT1 (Slc38a1), SNAT3 (Slc38a3), LAT2 (Slc7a8), ASC1 (Slc7a10) and 
SIT1 (Slc6a20b). Three of them were visualized by immunofluorescence: SNAT1 (Slc38a1), a neutral amino acid-Na+ 
symporter, found at the blood side basolateral membrane of CP epithelium, while SNAT3 (Slc38a3), an amino acid-Na+ 
symporter and H+ antiporter, as well as LAT2 (Slc7a8), a neutral amino acid antiporter, were localized at the CSF-facing 
luminal membrane. In a LAT2 knock-out mouse model, CSF Gln was unchanged, whereas other amino acids normally 
2–20-fold lower than in plasma, were increased, in particular the LAT2 uptake substrates leucine (Leu), valine (Val) and 
tryptophan (Trp) and some other amino acids such as glutamate (Glu), glycine (Gly) and proline (Pro).

Conclusion:  These results suggest that Gln is actively transported by SNAT1 from the blood into CP epithelial cells 
and then released luminally into CSF via SNAT3 and LAT2. Its efflux via LAT2 may drive the reuptake from the CSF of 
essential amino acid substrates of this antiporter and thereby participates to maintaining the amino acid gradient 
between plasma and CSF.
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Background
Extracellular fluid compartments of the CNS include the 
cerebrospinal fluid (CSF) filling the intracerebral ventri-
cles and the subarachnoid spaces, the brain interstitial 
fluid (ISF) surrounding the different cells of the brain 
parenchyma and blood in cerebral blood vessels [1]. In 
humans around 500–600 mL of CSF is produced in 24 h, 
the majority of which (~ 80%) is secreted into the brain 
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ventricles by the choroid plexuses (CP), while only a small 
portion (~ 20%) comes from ISF [2, 3]. Its composition is 
also influenced by its contact with the blood–arachnoid 
barrier (BAB). The CSF content of major ions such as 
Na+, Mg2+, Cl− and HCO3

− is generally comparable with 
that of plasma, but more tightly regulated [3]. Notably, 
strong concentration gradients between plasma and CSF 
were reported for proteins (~ 250 fold) and proteinogenic 
amino acids (AAs) [2–20-fold, with the exception of glu-
tamine (Gln)] in independent studies [3–5]. Amino acids 
being natural components of extracellular fluids and rela-
tively easily measurable, their concentration levels in CSF, 
have been proposed over the last 30  years to represent 
potential diagnostic biomarkers for many neurological 
conditions such as Alzheimer disease (AD), amyotrophic 
lateral sclerosis (ALS), motor neuron disease and essen-
tial tremor. In the case of ALS data about changes in the 
level of the major excitatory neurotransmitter glutamate 
(Glu) remains controversial, while neutral non-essential 
amino acids as Gln and alanine (Ala) have been reported 
to be elevated in two independent studies [6–8]. In con-
trast, CSF Glu concentration was shown to raise slightly 
during the brain disorder essential tremor, while the lev-
els of other neurotransmitters (aspartate (Asp), GABA) 
and some amino acids [serine (Ser), threonine (Thr), Gln, 
glycine (Gly) and ornithine (Orn)] declined [9]. Elevated 
Glu concentrations were also detected in CSF samples 
from patients with AD, however no correlation between 
this increase and clinical features was identified [10, 11]. 
Observations about CSF levels of other AAs during AD 
are more contradictory [10–14]. Taken together, these 
numerous observations confirm that knowledge about 
the regulatory mechanisms underlying the maintenance 
of CSF AA homeostasis is important and relevant for 
clinical practice.

Because brain fluid homeostasis is essential for proper 
CNS function, it is effectively maintained in adult mam-
mals by both the blood–brain barrier (BBB) and the 
blood–CSF (BCSF) barriers. As mentioned above, the 
choroid plexus (CP) is a main component of the BCSF 
that mediates most CSF production. Its epithelial cells 
are highly polarized and display distinct basolateral 
(blood-facing) or luminal (CSF-facing) membrane locali-
zations of their ion, water and solute transport proteins 
[2]. The CP is thus expected to be the main CSF amino 
acid influx and homeostasis site, in particular in view of 
the substantially lower amino acid concentration in brain 
ISF and the fact that the BAB is not considered as a cru-
cial entry pathway but rather as a site of waste and drug 
clearance [15–17].

Consequently, to understand how CSF AA levels are 
controlled, it is essential to know not only which amino 
acid transporters (AATs) are expressed in CP, but also 

their membrane localization. So far, mRNAs of a num-
ber of amino acid transporters were identified in CP 
epithelium by microarray analysis or in  situ hybridiza-
tion, in particular of the imino acid-Na+ symporter SIT1 
(Slc6a20) and the small neutral non-essential amino 
acid-Na+ symporter/H+ antiporter SNAT3 (Slc38a3) 
and, at a lower level, the two antiporters LAT2 (large 
neutral amino acid transporter 2) (Slc7a8) and y+LAT2 
(Slc7a6) [18–21]. The use of different approaches in dif-
ferent studies however limits the possibility to compare 
this information. Subcellular localization data has to our 
knowledge been published as yet for two amino acid 
transporters, specifically for SNAT3 of which the luminal 
localization has been inferred from functional experi-
ments and for EAAT3 (Slc1a1) that was localized also to 
the luminal CP epithelium membrane using immunoflu-
orescence [22, 23].

The aim of the present study was to identify AATs, 
which play key roles in maintaining homeostatic AA con-
centrations in CSF. To achieve this goal, we did a detailed 
comparative analysis of 14 AATs expressed in the CP 
using qRT-PCR and subsequently localized the three 
most abundantly expressed transporters by immunoflu-
orescence. Finally, we investigated the consequences of 
the knockout (KO) of Lat2 (Slc7a8−/−) on AA levels in 
CSF and based on our result suggest a possible transport 
schema supporting CSF AA concentration homeostasis.

Materials and methods
Animals
Male and female 8- to 16 weeks old wild type and LAT2 
(Slc7a8) KO (knockout) [24] C57BL/6J mice were used 
(Charles River (Crl), Germany and in-house breeding). 
Animals were kept in standard cages under 12-h light/
dark cycle (7:00 h/19:00 h) with free access to food and 
tap water. All animal experiments were conducted in 
accordance with the Swiss federal and cantonal law and 
performed with the approval of the Swiss Veterinary 
Council, Approval number 205/2016.

CSF and terminal blood collection
CSF samples were obtained as previously described [25]. 
After CSF collection blood was carefully withdrawn by 
cardiac puncture, transferred to an Eppendorf tube with 
heparin and kept on ice. As soon as the last sample was 
obtained all blood samples were centrifuged for 10 min at 
10,000g (4 °C) to separate plasma.

Immunofluorescence
Deeply anaesthetized mice were transcardially perfused 
with ice-cold PBS (pH 7.4), brains were removed, cut into 
two halves and fixed in 4% PFA at 4  °C overnight. The 
next day the right half of each brain was washed in PBS, 
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incubated in 30% sucrose and afterwards frozen in OCT 
embedding matrix (CellPath Ltd, Newtown, UK) on dry 
ice. The left half of each brain was washed in PBS, step-
wise incubated in ethanol of 20%, 40% and 60%, stored in 
70% till paraffinization on Microm spin tissue processor 
STP-120 (Microm International GmbH, part of Thermo 
Fischer Scientific, Walldorf, Germany) and subsequently 
embedded in paraffin. Saggital 10 µm thick cryosections 
were cut on a cryostat (Leica CM1850, Leica Biosystems 
Nussloch GmbH, Nussloch, Germany) and mounted on 
SuperFrost Plus adhesion slides (J1800BMNZ, Thermo 
Scientific, Thermofisher Scientific AG, Reinach, Switzer-
land) and kept at − 20  °C till staining procedure. Paraf-
fin blocks were cut sagitally in 5 µm thick slices using a 
microtome (RM 2235, Leica biosystems Nussloch GmbH, 
Nussloch, Germany). For most amino acid transport-
ers staining was performed on cryosections with antigen 
retrieval using sodium citrate buffer (pH 6.0) for 20 min 
at 98  °C in the rapid microwave histoprocessor (Histo-
PRO SW 2.0.0, Milestone medical, Kalamazoo, USA). 
The sections were incubated for 1 h at room temperature 
in blocking buffer containing 5% donkey serum (D9663, 
Sigma-Aldrich Chemie GmbH by Merck, Buchs, Swit-
zerland) and 0.3% Triton X-100. Blocked specimens were 
then incubated for 1  h at room temperature in incuba-
tion buffer (PBS, 1% BSA, 0.3% Triton X-100) contain-
ing primary antibodies diluted as indicated in Additional 
file 2: Table S1. Secondary antibody incubation was per-
formed with donkey anti-mouse DyLight 488 (96875, 
Abcam, Cambridge Science Park, Milton, Cambridge, 
UK) and anti-rabbit DyLight 594 (96921, Abcam, Cam-
bridge Science Park, Milton, Cambridge, UK) for 1 h at 
RT. PBS was used for washes between incubation with 
primary and secondary antibodies. Nuclear counter-
staining was performed by incubation with 2  μg/mL 
of diamidine-2-phenylindole-dihydrochloride (DAPI) 
for 10  min at room temperature. Brain sections were 
mounted with DAKO-Glycergel (C0563, DAKO North 
America, Carpinteria, USA) and examined under a con-
focal laser scanning upright microscope Leica TCS SP8 
(Leica Microsystems CMS GmbH, Mannheim, Germany) 
using a 63× objective (oil, numerical aperture of 1.4, 
pinhole set to 1.0 airy unit). Images were processed and 
merged by Imaris software (version 7.5.1; bitplane). For 
LAT2 transporter staining in specimens obtained from 
LAT2 KO and corresponding age-matched wild-type 
animals paraffin sections were subjected to deparaffiniza-
tion (Pathisto AS-2, Pathisto GmbH, Garbsen, Germany), 
followed by extensive wash in PBS. Antigen retrieval in 
this case was performed by incubation in 0.1% SDS/PBS 
for 5 min and subsequent wash in running tap water and 
PBS. Then sections were blocked for 1  h at room tem-
perature in PBS solution with 5% donkey serum (D9663, 

Sigma-Aldrich Chemie GmbH by Merck, Buchs, Swit-
zerland) and subsequently incubated overnight in solu-
tion containing anti-LAT2 antibodies (1:1000), 1% BSA 
and 0.02% Triton-X 100. Specimens were washed twice 
in hyper-PBS (doubled concentration of NaCl, 274 mM) 
and once in PBS followed by incubation in solution 
containing secondary anti-rabbit DyLight 488 antibod-
ies diluted 1:500 and DAPI. Afterwards samples were 
mounted with DAKO-Glycergel and staining was ana-
lyzed on a Leica TCS SP8 confocal laser scanning micro-
scope (Leica) using a 63× objective lens (pinhole 1.0, 
numerical aperture 1.4). Typically stacks of 4 to 8 images 
(512 × 512) were taken and analyzed at 122 nm intervals 
through z axis of a section. Alternatively a Nikon Eclipse 
TE300 epifluorescence microscope (Nikon Instruments 
Inc, Melville, NY) equipped with a DS-5M Standard 
charge-coupled device camera (Nikon Instruments Inc) 
was used. Confocal images were processed using the soft-
ware Imaris (Bitplane, Zurich, Switzerland). Images with 
LAT2 staining in CPs of wild-type animals vs LAT2 KO 
were merged using overlay function in Photoshop 9.

Choroid plexus isolation
Animals were anesthetized with a ketamine (100  mg/
kg) and xylazine (10  mg/kg) cocktail administrated IP, 
and choroid plexuses were rapidly removed from four 
ventricles of each animal under stereomicroscope Olym-
pus (SZX10, Volketswil, Switzerland) as described by 
Bowyer [26]. The rest of each brain (cerebrum and cer-
ebellum separately; referred as total brain) was cut into 
small pieces (~ 30 mg) and these samples were used later 
as purity control of isolated CPs. All samples were snap 
frozen in liquid nitrogen and stored at − 80 °C till further 
analysis.

RNA isolation and cDNA synthesis
Total RNA from individual CPs and total brain was iso-
lated with Trizol (15596026, Thermofisher Scientific 
AG, Reinach, Switzerland) according to the manufac-
turer protocol followed by purification on RNeasy Micro 
(74004) or Mini columns (74106, Qiagen AG, Hombre-
chtikon, Switzerland). Total RNA was quantified using 
NanoDrop ND 1000 spectrophotometer (Thermo Fisher 
Scientific Wilmington, USA) and quality was determined 
using the Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA). Only samples with RIN 
values ≧ 8.0 were used for reverse transcription. The 
cDNA was synthesized from 100  ng (5  ng/μL) of total 
RNA using qScript cDNA Synthesis Kit (95047-100, 
Quantabio, Beverly, USA) according to the manufac-
turer’s protocol. Quantitative real-time PCR reactions 
(qRT-PCR) with 10  ng of cDNA as template were per-
formed using the Taq-Man Universal PCR master mix 
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(4304447, Thermofisher Scientific AG, Reinach, Switzer-
land) in triplicates. In each reaction mixture eukaryotic 
18S rRNA endogenous control (4310893E, Thermofisher 
Scientific AG, Reinach, Switzerland) was included, while 
cDNA produced without RT enzyme were used as the 
negative control for each gene. All reactions were car-
ried out in MicroAmp Fast Optical 96-Well Reaction 
Plates (4346906 Thermofisher Scientific AG, Reinach, 
Switzerland) using the Fast Real Time PCR System 7500 
(Applied Biosystems) with the following parameters: an 
initial step at 50  °C for 2 min, denaturation at 95  °C for 
10  min for polymerase activation followed by 45 cycles 
with denaturation step at 95  °C for 15  s and annealing/
extension at 60  °C for 1  min. Primers and probes were 
either previously described or designed at Universal 
probe Library Assay Design Center Roche [27] and listed 
in Additional file  2: Table  S2. Prior to usage, the speci-
ficity of all newly designed primers was tested on cDNA 
samples obtained from several different organs and in 
each case a single product of expected size was observed. 
Probes were labeled with reporter dye VIC or FAM at 5′ 
end and quencher dye TAMRA no dye at 3′ end. Relative 
expression of each gene of interest was calculated based 
on the comparative ΔCT method according to the for-
mula: relative expression = 2−ΔCT, where ΔCT = average 
CT value of gene of interest − average CT value of house-
keeping gene, where 18S rRNA was used as housekeep-
ing gene. CT values of 18S rRNA were between 7.2 and 
12.5. The ones of amino acid transporter mRNAs with a 
relative expression > 2 × 106 ranged from 24.1 (Slc38a3) 
to 30.3 (Slc1a3).

Amino acid measurements
Measurements of AA concentrations were performed at 
the Functional Genomic Centre Zurich.

Amino acid concentrations were determined in sam-
ples using Mass Track Amino Acid Analysis Application 
Solution (Waters, Milford, USA) by ACQUITY UPLC 
according to the manufacturer’s protocol. CSF samples 
were analyzed directly and for plasma samples depro-
teinization 1:1 with 10% SSA (sulfosalicylic acid) was per-
formed prior to AA measurements. Plasma samples after 
precipitation with 10% SSA were diluted 10 times with 
borate buffer (500 mM, pH 9), precipitated with metha-
nol (5 times) and then analyzed.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
5.0 (GraphPad Software, USA). Un-paired t-test and one-
way analysis of variance (ANOVA) Dunnett (or Bonfer-
roni) post-test were performed for qRT-PCR data and 
amino acids measurements. All data are presented as 

mean ± SD or mean ± SEM. Statistical significance was 
accepted at a level of significance p < 0.05 or as indicated.

Results
Amino acid transporters expressed in choroid plexus
To study the expression of specific amino acid transport-
ers in CP, we tested first their mRNA levels, although 
they are known not to correlate with protein expres-
sion. However, the presence of an mRNA is per se a pre-
requisite for the expression of its protein product. We 
tested initially the purity of the CPs isolated from the 
four ventricles of each individual animal by measuring 
the mRNA level of four cell specific markers by qPCR, 
transthyretin (Ttr) as choroidal marker, glial fibrillary 
acidic protein (Gfap) for astrocytes, platelet endothelial 
cell adhesion molecule-1 (Pecam 1 or Cd31) for brain 
endothelial cells and synaptophysin (Syp) for neurons 
(Fig. 1a). The level of Gfap and Syp mRNAs were strongly 
decreased in choroid plexuses when compared to cer-
ebral samples isolated from the same animals (by ~ 91% 
and ~ 99%. respectively), while the level of Cd31 mRNA 
was only halved (~ 46%), reflecting the expected pres-
ence of vascular endothelial cells in the choroid plexus 
samples. Since Ttr mRNA was increased ~ 330-fold in 
isolated choroid plexus compared with cerebral sam-
ples, we considered that the enrichments was sufficient 
and proceeded with a first experiment in which a set 
of 32 selected Slc transcripts encoding AATs (out of 66 
known amino acid transporters including intracellular 
ones [28]) were tested in three animals (Additional file 1: 
Figure S1). Based on expression values calculated rela-
tive to the endogenous reference 18S rRNA, the tested 
gene products were arbitrarily assigned into three groups 
with different expression levels: 22 with low (0–2 * 10−6 
relative to 18S), 5 with moderate (2–10 * 10−6 relative to 
18S) and 5 with high (> 10 * 10−6 relative to 18S) expres-
sion level. Taking into account data available in the 
literature [18–20, 29] and the results of our first experi-
ment, we selected 14 amino acid transporter mRNAs 
(Slc1a1, Slc1a3, Slc6a20b, Slc7a5, Slc7a6, Slc7a7, Slc7a8, 
Slc7a10, Slc7a11, Slc38a1, Slc38a2, Slc38a3, Slc38a5 and 
Slc38a6) for a detailed investigation that involved ten dif-
ferent animals measured in three independent experi-
ments (Fig.  1b). In agreement with previous studies we 
confirmed a significant mRNA expression for Slc6a20b 
(SIT1), Slc7a10 (ASC1) and Slc38a3 (SNAT3) [18–20]. 
Additionally we found highest mRNA expression levels 
for two other amino acid transporters, namely Slc7a8 
(LAT2) and Slc38a1 (SNAT1), actually in contrast to 
a previous study that had reported lower than average 
levels [20]. The mRNAs of the Slc38 family members 
Slc38a2 (SNAT2) and Slc38a6 (SNAT6), the y+L system 
member Slc7a6 (y+LAT2) and the Glu transporter Slc1a3 
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Fig. 1  Amino acid transporters expressed in isolated choroid plexuses. a Ttr, Gfap, Cd31 and Syp mRNAs in isolated choroid plexuses (closed bars) 
and cerebrums (open bars) in 3 independent experiments. Data are indicated (mean ± SEM, n = 10). Statistical analysis was performed by unpaired 
t-test and statistically significant changes are indicated as ***p < 0.001, **p < 0.01. b Presence of 14 selected Slc genes, which products involved in 
AA transport, was tested on mRNA level in 3 independent experiments; data presented as mean ± SEM, n = 10. Statistical analysis was performed by 
ANOVA followed by Dunnet’s post-test and statistically significant differences relative to Lat2 (Slc7a8) mRNA are indicated as ***p < 0.001, **p < 0.01
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(EAAT1 or GLAST) were found moderately expressed, 
while the mRNAs of Slc1a1 (EAAT3), Slc7a5 [large neu-
tral amino acid 1 (LAT1)], Slc7a7 (y+LAT1), Slc7a11 
(xCt) and Slc38a5 (SNAT5) were expressed at a low level.

Subcellular localization of amino acid transporters 
in choroid plexus epithelium
Next, we aimed to localize amino acid transporters highly 
expressed at the mRNA level, on choroid epithelial cell 
membranes using immunofluorescence.

We chose to use only custom-made antibodies the 
specificity of which had been previously validated in 
transfected cells or mouse tissue (brain, kidney and 
cochlea), specifically anti-SNAT3 (Fig.  2a, j), anti-LAT2 
(Fig. 2d, m) and anti-SNAT1 (Fig. 2g, p) antibodies [30–
34]. The fact that we localized only these three amino 
acid transporters may be considered as a limitation in 
view of the larger number of transporters detected at the 
mRNA level, but since protein localization studies are per 
se prone to artefacts (cross-reactivity etc.), including only 
these three increased the reliability of our results.

As a marker for the luminal, CSF-facing membrane of 
the choroid plexus epithelial cells we used an antibody 
recognizing the Na+, K+-ATPase α subunit (isoforms 
α1–3) and for the basolateral, blood-facing side an anti-
body recognizing the anion exchanger 2 (AE2). These 
localizations correspond to the so-called inverse polari-
zation of the choroid plexus epithelium [2, 35, 36]. Stain-
ing of adult mouse brain sections revealed in CP clear 
SNAT3 colocalization with the Na+, K+-ATPase α subu-
nit (Fig. 2a–c), but not with AE2 (Fig. 2j–l) and interest-
ingly, the same localization pattern was demonstrated for 
LAT2 (Fig.  2d–f, m–o). While SNAT1 transporter was 
visualized solely on the basolateral membrane co-local-
izing with AE2 and resulting in an evident yellow stain-
ing (Fig.  2g–i and m, q, r). Unfortunately, we have not 
been able to observe any reliable signal for the two other 
amino acid transporters highly expressed in choroid 
plexus at the mRNA level, ASC1 and SIT1, using com-
mercially available or in-house produced antibodies.

Alterations in CSF amino acids content of LAT2 knockout 
animals
Considering the high level of LAT2 expression in CP, 
we examined the impact of LAT2 ablation on AA con-
centrations in CSF of Lat2 KO animals [33]. We con-
firmed ablation of LAT2 transporter in CP on mRNA 
and protein levels (Additional file 1: Figure S2A, B) and 
measured amino acid levels in plasma and CSF samples. 
Previously Braun et al. had reported elevated levels of 8 
amino acids (Ala, Ser, Gly, Thr, Glu, Asp and Lys) for the 
serum of LAT2 knockout (KO) animals [37], however 
these alterations were not reproduced in our experiments 

using another LAT2 knock-out model (Additional file 2: 
Table  S3) [32, 33]. Therefore, we compared the CSF/
plasma ratio of each out of 19 detected amino acids 
[18 proteinogenic AA (all except Cys and Ile) and Tau] 
between wild type and LAT2 KO animals. Raised CSF/
plasma ratios were detected for at least six amino acids 
(other possible increases were not significant): the large 
neutral branched chain and aromatic amino acids Leu 
(p < 0.01), Val (p < 0.01) and Trp (p < 0.05), the inhibitory 
neurotransmitter Gly (p < 0.001), the imino acid pro-
line (Pro) (p < 0.01), and the excitatory amino acid Glu 
(p < 0.05) (Fig.  3). Interestingly, the latter three amino 
acids are not influx substrates of LAT2 [38], suggesting 
a possible functional cooperation of LAT2 with other 
amino acid transporters.

Discussion
In this study, we performed a careful comparative analy-
sis of AATs expressed in mouse choroid plexus. Before 
discussing the functional implications of our new find-
ings below, we first compare here our new data with pre-
viously published ones. Importantly, in addition to the 
previously reported high mRNA levels of SNAT3 (sys-
tem N Gln-Na+ symporter/H+ antiporter) (Slc38a3), 
ASC1 (Ala-Ser-Cys (cysteine) antiporter 1) (Slc7a10) and 
SIT1 (imino acid-Na+ symporter) (Slc6a20b) [18–21], 
we detected in choroid plexus also high mRNA levels of 
the neutral amino acid antiporter LAT2 (Slc7a8) and of 
the system A Gln-Na+ symporter SNAT1 (Slc38a1). In 
contrast, in a previous mouse CP transcriptome analysis 
performed by Marques and colleagues, LAT2 (Slc7a8) 
mRNA had been considered to be expressed at a level 
lower than average, similar to TAUT (Slc6a6), GLYT1 
(Slc6a9) and LAT1 (Slc7a5) [20]. Our well controlled 
qPCR analysis revealed however that besides the highly 
expressed mRNA of LAT2 (Slc7a8), the three other 
mRNAs (Slc6a6, Slc6a9, Slc7a5) were hardly detect-
able. These differences between the amino acid trans-
porter mRNA expression levels measured in the present 
study and the previously published results are suggested 
to be due to different methodological approaches, in 
particular regarding the quantitation method. In sup-
port of our findings, another more recent study also 
suggested a significant expression of LAT2 mRNA in 
choroid plexus epithelial cells, but without localization 
by immunohistochemistry [33]. Protein expression of 
LAT2 had been detected previously by proteome analy-
sis of whole CP but not in BAB [16]. The high expression 
level of this neutral amino acid antiporter was confirmed 
by the present study and its localization to the luminal 
membrane of CP epithelial cells determined. We also 
detected a moderate expression of y+L system member 
y+LAT2 (Slc7a6) mRNA in murine CP that corresponds 
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Fig. 2  Distribution of three selected AATs in mouse choroid plexuses. Mouse brain cryosections were co-stained with an apical (CSF-facing) 
membrane marker Na+-K+-ATPase α (b, e, h) or a basolateral (blood-facing) membrane marker AE2 (k, n, q) and amino acid transporters SNAT3 (a, 
j), LAT2 (d, m), SNAT1 (g, p); markers are shown in green, AATs in red, nuclei were visualized by DAPI staining in blue. Scale bar is 30 µm
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to previously reported in  situ hybridization results [19]. 
In agreement with an earlier study by Lee et al. [39], also 
Glu transporter EAAT1/GLAST (Slc1a3) mRNA was 
detected in our study. Recently another glutamate trans-
porter, EAAT3 (Slc1a1), was suggested to be the main 
Glu transporter in CP based on immunofluorescence and 
transport studies made in rat [23]. However, we failed to 
detect a substantial expression of this transporter on the 
mRNA level in the current investigation. It is not clear 
whether these seemingly opposing results are due to a 
difference between rats and mice or to some technical 
reasons. The function of the choroid plexus epithelium 
is key to understand the role of amino acid transporters 
expressed in this highly specialized epithelium.

Next to the support of cell housekeeping functions, 
choroid plexus amino acid transporters are required 
for the transepithelial transport that controls the amino 
acid concentration levels in CSF. This task is quantita-
tively important, as the choroid plexus secretes fluid 
at a rate, which is higher than that of any other secre-
tory epithelia [2]. Additionally, the amino acid concen-
tration in CSF is maintained at a stable level that is for 
all amino acids 2–20-fold lower than in plasma, but for 
Gln, the concentration of which is only slightly lower 
in CSF compared to plasma [25]. The structural organ-
ization of this epithelium is well adapted to its major 

secretory task and is characterized, unlike classical epi-
thelia of intestine and kidney, by an “inverse” polarity of 
Na+, K+-ATPase, NKCC1, KCC4 and NHE1 expression 
which localize to the luminal, CSF facing membrane 
[2]. The directed transepithelial ion transport, in par-
ticular of Na+, Cl− and HCO3

−, is critical for the proper 
water transport and thus, CSF production, but not 
fully understood. Clear is that the driving force for this 
transport is generated by the luminal Na+, K+-ATPase, 
which actively pumps Na+ ions from the choroid plexus 
cells into the CSF. It has also been shown that several 
antiporters and symporters take advantage of the elec-
trochemical driving force provided by the Na+ gradi-
ent to co-transport and/or exchange Cl−, K+, HCO3

−, 
H+ etc. and thereby play important roles [3]. In our 
amino acid transporter localization study using immu-
nofluorescence imaging, we showed that the Na+ sym-
porter SNAT1 (Slc38a1) that co-transports neutral 
non-essential amino acids, in particular Gln with Na+, 
localizes to the basolateral membrane (blood side) of 
choroid plexus cells. We also showed that in contrast 
SNAT3 (Slc38a3), another Na+ dependent symporter 
that additionally exchanges H+, localizes to the luminal 
CSF-facing membrane of choroid plexus epithelial cells 
together with the neutral amino acid exchanger LAT2 
(Slc7a8).

Fig. 3  CSP/plasma ratios of amino acids. Amino acids were measured in CSF and plasma samples obtained from LAT2 KO (n = 4; closed bars) 
and age-matched wt (n = 4; open bars) animals. Data are shown as mean ratios ± SEM and compared with unpaired two-tailed t-test; statistically 
significant changes are indicated as ***p < 0.001, **p < 0.01, *p < 0.05
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It appears thus that the neutral amino acid-Na+ sym-
porter SNAT1 drives the basolateral uptake of non-
essential neutral amino acids, in particular of Gln, into 
choroid plexus epithelial cells (see schema presented in 
Fig. 4). With its relatively low apparent Km of ~ 300 µM 
[40] for Gln (vs Gln plasma levels of ~ 700 µM) and the 
vectorial flux of Na+ from blood into CSF, this baso-
lateral Na+ symporter is indeed ideally suited for the 
uptake of a controlled amount of Gln. This amino acid 
is nearly as concentrated in CSF as in blood and, thus 
needs to be efficiently transported across the choroid 
plexus epithelium. As regards the luminal release of 
Gln into the CSF, we propose that SNAT3 functions 
as a main luminal efflux pathway, by co-transporting it 
with Na+ in exchange for an H+, the recycling of which 
might be via the parallel localized sodium/proton 
exchanger NHE1. The transport direction of Gln via 
SNAT3 indeed strongly depends on the local chemical 
Na+, H+ and Gln driving forces. For instance, electro-
neutral efflux of Gln from astrocytes has been shown to 

take place via this transporter during the Glu–Gln cycle 
[41, 42]. However, the amino acid levels measured in 
the CSF of LAT2 knockout mice suggest that also LAT2 
participates to the luminal efflux of Gln. Indeed, in the 
absence of LAT2 the concentration of essential amino 
acids was strongly increased in CSF, whereas the non-
essential neutral amino acids transported by SNAT3, 
like for instance Gln, were nearly normal. This suggests 
the possibility that normally the efflux of some Gln and 
other neutral non-essential amino acids into the CSF 
via the antiporter LAT2 drives in exchange the uptake 
of essential amino acids back from the CSF into cho-
roid plexus cells. The increased level of essential amino 
acids observed in the CSF of LAT2 KO mice indicates 
that they must be transported presumably also across 
CP cells independent of LAT2. Thus, we suggest that 
other amino acid transporters detected at the mRNA 
level in our study, but not yet localized in CP cells at 
the protein level, for instance the antiporter y+LAT2 
and/or y+LAT1 and the uniporters LAT4 and TAT1, 

Fig. 4  Schematic representation of CP epithelial cell showing amino acid transporters localized in this study. The amino acid—Na+ symporter 
SNAT1 (Slc38a1) is shown together with the marker protein anion exchanger 2 (AE2) at the vascular basolateral side of the CP epithelium. The amino 
acid antiporter LAT2 (Slc7a8) and the neutral amino acid—Na+ symporter/H+ antiporter SNAT3 (Slc38a3) are shown together with the marker 
protein Na+, K+-ATPase and a K+ channel at the CSF-facing luminal side of the CP epithelium. The sodium/proton exchanger NHE1 which might 
cooperate with SNAT3 to allow the efflux of Gln into CSF is also represented. Additionally, shown in dotted lines are amino acid transporters of 
which in this study only the mRNA has been detected in CP [moderately expressed antiporter y+LAT2 (Slc7a6) and low level expressed antiporter 
y+LAT1 (Slc7a7) and uniporters LAT4 (SLC43a2) and TAT1 (Slc16a10)] which may participate to the passage of neutral essential amino acids into CSF. 
Other amino acid transporters clearly detected at the mRNA level in the present study but not yet localized to a specific choroid plexus epithelium 
membrane [SIT1 (Slc6a20b) and ASC1 (Slc7a10) (high mRNA levels) as well as SNAT2 (Slc38a2), SNAT6 (Slc38a6) and EAAT1 (Slc1a3) (moderate mRNA 
levels)] and other potentially important amino acid transporters not tested in the present study are not included in the schema. CSF amino acids 
the concentration ratios of which (CSF/plasma, see Fig. 3) are changed ≥ 2-fold in LAT2 (Slc7a8) knockout mice are indicated with Students t-test 
p-values; (non-)ess. NAAs (non-)essential neutral amino acids
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may be involved (Fig. 4). The observation that the excit-
atory amino acids Glu and Asp and the imino acid Pro 
that are not LAT2 substrates and also the poor LAT2 
uptake substrate Gly were most highly increased in CSF 
of LAT2 KO mice, is not explained by our schema pre-
sented in Fig.  4 and suggests a functional cooperation 
of this exchanger with other amino acid transporters, 
in addition to SNAT3. A caveat concerning the present 
discussion about the effect of LAT2 deletion is the fact 
that we did not test in these mice whether the expres-
sion of other CP amino acid transporters was affected 
by the lack of LAT2 and additionally influenced CP 
amino acid transport and CSF amino acid levels.

Conclusions
The results of this study suggest that the Na+-symporter 
SNAT1 (Slc38a1) plays a central role for the active trans-
port of non-essential neutral amino acids, in particu-
lar of Gln, from the blood into CP epithelial cells and 
that SNAT3 (Slc38a3) and LAT2 (Slc7a8) are key for 
their luminal release into CSF. With its antiporter func-
tion, LAT2 appears thereby to reuptake essential neu-
tral amino acids from the CSF and thus to participate to 
the maintenance of the amino acid concentration gradi-
ent between plasma and CSF [4, 5]. Next to these three 
amino acid transporters of which we have determined 
the polarity of localization in CP epithelial cells, other 
amino acid transporters need to cooperate for the trans-
fer of the full set of amino acids across the blood–CSF 
barrier. Based on their mRNA expression level, their 
known transport function and our published experience 
with kidney proximal tubule epithelial amino acid trans-
port, we postulate, that the antiporter y+LAT2 (Slc7a6) 
and the lower expressed (at mRNA level) antiporter 
y+LAT1 (Slc7a7) and the uniporters LAT4 (SLC43a2) 
and TAT1 (Slc16a10) play important roles (Fig.  4) [32]. 
A limitation of our study and of our speculative transport 
schema shown in Fig. 4 is that amino acid transporters, 
the mRNA of which we did not test, may play important 
functional roles. This could for instance be the case for 
transporters encoded by Slc6a14,15,17,18,19, Slc7a9,13, 
Slc36a1-4 and Slc43a3 that displayed, in an earlier CP 
microarray study, expression levels > 6.0, potentially com-
patible with a functionally relevant transporter expres-
sion [20].

Taken together, the results of this study represent to 
our knowledge a first description of how neutral amino 
acids, and in particular glutamine, are potentially trans-
ported across choroid plexus epithelial cells into the CSF. 
This amino acid transport across the CP, together with 
that across the blood brain barrier, is crucial for brain 
amino acid homeostasis and thus brain function.
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