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Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and
environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance,
FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of
longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in
invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four
transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular
differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This
article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity.

1. Introduction

Aging is related to the age-dependent impaired functioning
of the cells, tissues, organs, and organ systems [1, 2]. This
impairment leads to chronic pathologies including neurode-
generation, cardiovascular diseases, and cancer. Owing to
these age-associated diseases, the researchers have always
been interested in understanding the aging process and
delaying the aging for human longevity [3, 4].

Healthy aging is a complex phenotype and an interplay
of genetic and environmental factors such as food, exercise,
and habits [5, 6]. However, rather than environmental fac-
tors, the contribution of genetic factors towards healthy
aging is more significant. Thus, intensive studies have been
done to investigate the genetic variants associated to
human longevity.

Since health status affects the lifespan, the development
of chronic diseases is delayed in the long-lived individuals

[7–9]. These individuals could be the carriers of the defensive
genes, which may be involved in body’s defense against vul-
nerable moieties such as reactive oxygen species [10]. FOXO
gene is one of the most crucial defensive genes that are
known for ameliorating lifespan [4, 11–16]. Thus, aging can
be considered an evolutionary process that is modulated by
genetic programming and biochemical processes [17–20].
Figure 1 illustrates various modes of aging as studied in
different organisms [18].

As observed in an animal study, the first ever docu-
mented mode of aging was deregulated nutrient sensing that
involved the insulin and insulin-like growth factor- (IGF-) 1
signaling (IIS) pathway [21]. In IIS pathway, IGF-1 and insu-
lin share and stimulate the same signaling pathways [22–24].
Thus, food that is an important environmental factor
involved in IIS pathways must be cautiously used to achieve
human longevity [23, 25, 26]. Other components of nutrient
sensing pathways are the sirtuins, AMP (adenosine
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monophosphate) kinase, and the kinase mTOR (molecular
target of rapamycin) [21].

2. FOXO Transcription Factors

The IIS pathway is highly influenced by the FOXO proteins
[27, 28]. Forkhead box (FOX) transcription factor family
was named after the Drosophila forkhead gene. The FOX
family contains nineteen subfamilies of FOX genes, FOXA-
FOXS, and is described by a highly conserved, winged-helix
DNA-binding domain and the forkhead motif [29–32].
Other (O) subfamily of FOX, FOXO, is conserved from Cae-
norhabditis elegans (C. elegans) to mammals; only one FOXO
gene exists in the invertebrates while mammals have 4 FOXO
genes, FOXO1, FOXO3, FOXO4, and FOXO6 [29, 33, 34].
The alternate names FKHR, FKHRL1, and AFX have been
used for FOXO1, FOXO3, and FOXO4, respectively [35].
FOXO1, FOXO4, and FOXO6 are overexpressed in the
adipose, skeletal, and nervous tissues, respectively, while
FOXO3 are excessively found in the spleen, stomach, intes-
tine, kidney, and cardiac tissues [36]. These four genes are
involved in the multiple cellular pathways, which regulate
proliferation (FOXO1, FOXO3, and FOXO4), oxidative
stress resistance (FOXO1 and FOXO3), metabolism (FOXO1
and FOXO3), cellular differentiation (FOXO3), inflamma-
tion (FOXO1, FOXO3, and FOXO4), aging (FOXO1,
FOXO3, and FOXO4), and apoptosis (FOXO1, FOXO3,
and FOXO4) in mammals [29–32, 37–40]. However, the
involvement of these four genes in human longevity is
still unrevealed.

FOXO proteins act as transcription activators and are
suppressed by the IIS pathway [31, 37–40]. Concisely,
P13K-AKT-mediated signaling pathway is activated by
IGF-1 or insulin. It leads to the serine/threonine kinase
AKT-induced phosphorylation of FOXO factors resulting
in its nuclear exclusion and inhibition of FOXO-
dependent transcription of target genes [41]. On the other
hand, cellular stress leads to translocation of FOXO factors
into the nucleus and activation of FOXO-dependent tran-
scription. Besides phosphorylation, other posttranslational

modifications including ubiquitination and methylation also
influence the FOXO-dependent transcription [39, 40]. Thus,
the FOXO posttranslational modifications lead to the aggre-
gation of particular FOXO-dependent moieties that regulate
various FOXO-dependent gene expressions [39, 42, 43]. In
this article, various modes of human longevity involving
FOXO transcription factors have been suggested.

3. Role of FOXO in Autophagy

The genes which mediate the intracellular clearance through
autophagy and the ubiquitin-proteasome system are also reg-
ulated by FOXO factors [40, 44, 45]; thus, it can be suggested
that FOXOs function as prolongevity factors. Starvation-
induced defects in autophagy and the ubiquitin-proteasome
system have been linked with the frailty and early aging
(Figure 2) [46–48]. In addition, the genes which mediate
the autophagy and mitophagy in muscle cells are also regu-
lated by FOXO factors; it helps the tissues to adapt to starva-
tion [49–51]. Moreover, Webb and Brunet [40] observed the
activation of autophagy mechanisms by FOXO1 and FOXO3
in renal tubular cells, neurons, and cardiomyocytes. Since,
FOXO factors play a role in proteasome-mediated degrada-
tion of short-lived cellular organelles and proteins, a sup-
pressed proteasomal activity results in the aggregation of
degraded proteins in the heart, liver, and muscle leading to
aging [52, 53]. Additionally, the malfunctioned ubiquitin-
proteasome system is a direct or indirect cause of various
neurodegenerative diseases, for instance, Alzheimer’s disease
[40, 54, 55]. FOXO factors act on the neurodegenerative sys-
tem via the upregulated ubiquitin ligases and by mediating
the proteasome’s composition [56–59]. However, the direct
influence of proteostasis provoked by FOXO factors in mam-
mals is not still disclosed.

4. Role of FOXO in Oxidative Stress

Antioxidant role of FOXO is its most crucial function. Since
reactive oxygen species (ROS) produce conserved deteriorat-
ing effect on cells and induce aging, FOXOs could be used to
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Figure 1: Various modes of aging.
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influence aging by ameliorating the antioxidant potential of
cells [60, 61]. ROS act as secondmessengers in various signal-
ing pathways. An equilibrium in the production and degra-
dation of ROS is necessary for normal cellular functioning,
while imbalanced level of ROS results in abnormal function-
ing of the cells leading to various pathologies such as neuro-
degenerative diseases and cancer. Oxidative stress regulates
FOXO factors, either through detection of cellular redox
potential or modifying the upstream FOXO regulatory path-
ways [62, 63]. Normally, cellular detoxification keeps ROS
level in normal range. An impaired cellular detoxification
results in oxidative stress. Manganese superoxide dismutase
(MnSOD), catalase, and GADD45 are major detoxification
enzymes that are regulated by FOXOs [60, 64]. Hence, the
inactivation of FOXOs result in the ROS built-up in the cells;
it leads to various cellular abnormalities such as the compro-
mised proliferation of normal stem cells but quick prolifera-
tion of transformed cells [65, 66].

5. Role of FOXO in Stem Cells

FOXO factors are known to be involved in stem cell biology.
Aging is characterized with disequilibrium between removal
and regeneration of cells in tissues, since the regeneration

capability of adult stem cells is decreased with aging. Knock-
out hematopoietic stem cell (HSC) mice (mice with FOXO1/
3/4-deficient hematopoietic stem cells) showed apoptosis of
HSCs as well as termination of repopulation of HSCs. Like-
wise, FOXO3-deficient mice illustrated the reduced potential
of regeneration of cells [67]. The deletion of FOXO factor
could lead to exhaustion of the respective stem cell pool
[68]. Surprisingly, the HSC compartment was restored in
FOXO-deficient mice treated with an antioxidant N-acetyl-
cysteine, proposing that stem cells are disturbed by accumu-
lation of ROS. This finding supports the hypothesis that
oxidative stress contribute primarily to aging, while malfunc-
tioned adult stem cells have secondary significance in this
context [69]. Besides playing a role in adult stem cells, FOX
factors mediate the expression of OCT4 and SOX2 factors
associated with stemness. Similarly, FOXO1 factors are
pluripotent for human embryonic stem cells (ESC), and the
ortholog FOXO1 plays similar role in mouse ESCs [70].

6. FOXO Factors and Long-Term Living

This review article narrates a summary of the prevalent
knowledge that is associated to the role of FOXO factors in
extending human lifespan. Until now, no study describes
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the exact mode of action of FOXOs in human aging. How-
ever, some studies on various populations narrate the possi-
ble role of FOXO factors in human longevity.

The older the age, larger is the contribution of genetics in
lifespan stating genetics as a function of human longevity.
Thus, genetics is the basic parameter that discriminates the
average-lived population from the centenarians [1, 2, 71, 72].
Thus, the centenarians are rich in specific alleles, which
possibly represent the genes contributing to human lon-
gevity. These genes are therefore extensively being investi-
gated in current years.

First study of this type narrated the association of
human longevity with FOXO3A [73]. This study was per-
formed on 4 genes named as FOXO1A, FOXO3A, SIRT1,
and COQ7 and one SNP, named as rs2764264, in long-
lived American males of Japanese origin. Only FOXO3A
and rs2764264 were observed to have association with
human longevity among the studied genes and SNPs [73].
The incidence rate of age-associated pathologies such as
cancer and neurodegenerative and cardiovascular diseases
in these individuals was also lower than control group.
The control group was eleven years younger than test. The
significantly lower level of insulin in the control group was
also due to the same allele [73].

Subsequently, same association was found in male
centenarians from Italy [11], Germany [12], and Denmark
[13]. In an Italian study, rs2802288 exhibited the maximum
allelic relationship-minor allele frequency. All three studies
described the significant association between FOXO3 poly-
morphism and human longevity. While, the Danish study
proposed four new single nucleotide polymorphisms (SNPs)
(named as rs9400239, rs2764264, rs479744, and rs13217795)
associated with human longevity [13].

In other study, two SNPs from FOXO1A (rs2755209 and
rs2755213) and three from FOXO3A (rs4946936, rs2802292,
and rs2253310) were analyzed in Chinese centenarians [74].
All the six SNPs were positively and gender-independently
linked with long-term survival, except two SNPs from
FOXO1A that were negatively linked with longevity in
female subjects [74]. The conclusion of study states that there
is strong association between FOXO1A and long lifespan in
females showing the influence of gender in genetic associa-
tion to human longevity [74]. Another study in Chinese pop-
ulation reported the gender involvement in the impact of
FOXO1A and FOXO3A SNPs independently on human lon-
gevity [75–77]. Similar finding showing the importance of
genetics in the IIS pathway in long-lived Jews and people
of Italy, Japan, and Netherlands has also been reported
[78–81]. In addition, human longevity has also been
found to be associated with other five FOXO3A SNPs
(named as rs2802288, rs2802292, rs1935949, rs13217795,
and rs2764264) [15]. Among these five SNPs, rs2802292
and rs2764264 polymorphisms were observed in males only.

The combined effect of FOXO3A and APOE on long-
term living has also been reported [2, 16, 82]. Additionally,
an increase in the activity of daily life and decrease in the risk
of bone fracture in individuals with FOXO3A SNPs were
found in long-lived Danish individuals [14]. Conclusively,
there is remarkable association between human longevity

and FOXO3A SNPs as evident from above cited studies con-
ducted in various populations. However, the translation of
FOXO3 gene sequences into phenotypic features that facili-
tate a long-term living is still unrevealed. Moreover, rather
than associating with known SNPs, FOXO3A alleles related
to long-term living act as introns [2, 72, 83]. It proposes that
these SNPs are expected to influence FOXO3A without
affecting protein functionality.

7. Prediction of Mechanisms of FOXO in
Long-Term Living

Network pharmacology is a multidisciplinary field that inte-
grates different scientific concepts such as systems biology,
cheminformatics, and bioinformatics to explore various
novel bioactivities from network-based analysis. For instance,
network pharmacology helps us to study gene characteristics
and its functions [84], identify therapeutic targets, and
explore the mode of action of various drugs [85]. Thus, net-
work pharmacology is used here to predict the possiblemodes
of action of FOXOs in human longevity.

STITCH 4.0 database (http://stitch.embl.de/) [86] has
been used to retrieve targets (confidence score> 0.4) of
FOXO1, FOXO3, FOXO4, and FOXO6 in the form of
protein-protein network (Supplementary data, Figure 3,
Table 1 available online at https://doi.org/10.1155/2017/
3494289). These protein targets were fetched into Cytoscape,
and protein-protein interaction network was constructed to
visualize the functionality-associated genes. The functional
enrichment analysis was conducted by using the gene
ontology terms (GO terms) for annotation of the biological
functions of FOXO-related targets. Subsequently, Cytoscape
plug-in ClueGO [87] was utilized to analyze FOXO-
mediated biological process term (BP term) to explore the
biological importance of the specific targets linked to
FOXO1, FOXO3, and FOXO4. Overall, the significant
enrichment of 14, 16, and 7 GO terms was achieved for
FOXO1, FOXO3, and FOXO4 (Supplementary data, Figure 4,
Table 2). The effect of FOXOs on these BPs has been reported
by some investigators. FOXOs are mainly involved in the
regulation of metabolism, regulation of reactive species,
and regulation of cell cycle arrest and apoptosis. FOXO1
regulates adipogenesis, gluconeogenesis, and glycogenoly-
sis. Mechanistically, the unphosphorylated FOXO1 binds
to the insulin response sequence present in the promoter
region of G6P (glucose-6 phosphatase) in the nucleus [88].
It leads to the accelerated transcription resulting in the
enhanced production of glucose in the liver. After Akt-
mediated phosphorylation, FOXO1 is transferred to the
cytoplasm and undergoes ubiquitination and degradation.
It leads to the decreased production of glucose in the liver
via decreased transcription of G6P leading to the decreased
rate of gluconeogenesis and glycogenolysis [89]. Adipogene-
sis is negatively regulated by FOXO1 through its binding to
the promoter region of PPARG (peroxisome proliferator-
activated receptor gamma) and inhibiting its transcription
[90]. It results in the FOXO1-mediated inhibition of
adipogenesis [91]. The initiation of adipogenesis requires
the increased levels of PPARG [92, 93]. Moreover, FOXO1
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functions as an association between transcription and
insulin-mediated metabolic control; thus, FOXO1 is a prom-
ising genetic target to manage type 2 diabetes.

FOXO3 probably induces apoptosis either upregulating
the genes needed for cell death [94] or downregulating the
antiapoptotic factors [95]. In addition, FOXO3 has been
found to regulate Notch signaling pathway during the
regeneration of muscle stem cells [96]. Moreover, antioxi-
dants are thought to be upregulated by FOXO3 to protect
human health from oxidative stress. Additionally, FOXO3
is documented to suppress tumour [97]. Thus, tumour
development may occur if FOXO3 is deregulated. Most
importantly, FOXO3 are described to play a role in long-
term living [12].

FOXO4 is involved in the regulation of various pathways
associated to apoptosis, longevity, cell cycle, oxidative stress,
and insulin signaling. FOXO4 are associated with longevity
through IIS pathway [98, 99]. Finally, mutation-triggered
Akt phosphorylation results in the inactivated FOXO4
[100]. It deregulates cell cycle and activates kinase inhibitor
involved in cell cycle [101, 102]. It leads to the prevention
of tumour progress into G1. These biological processes make
us better understand the modes of action of FOXOs.

8. Conclusions

In current years, the rigorous research attention has been
focused on the role of FOXO transcription factors in human
longevity. In different animal models, numerous studies have
been conducted to investigate the signaling pathways
involved in the regulation of the FOXO factors. Moreover,
the effect of FOXO-mediated processes on the cellular, tissue,
or organism level functions has also been discussed. As a
result, a pleiotropic nature of FOXOs’ effect on longevity is
established, since FOXOs participate in a number of cellular
functions, including growth, stress resistance, metabolism,
cellular differentiation, and apoptosis. From the above dis-
cussion, numerous strategies for future research can be pre-
dicted. For instance, the triggering of FOXO-mediated
processes in the tissues with metabolically different features
can be valuable to explore the mechanism of FOXO-
mediated longevity. In addition, the human FOXO sequence
variations and their effect on the resulting proteins should be
studied, the possible findings can also reveal the underlying
mechanisms of FOXO-induced health aging. The delay in
age-related pathologies including cancer and neurodegenera-
tive diseases and living long life depends on the control of
morbidity. It is therefore an exciting area of study to investi-
gate the antiaging compounds; however, their testing in clin-
ical setup would need age markers to assess aging rate. Owing
to the potential effect of FOXOs on health issues, the future
therapies could be based on the FOXOs.
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