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Abstract: A general framework of data fusion is presented based on projecting the probability
distribution of true states and measurements around the predicted states and actual measurements
onto the constraint manifold. The constraint manifold represents the constraints to be satisfied
among true states and measurements, which is defined in the extended space with all the redundant
sources of data such as state predictions and measurements considered as independent variables.
By the general framework, we mean that it is able to fuse any correlated data sources while
directly incorporating constraints and identifying inconsistent data without any prior information.
The proposed method, referred to here as the Covariance Projection (CP) method, provides an
unbiased and optimal solution in the sense of minimum mean square error (MMSE), if the projection
is based on the minimum weighted distance on the constraint manifold. The proposed method
not only offers a generalization of the conventional formula for handling constraints and data
inconsistency, but also provides a new insight into data fusion in terms of a geometric-algebraic
point of view. Simulation results are provided to show the effectiveness of the proposed method in
handling constraints and data inconsistency.

Keywords: Bar-Shalom Campo; Covariance Projection method; data fusion; distributed architecture;
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1. Introduction

Data fusion is the process of obtaining a more meaningful and precise estimate of a state
by combining data from multiple sources. The architecture of multisensor data fusion can be
broadly categorized into two, depending on the way raw data are processed: (1) Centralized fusion
architecture [1], where raw data from multiple sources are directly sent to and fused in the central
node for state estimation and (2) Distributed fusion architecture [1,2], where data measured at multiple
sources are processed independently at individual nodes to obtain local estimates before they are
sent to the central node for fusion. In the centralized architecture, it is possible to apply data fusion
methodology such as the Kalman filter [3] to all raw data received to yield optimal estimates in the
sense of minimum variance. However, the centralized architecture can be costly especially for a large
system in terms of infrastructure and communication overheads at the central node, let alone the
issues of reliability and scalability. On the other hand, the distributed architecture is advantageous in
reliability and scalability, with lower infrastructure and communication costs. Although advantageous,
the distributed architecture needs to address statistical dependency among the local state estimates
received from multiple nodes for fusion. This is due to the fact that local state estimates at individual
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nodes can be subject to the same process noise [4] and to double counting, i.e., sharing the same data
sources among them [5]. Ignoring such statistical dependency or cross-correlation among multiple
nodes leads to inconsistent results, causing divergence in data fusion [6]. In the case of known
cross-correlation, the Bar-Shalom Campo (BC) formula [7] provides a consistent fusion result for
a pair of redundant data sources, where the fused estimate is based on maximum likelihood [8].
A generalization to more than two data sources with known cross-correlations is given by weighted
fusion algorithms of the generalized Millman’s formula (GMF) [9] and weighted Kalman filter
(WKF) [10].

Sensors often provide spurious and inconsistent data due to unexpected situations such as short
duration spike faults, sensor glitches, a permanent failure or slowly developing failure due to sensor
elements [5,11]. Since these types of uncertainties are not attributable to the inherent noise, they are
difficult to predict and model. The fusion of inconsistent sensor data with correct data can lead to
severely inaccurate results [12]. For example, when exposed to abnormalities and outliers, a Kalman
filter would easily diverge [13]. Hence, a data validation scheme is required to identify and eliminate
the sensor faults/outliers/inconsistencies before fusion.

The detection of inconsistency needs either a priori information often in the form of specific
failure model(s) or data redundancy [5]. Model-based approaches use the generated residuals between
the model outputs and actual measurements to detect and remove faults. For instance, in [14],
the Nadaraya–Watson estimator and a priori observations are used to validate sensor measurements.
Similarly, a priori system model information as a reference is used to detect failures in filtered state
estimates [15–17]. However, requirement of the prior information restricts the usage of these methods
in the general case where prior information is not available or unmodeled failure occurs. A method
to detect spurious data based on the Bayesian framework is proposed in [18,19]. The method adds
a term to the Bayesian formulation which has the effect of increasing the covariance of the fused
probability distribution when measurement from one of the sensor is inconsistent with respect to the
other. However, the method is based on heuristics and assumes independence of sensor estimates in its
analysis. In [20], the Covariance Union (CU) method is proposed where the fused covariance is enlarged
to cover all local means and covariances in such a way that the fused estimate is consistent under
spurious data. However, the method incurs high computational cost and results in an inappropriately
large conservative fused result.

In some applications, the state variables observed in a multisensory system may be subject to
additional constraints. These constraints can arise due to the basic laws of physics, kinematics or
geometry consideration of a system or due to the mathematical relations to satisfy among states.
For instance, the energy conservation laws in an undamped mechanical system; Kirchhoff’s laws in
electric circuits; a road constraint in a vehicle-tracking scenario [21]; an orthonormal constraint in
quaternion-based estimation [22] etc. These constraints if properly included can lead to improvement
in state estimation and data fusion.

Various methods have been proposed to incorporate linear constraints among the state variables
of dynamic systems [23–28]. For instance, the dimensionality reduction method converts a constrained
estimation problem to an unconstrained one of lower dimension by eliminating some state variables
using the constraints [25]. However, the state variables in a reduced dimension model may become
difficult to interpret and their physical meaning may be lost [23]. The pseudo-measurement method
satisfies the linear constraints among state variables by treating the state constraints as additional
perfect/noise-free measurements [26–28]. However, this method increases the computational
complexity of state estimation due to an increase in the dimension of augmented measurement.
Furthermore, due to the singularity of augmented measurement covariance, the method may cause
numerical problems [23,29]. A popular approach, the estimate projection method, projects the
unconstrained estimate obtained from conventional Kalman filtering onto the constraint subspace
using classical optimization methods [23,24]. Unfortunately, the method may not lead to the true
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constraint optimum since the projection method merely gives the solution as a feasible point that is
closest to the unconstrained minimum.

This paper presents a unified and general data fusion framework, referred to as the Covariance
Projection (CP) method to fuse multiple data sources under arbitrary correlations and linear constraints
as well as data inconsistency. The method projects the probability distribution of true states and
measurements around the predicted states and actual measurements onto the constraint manifold
representing the constraints to be satisfied among true states and measurements. The proposed method
also provides a framework for identifying and removing outliers in a fusion architecture where only
sensor estimates may be available at the fusion center. This paper is an extended and improved
version of the conference paper [30]. What was presented in [30] is a preliminary new framework of
data fusion that we proposed. On the other hand, what is presented here represents a much more
detailed implementation and refinement of the concept proposed in the conference paper. Specifically,
this paper includes the following additions: (1) a detailed analysis of the equivalence of the proposed
method to conventional methods for fusing redundant data sources; (2) handling linear constraints
simultaneously under the proposed data fusion framework; (3) refining the mathematical formula and
technical descriptions associated with them; and (4) detailed analysis of the method with additional
simulations that deal with state estimation and data fusion in the presence of correlations, outliers
and constraints.

2. Problem Statement

Consider a distributed sensor architecture [1], where each sensor system is equipped with a
tracking system to provide local estimates of some quantity of interest in the form of mean and
covariance. Assume the following linear dynamic system model for each local sensor system,

xk = Ak−1 xk−1 + Bk−1uk−1 + wk−1 (1)

where k is the discrete time, Ak is the system matrix, Bk is the input matrix, uk is the input vector and
xk is the state vector. The system process is affected by zero mean Gaussian noise wk with covariance
matrix Q. The sensor measurements are approximated as,

zki
= Hki

xk + vki
, i = 1, . . . , n (2)

where Hk is the observation matrix and n represents the number of sensors. vki
is Gaussian noise

with covariance matrices Ri, i = 1, 2, . . . , n. Each sensor systems employs a Kalman filter to provide
local state mean estimate x̂k and its covariance Pk [31]. A prediction of the state estimate x̂−k and its
estimation error covariance P−k can be computed based on process model (1),

x̂−k = Ak−1 xk−1 + Bk−1uk−1 (3)

P−k = Ak−1Pk−1 AT
k−1 + Qk−1 (4)

The Kalman filter then provides the state estimate x̂k and its covariance Pk as,

x̂k = x̂−k + Kk
(
zk − Hk x̂−k

)
(5)

Pk = (I − Kk Hk)P−k (I − Kk Hk)
T + KkRkKT

k (6)

with the Kalman gain, Kk = P−k HT
k
(

HkP−k HT
k + Rk

)−1. The estimates provided by sensor systems
are assumed to be correlated due to the common process noise or double counting, that is, Pij =

cov
(

x̂i, x̂j
)
6= 0. To ensure optimality of the fused results, the cross-covariance Pij should be

properly incorporated.
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Due to the inherent nature of the sensor and environmental factors [32], the sensor measurements
can also be perturbed by unmodel random faults eki

,

zki
= Hixk + vki

+ eki
, i = 1, . . . , n (7)

Subsequently, the estimates computed by local sensor systems may be spurious and inconsistent.
Therefore, validation of the sensor estimates is required to remove inconsistencies before the
fusion process.

In addition, the states xk of the sensor systems may subject to linear constraints due to the
geometry of the system environment or the mathematical description of the system [23], such that,

Cxk = c (8)

where C ∈ Rn×m and c ∈ Rn are both known. C is assumed to have a full row rank. The constraints
provide deterministic information about the state variables and can be used to improve the
fusion accuracy.

These issues of correlations, data inconsistency and state constraints motivate the development of
the Covariance Projection method, which is described next.

3. Proposed Approach

The proposed method first represents the probability of true states and measurements in the
extended space around the data from state predictions and sensor measurements, where the extended
space is formed by taking states and measurements as independent variables. Any constraints among
true states and measurements that should be satisfied are then represented as a constraint manifold
in the extended space. This is shown schematically in Figure 1a for filtering as an example (refer to
Equations (1)–(6)). Data fusion is accomplished by projecting the probability distribution of true states
and measurements onto the constraint manifold.
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More specifically, consider two mean estimates, x̂1 and x̂2, of the state x ∈ RN , with their
respective covariances as P1, P2 ∈ RN×N . Furthermore, the estimates are assumed to be correlated with
cross-covariance P12. The mean estimates and their covariances together with their cross-covariance in
RN are then transformed to an extended space of R2N along with the linear constraint between the
two estimates:

x̂ =

[
x̂1

x̂2

]
, P =

[
P1 P12

PT
12 P2

]
, C1 x̂1 = C2 x̂2 (9)
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where C1 and C2 are constant matrices of compatible dimensions. In the case where x̂1 and x̂2 estimate
the same entity, C1 and C2 become identity matrix I. Figure 1b illustrates schematically the fusion of
x̂1 and x̂2 in the extended space based on the proposed CP method. Fusion takes place by finding
the point on the constraint manifold that represents the minimum weighted distance from x̂ in R2N ,
where the weight is given by P. As seen later, the proposed CP method with the minimum weighted
distance is shown to be equivalent to the minimum variance estimates but advantageous for dealing
with additional constraints and data inconsistency.

To find a point on the constraint manifold with minimum weighted distance, we apply the
whitening transform (WT) defined as, W = D−1/2ET , where D and E are the eigenvalue and
eigenvector matrices of P. Applying WT,

x̂W = Wx̂, PW = WPWT , MW = WM

where the matrix M = [C1 C2]
T is the subspace of the constraint manifold. Figure 2 illustrates the

transformation of the probability distribution as an ellipsoid into a unit circle after WT. The probability
distribution is then orthogonally projected on the transformed manifold MW to satisfy the constraints
between the data sources in the transformed space as illustrated in Figure 2. Inverse WT is applied to
obtain the fused mean estimate and covariance in the original space,

x̃ = W−1PrWx̂ (10)

P̃ = W−1PrPr
TW−T (11)

where Pr = MW
(

MWT
MW

)−1
MWT

is the orthogonal projection matrix. Using the definition of various
components in (10) and (11), a close form simplification can be obtained as,

x̃ = M
(

MT P−1M
)−1MT P−1 x̂ (12)

P̃ = M
(

MT P−1M
)−1MT (13)

Sensors 2018, 18, x FOR PEER REVIEW  5 of 21 

 

where the matrix ܯ =  is the subspace of the constraint manifold. Figure 2 illustrates the ்[ଶܥ	ଵܥ]
transformation of the probability distribution as an ellipsoid into a unit circle after WT. The 
probability distribution is then orthogonally projected on the transformed manifold ܯௐ to satisfy 
the constraints between the data sources in the transformed space as illustrated in Figure 2. Inverse 
WT is applied to obtain the fused mean estimate and covariance in the original space,  

ݔ = ܹିଵ
ܹܲݔො (10) 

෨ܲ = ܹିଵ
ܲ ܲ

்ܹି் (11) 

where ܲ = ௐቁܯௐ்ܯௐቀܯ
ିଵ
 ௐ் is the orthogonal projection matrix. Using the definition of variousܯ

components in (10) and (11), a close form simplification can be obtained as, 

ݔ =  ො (12)ݔଵି்ܲܯଵି(ܯଵି்ܲܯ)ܯ

෨ܲ =  (13) ்ܯଵି(ܯଵି்ܲܯ)ܯ

The details of the simplification are provided in Appendix A. Due to the projection in extended 
space of ℝଶே, (12) and (13) provide a fused result with respect to each data source. In the case where 
ܯ ,ොଶ estimate the same entity, that isݔ ොଵ andݔ = ேܫ]  ே]், the fused result will be same for the twoܫ	
data sources. As such, a close form equation for fusing redundant data sources in ℝே can be obtained 
from (12) and (13) as, 

ݔ =  ො (14)ݔଵି்ܲܯଵି(ܯଵି்ܲܯ)

෨ܲ =  ଵ (15)ି(ܯଵି்ܲܯ)

 
Figure 2. Whitening transform and projection. 

Given ݊ mean estimates ݔොଵ ොଶݔ	 , ොݔ	 ,… ,  of a state ݔ ∈ ℝே  with their respective covariances 
ଵܲ , ଶܲ, … , ܲ ∈ ℝே×ே and known cross-covariances ܲ , ݅, ݆ = 1, … , ݊, (14) and (15) can be used to obtain 

the optimal fused mean estimate and covariance with ܯ = ,ேଵܫ] …,ேଶܫ ,   .்[ேܫ
For fusing correlated estimates from ݊ redundant sources, the CP method is equivalent to the 

weighted fusion algorithms [9,10], which compute the fused mean estimate and covariance as a 
summation of weighted individual estimates as, 

ݔ =ܿ



ୀଵ

 ො (16)ݔ

෨ܲ =  ܿ



,ୀଵ
ܲ ܿ

்  (17) 

with ∑ ܿ
ୀଵ =  Where the weights ܿ are determined by solving some cost function of (16) and (17) .ܫ

such that, ∑ ܿ
ୀଵ =  ,Equivalently, the CP fused mean and covariance can be written as .ܫ

ݔ =  ො (18)ݔܮ

Figure 2. Whitening transform and projection.

The details of the simplification are provided in Appendix A. Due to the projection in extended
space of R2N , (12) and (13) provide a fused result with respect to each data source. In the case where
x̂1 and x̂2 estimate the same entity, that is, M = [IN IN ]

T , the fused result will be same for the two data
sources. As such, a close form equation for fusing redundant data sources in RN can be obtained from
(12) and (13) as,

x̃ =
(

MT P−1M
)−1MT P−1 x̂ (14)

P̃ =
(

MT P−1M
)−1 (15)
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Given n mean estimates x̂1, x̂2, . . . , x̂n of a state x ∈ RN with their respective covariances
P1, P2, . . . , Pn ∈ RN×N and known cross-covariances Pij, i, j = 1, . . . , n, (14) and (15) can be used to
obtain the optimal fused mean estimate and covariance with M = [IN1, IN2, . . . , INn]

T .
For fusing correlated estimates from n redundant sources, the CP method is equivalent to the

weighted fusion algorithms [9,10], which compute the fused mean estimate and covariance as a
summation of weighted individual estimates as,

x̃ =
n
∑

i=1
ci x̂i (16)

P̃ =
n
∑

i,j=1
ciPijcT

j (17)

with ∑n
i=1 ci = I. Where the weights ci are determined by solving some cost function of (16) and (17)

such that, ∑n
i=1 ci = I. Equivalently, the CP fused mean and covariance can be written as,

x̃ = Lx̂ (18)

P̃ = LPLT (19)

where L = [L1, L2, . . . , Ln] =
(

MT P−1M
)−1MT P−1 and ∑n

i=1 Li = I. In the particular case of two data
sources, the CP fused solution reduces to the well-known Bar-Shalom Campo formula [7],

x̃ = (P2 − P21)(P1 + P2 − P12 − P21)
−1 x̂1 + (P1 − P12)(P1 + P2 − P12 − P21)

−1 x̂2 (20)

P̃ = P1 − (P1 − P12)(P1 + P2 − P12 − P21)
−1(P1 − P21) (21)

Although equivalent to the traditional approaches in fusing redundant data sources, the proposed
method offers a generalized framework not only for fusing correlated data sources but also for handling
linear constraints and data inconsistency simultaneously within the framework.

The proposed method provides an unbiased and optimal fused estimate in the sense of minimum
mean square error (MMSE).

Theorem 1. For n unbiased mean estimates x̂1, x̂2, . . . , x̂n, the fused mean estimate x̃ provided by the CP
method is an unbiased estimator of x, that is, E(x̃) = E(x).

Proof. From (18), we can write,

x̃ = [L1, L2, . . . , Ln]


x̂1

x̂2
...

x̂n


x̃ = L1 x̂1 + L2 x̂2 + . . . + Ln x̂n

x̃ =
n

∑
i=1

Li x̂i

Taking the expectation on both sides, we get,

E(x̃) = E(
n
∑

i=1
Li x̂i)

E(x̃) =
n
∑

i=1
LiE(x̂i)
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Since the sensor estimates x̂1, x̂2, . . . , x̂n are unbiased, we have E(x̂1) = E(x̂2) = · · · E(x̂n) = E(x),

E(x̃) = E(x)

where ∑n
i=1 Li = I. This concludes that the fused state estimate x̃ is an unbiased estimate of x. �

Theorem 2. The fused covariance P̃ of the CP method is smaller than the individual covariances, that is,
P̃ ≤ Pi, i = 1, 2, . . . , n.

Proof. From equation (15), we can write,

P̃ =
(

MT P−1M
)−1

By Schwartz matrix inequality, we have,

P̃ = [(P−
1
2 M)

T
(P

1
2 Mi)]

T
× [(P−

1
2 M)

T
(P−

1
2 M)]

−1
× [(P−

1
2 M)

T
(P

1
2 Mi)]≤

(
P

1
2 Mi

)T(
P

1
2 Mi

)
= Pi

where M is the constraint between data sources and Mi = [INi, 0, . . . , 0]T is the constraint matrix for Pi.
The equality holds for Pi = Pij, that is, P̃ = Pi, when Pi = Pij, j = 1, 2, . . . , n.

It can be observed from (14) and (15) that computation of cross-covariance Pij is needed to
compute the fused mean and covariance. Cross-covariance among the local estimates can be computed
as [9,10,33],

Pij = [I − Ki Hi]
[

APk−1
ij AT + BQBT

][
I − KjHj

]T (22)

where Ki and Kj are the Kalman gain of source i and j respectively for i, j = 1, . . . , n and Pk−1
ij represent

the cross covariance of the previous cycle between source i and j. �

4. Fusion in the Presence of Spurious Data

Due to the inherent nature of sensor devices and the real-world environment, the sensor
observations may also be affected by random faults. Subsequently, the local estimates provided
by sensor systems in a distributed architecture may be spurious and inconsistent. This may cause
the fusion methodologies to fail since they are based on the assumption of consistent input sensor
estimates. Therefore, a validation scheme is required to detect and remove the spurious estimates from
the fusion pool. The proposed approach exploits the constraint manifold among sensor estimates to
identify any data inconsistency. The identification of inconsistent data is based on the distance from
the constraint manifold to the mean of redundant data sources in the extended space that provides a
confidence measure with the relative disparity among data sources. Assuming a joint multivariate
normal distribution for the data sources, the data confidence can be measured by computing the
distance from the constraint manifold as illustrated in Figure 3.
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Consider the joint space representation of n sensor estimates (x̂N1, P1), (x̂N2, Pn), . . . , (x̂Nn, P1),

x̂ =


P1 P12 . . . P1n

PT
12 P2 . . .

...
...

...
. . .

...
PT

1n . . . . . . Pnn


where N is the dimension of the state vector. The distance d from the constraint manifold can be
calculated as,

d = (x̂− x̃)T P−1(x̂− x̃) (23)

where x̃ is the point on the manifold and can be obtain by using (12). In the case of two data sources
with mean x̂1, x̂2 ∈ RN and respective covariance matrices P1 and P2 ∈ RN×N . The distance d can be
obtained as,

d =
[
(x̂1 − x̃)T (x̂2 − x̃)T

][ P1 0
0 P2

]−1[
x̂1 − x̃
x̂2 − x̃

]
The point on the manifold is given as,

x̃ = P2(P1 + P2)
−1 x̂1 + P1(P1 + P2)

−1 x̂2

Simplifying, we get,
d = [x̂1 − x̂2]

T(P1 + P2)
−1[x̂1 − x̂2] (24)

The details of simplifications are provided in Appendix B. From (24), it can be observed that
distance d is a weighted distance between the two data sources and it can provide a measure of
nearness or farness of the two data sources to each other. A large value of d implies a large separation
while a small d signifies closeness of the data sources. In other words, the distance from the manifold
provides an indication of the relative disparity among data sources.

Theorem 3. For n data sources of N dimension, the d distance (23) follow a chi-squared distribution with nN
degrees of freedom (DOF), that is, d ∼ χ2(Nn).

Proof. From (23) we have,
d = (x̂− x̃)T P−1(x̂− x̃) (25)

Under the whitening transformation, WP−1W = I, Wx̂ = x̂W and Wx̃ = x̃W . Thus, we can write,

(x̂− x̃)T P−1(x̂− x̃) = (x̂W − x̃W)
T
(x̂W − x̃W)⇒ (W(x̂− x̃))T(W(x̂− x̃)) = yTy (26)

where for normal distribution (x̂− x̃), y = W(x̂− x̃) is an independent standard normal distribution
N (0, 1). For N dimensions of the state vector, the right-hand side of (26) is ∑N

i=1 y2
i , thus distance d

follows a chi-square distribution with N DOF, that is, d ∼ χ2(N). For n data sources with N states,

d ∼ χ2(Nn)

Since d is a chi-square distribution with Nn DOF, then for any significance level α ∈ (0, 1), χ2
α(Nn)

is defined such that the probability,
P
{

d ≥ χ2
α(Nn)

}
= α

This is depicted in Figure 4. Hence, to have a confidence of 100 × (1 − α) percent, d should be less
than respective critical value as illustrated in Figure 4. A chi-square table [34] can be used to obtain
the critical value for the confidence distance with a particular significance level and DOF. A value of
α = 0.05 is assumed in this paper unless specified. �
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4.1. Inconsistency Detection and Exclusion

To obtain reliable and consistent fusion results, it is important that the inconsistent estimates
be identified and excluded before fusion. For this reason, at each time step when the fusion center
receives computed estimates from sensor nodes, distance d is calculated. A chi-square table is then
used to obtain the critical value for a particular significance level and DOF. A computed distance d
less than the critical value mean that we are confident about the closeness of sensor estimates and that
they can be fused together to provide a better estimate of the underlying states. On the other hand,
a distance d greater than or equal to the critical value indicate spuriousness of the sensor estimates.
At least one of the sensor estimate is significantly different than the other sensor estimates. To exclude
the outliers, a distance from the manifold is computed for every estimate and compared with the
respective critical values. For n mean estimates x̂1, x̂2, . . . , x̂n with respective covariances P1, P2, . . . , Pn

and cross-covariances Pij for i, j = 1, . . . , n, the hypothesis and decision rule are summarized as follows,

Hypotheses:
H0 : x̂1 = x̂2 = · · · = x̂n

H1 : x̂1 6= x̂2 6= · · · 6= x̂n

Compute: d = (x̂− x̃)T P−1(x̂− x̃)

Decision Rule: Accept H0 if d < χ2
α(Nn)

Reject H0 if d ≥ χ2
α(Nn)

If the hypothesis H0 is accepted, then the estimates are optimally fused using (14) and (15). On the
other hand, rejection of null hypothesis means that at least one of the sensor estimates is significantly
different than the other estimates. Then, a distance from the manifold is computed for each of the
estimates as,

di = (x̂i − x̃)T P−1
i (x̂i − x̃), i = 1, 2, . . . , n

with x̃ computed using (14). The outliers are identified and eliminated based on the respective critical
value, that is, if di ≥ χ2

α(N), they are rejected, where N is the dimension of an individual data source.

4.2. Effect of Correlation on d Distance

Since the estimates provided by multiple data sources are correlated, it is important to consider
the effect of cross-correlation in the calculation of confidence distance. Consider two sensor estimates
x̂1 ∈ R1 and x̂2 ∈ R1 with respective variances σ2

1 and σ2
2 and cross-covariance σ2

12 = ρ
√

σ2
1 σ2

2 , where
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ρ ∈ [−1, 1] is the correlation coefficient. The d distance for the pair of multivariate Gaussian estimates(
x̂1, σ2

1
)

and
(
x̂2, σ2

2
)
, with cross-covariance σ2

12 can be written as,

d =
[x̂1 − x̂2]

2

σ2
1 + σ2

2 − σ2
12 − σ2

21
(27)

It is apparent that the distance between the mean values is affected by the correlation between the
data sources. Figure 5 illustrates the dependency of confidence distance d on the correlation coefficient.
Figure 5a shows the distance d with changing correlation coefficient from −1 to 1. It can be observed
that a positive correlation between the data sources results in a large d distance. This means that a slight
separation between the positively correlated data sources indicates spuriousness with high significance
as compared to negatively correlated and uncorrelated data sources. Figure 5b shows the scenario in
which a data source (with changing mean and constant variance) is moving away from another data
source (with constant mean and constant variance). The distance d is plotted for various values of
correlation coefficients. The y-axis shows the percentage of rejection of the null hypothesis H0. It can
be noted that ignoring the cross-correlation in distance d results in underestimated or overestimated
confidence and may lead to an incorrect rejection of the true null hypothesis (Type I error) or incorrect
retaining of false null hypothesis (Type II error). The proposed framework inherently takes care of any
cross-correlation among multiple data sources in the computation of distance d.
Sensors 2018, 18, x FOR PEER REVIEW  10 of 21 

 

 
(a) (b) 

Figure 5. Effect of correlation on ݀ distance (a) d distance with correlation ߩ ∈ [−1,1]; (b) percentage 
of rejecting the null hypothesis ܪ with different correlation values. 

Example: Consider a numerical simulation with the constant state, 

ݔ = 10  

Three sensors are used to estimate the state ݔ , where the measurements of the sensors are 
affected with respective variances of ܴଵ, 	ܴଶ	and		ܴଷ. The values for the parameters assumed in the 
simulation are, 

ܳ = 2,ܴଵ = 0.5, ܴଶ = 1,ܴଷ = 0.9  

The sensor measurements are assumed to be cross-correlated. It is also assumed that the sensor 
1, sensor 2 and sensor 3 measurements are independently corrupted by unmodeled noise and 
produce inconsistent data for 33%, 33% and 34% of the time respectively. The sensors compute local 
estimates of the state and send it to the fusion center. Three strategies for combining the local sensor 
estimates are compared: (1) CP, which fuses the three sensor estimates using (14) and (15) without 
removing outliers; (2) CP WO-d means the outliers were identified and rejected before fusion based 
on (27) with ߪଵଶଶ = 0, that is, correlation in computation of ݀ is ignored and; (3) CP WO-dC, reject 
the outliers based on (27) with taking into account the cross-correlation. Figure 6 shows the fused 
solution of three sensors when the estimate provided by sensor 2 is in disagreement with sensor 1 
and 3. It can be observed from Figure 6 that neglecting the cross-correlation in CP WO-d results in 
Type II error, that is, all the three estimates are fused despite the fact that estimate 2 is inconsistent. 
CP WO-dC correctly identifies and eliminates the spurious estimate before the fusion process.  
Figure 7 shows the estimated position after the fusion of the three sensors’ estimates for 100 samples. 
It can be seen that the presence of outliers greatly affects the outcome of multisensor data fusion. As 
depicted in Figure 7, eliminating outliers before fusion improves the estimation performance. The 
fused samples of CP WO-d and CP WO-dC on average lies closer to the actual state. Figure 7 also 
shows the difference in fusion performance when outliers are identified with and without 
considering cross-correlation. It can be noted that neglecting the correlation affects the estimation 
quality because of Type I and Type II errors. 

Figure 5. Effect of correlation on d distance (a) d distance with correlation ρ ∈ [−1, 1]; (b) percentage of
rejecting the null hypothesis H0 with different correlation values.

Example: Consider a numerical simulation with the constant state,

xk = 10

Three sensors are used to estimate the state xk, where the measurements of the sensors are
affected with respective variances of R1, R2 and R3. The values for the parameters assumed in the
simulation are,

Q = 2, R1 = 0.5, R2 = 1, R3 = 0.9

The sensor measurements are assumed to be cross-correlated. It is also assumed that the sensor 1,
sensor 2 and sensor 3 measurements are independently corrupted by unmodeled noise and produce
inconsistent data for 33%, 33% and 34% of the time respectively. The sensors compute local estimates
of the state and send it to the fusion center. Three strategies for combining the local sensor estimates
are compared: (1) CP, which fuses the three sensor estimates using (14) and (15) without removing
outliers; (2) CP WO-d means the outliers were identified and rejected before fusion based on (27)
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with σ2
12 = 0, that is, correlation in computation of d is ignored and; (3) CP WO-dC, reject the outliers

based on (27) with taking into account the cross-correlation. Figure 6 shows the fused solution of
three sensors when the estimate provided by sensor 2 is in disagreement with sensor 1 and 3. It can
be observed from Figure 6 that neglecting the cross-correlation in CP WO-d results in Type II error,
that is, all the three estimates are fused despite the fact that estimate 2 is inconsistent. CP WO-dC
correctly identifies and eliminates the spurious estimate before the fusion process. Figure 7 shows the
estimated position after the fusion of the three sensors’ estimates for 100 samples. It can be seen that
the presence of outliers greatly affects the outcome of multisensor data fusion. As depicted in Figure 7,
eliminating outliers before fusion improves the estimation performance. The fused samples of CP
WO-d and CP WO-dC on average lies closer to the actual state. Figure 7 also shows the difference
in fusion performance when outliers are identified with and without considering cross-correlation.
It can be noted that neglecting the correlation affects the estimation quality because of Type I and Type
II errors.Sensors 2018, 18, x FOR PEER REVIEW  11 of 21 
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5. Fusion under Linear Constraints

The system model of a linear dynamic system takes into account the relation and dependencies
among components of the state vector. In some applications, however, the state variables may be
subject to additional constraints due to the basic laws of physics, geometry of the system environment
or due to the mathematical description of the state vector. Imposing such certain information in an
otherwise probabilistic setting should yield a more accurate estimate that is guaranteed to be feasible.
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Consider a linear dynamic system model,

xk = Ak−1 xk−1 + Bk−1uk−1 + wk−1 (28)

zki
= Hki

xk + vki
, i = 1, . . . , n (29)

where k represents the discrete-time index, Ak is the system matrix, Bk is the input matrix, uk is the
input vector and xk is the state vector. The system process noise wk with covariance matrix Q and
measurement noise vk with covariance R are assumed to be correlated, that is,

E


[

wk
vk

][
wk
vk

]T
 =

[
Q PQR

PT
QR R

]

The state xk ∈ RN is known to be constrained as,

Cxk = c = 0 (30)

For c 6= 0, the state space can be translated by a factor c such that Cxk = 0. After constrained state
estimation, the state space can be translated back by the factor c to satisfy Cxk = c. Hence, without loss
of generality, the c = 0 case is considered for analysis here. The matrix C ∈ Rn×m is assumed to have a
full row rank. A row deficient matrix C signifies the presence of redundant constraints. In such a case,
we can simply remove the linearly dependent rows from C. In the following, the estimate projection
(EP) method is briefly reviewed which is followed by the Covariance Projection (CP) method for linear
constraints among state variables.

5.1. Estimate Projection Method

The estimate projection (EP) method [23,24] projects the unconstrained estimate obtained from
Kalman filtering onto the constraint subspace to satisfy the linear constraints among state variables.
Let us denote the unconstrained filtered estimate and constrained estimate as (x̂u, Pu) and (x̂p, Pp),
respectively. Then the following optimization problem is solved to obtain the constrained estimate,

min
x̂p

(x̂p − x̂u)TU(x̂p − x̂u) such that Cx̂p = 0 (31)

where U is any symmetric positive definite weighting matrix. Solving (31) using Lagrange multipliers
results in a constrained mean and covariance,

x̂p = Jx̂u (32)

Pp = JPu JT (33)

where J is the projector on the null space of constrained matrix C, defined as,

J = I −U−1CT
(

CU−1CT
)−1

C

Any symmetrical positive definite matrix can be used as a weighting matrix U to obtain
the constrained estimate but the two most common choices are identity matrix I and inverse of
unconstrained covariance Pu−1

.
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5.2. Covariance Projection Method for Linear Constraints

The CP framework incorporates any linear constraints among states without any additional
processing. Let us denote the constrained filtered estimate of the CP method as (x̂c, Pc). The extended
space representation of the state predictions and measurements of multiple sensors can be written as,

x̂ =


x̂−k
zk1
...

zkn

, P =


P−k PP−k R1

. . . PP−k Rn

PT
P−k R1

...
PT

P−k Rn

R1
...

. . .

. . .
. . .
. . .

...

...
Rn


Then the CP estimate in the presence of linear constraints among states can be obtained using (12)

and (13) as,

x̂c = Mc

(
MT

c P−1Mc

)−1
MT

c P−1 x̂ (34)

Pc = Mc

(
MT

c P−1Mc

)−1
MT

c (35)

where the Mc matrix is the subspace of the constraint among the state prediction x−k and sensor
measurements zki

as well as linear constraints C among state variables. The subspace of the linear
constraint among state prediction and sensor measurements can be written as,

M = [IN , H1, H2, . . . , Hn]
T

Then, Mc is a combination of M and C, that is,

Mc ∈ (M, C)

The projection of the probability distribution of true states and measurements around the
predicted states and actual measurements onto the constraint manifold Mc in the extended space
provide the filtered or fused estimate of state prediction and sensor measurements as well as completely
satisfying the linear constraints among the states directly in one step.

It can be observed from (31) that the EP method forces the unconstrained estimate on the linear
constraint under some norm to satisfy the linear constraints among state variables. Consequently, the
true optimality cannot be guaranteed due to the fact that the projected point close to the unconstrained
estimate does not imply that it is close to the true constrained state [29]. On the other hand, the unified
constraint matrix Mc of the CP method ensures that the linear constraints among state variables are
exactly satisfied. Furthermore, as compared to the EP method that needs the online projection steps
(32) and (33) after filtering, the Mc matrix for the CP method can be computed offline. This means that
the EP method is computationally less efficient. Additionally, the proposed CP method is inherently
suitable for taking care of any cross-correlation in the constrained estimation process.

6. Simulation Results

In this section, illustrative examples are provided to demonstrate the effectiveness of the
theoretical results derived in the previous sections. We use the Monte Carlo technique [35], a method
extensively used in a wide variety of fields such as physical science, computational biology, statistics,
computational geometry, artificial intelligence, engineering, decision theory, and quantitative finance
(see, e.g., the recent works [36–40]).
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6.1. Tracking in the Presence of Correlations and Outliers

Consider a target tracking scenario characterized by the following dynamic system model,

xk =

[
1 T
0 1

]
xk−1 +

[
T2

2
T

]
wk−1 (36)

with the state vector xk =
[
x,

.
x
]T . Where x and

.
x are the position and velocity of the target at time k,

respectively. T = 0.5 s is the sampling period. The system process is affected by zero mean Gaussian
noise with covariance matrix Q. Four sensors are employed to track the movement of the target,
where the sensor measurements are approximated by the following equation,

zki
=

[
1 0
0 1

]
xk + vki

, i = 1, 2, 3, 4 (37)

The measurements of the sensors are affected by noise vki
with respective covariances of

R1, R2, R3 and R4. The covariances of the process noise and sensor measurement noises used
in the simulation are,

Q = 3.5, R1 = diag(5, 3.5), R2 = diag(2, 8),

R3 = diag(7, 2.1), R4 = diag(2.5, 5)

Starting from an initial value of [100, 3], in each time step the individual sensor uses (36) to predict
the state of the target and then update the state prediction by its own sensor measurements. The local
estimates are assumed to be correlated and (22) is used to compute the cross-correlation among local
estimates. The estimated mean and covariances of the states by each sensor are sent to the fusion
center, where they are fused by the CP method. Table 1 summarizes the trace of covariance of local
sensors along with the trace of fused covariance provided by the CP method. As seen from Table 1,
the trace of covariance provided by the CP method is less than the individual local state estimates,
that is, traceP̃ ≤ tracePi, i = 1, . . . , 4. This means that the fused result is better than each of the local
state estimates.

Table 1. The accuracy comparison in terms of trace of matrices.

traceP1 traceP2 traceP3 traceP4 trace
~
P

4.3271 2.9109 3.9656 3.4321 1.2674

In order to further verify this theoretical result, we compute the mean square error (MSE) as,

SMSE(k) =
1
V

V

∑
i=1

[x̂i(k)− xi(k)]
T [x̂i(k)− xi(k)]

where V is the number of Monte Carlo trials and x̂i(k) and xi(k) are the estimated and actual state
vector respectively. Since,

trace(Pi) = E[(x̂i − x)T(x̂i − x)]

Then we have [41],
SMSE(k) = trace(Pi), k→ ∞, V → ∞ (38)

The simulation is carried out for 1000 Monte Carlo runs and the local estimates provided by four
sensor nodes along with the fused result of the CP method are shown in Figure 8. The straight lines
in Figure 8 denote the trace of error covariance matrices and the solid curve represents the MSE of
local and fused estimates. It can be observed from Figure 8 that the MSE of the individual sensor node
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fluctuates around the trace, which is consistent with (38). Furthermore, the accuracy relation of local
sensor estimates and fused estimates in terms of MSE in Figure 8 is coincident with the theoretical
results in Table 1.
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Consider the same dynamic example of four sensors with the following system and
measurement equations,

xk =

[
1 T
0 1

]
xk−1 +

[
T2

2
T

]
uk−1 + wk−1 (39)

zki
=

[
1 0
0 1

]
xk + vki

+ eki
, i = 1, 2, 3, 4 (40)

where the process and measurement noise parameters are the same. Now, it is also assumed that the
sensor 1, sensor 2, sensor 3 and sensor 4 measurements are independently affected by unmodeled
random noise eki

for 5%, 15%, 20% and 10% of the time, respectively, and thus the estimates provided by
the sensors are spurious. The control input alternate between 1 and −1 and set to a value of 1 if

.
x < 30

otherwise it is changed to −1 until
.
x < 5. Starting from an initial value of [100, 3], in each time step the

individual sensor node compute local filtered estimates. The estimated mean and covariances by each
sensor are sent to the fusion center, where they are fused. The three fusion strategies of CP (fusion
without outlier removal), CP WO-d (outlier removal without considering cross-correlation) and CP
WO-dC (taking care of correlation in outlier removal) are compared based on root mean squared error
(RMSE) between the actual state value and fused estimate of the state. The inconsistency is detected
with significance level α = 0.05. Figure 9a,b illustrate the RMSE of the target position and velocity
respectively versus time for 1000 Monte Carlo runs. Table 2 summarizes the average RMSE of position
and velocity. It can be observed from Figure 9 and Table 2 that the presence of outliers deteriorates the
performance of multisensor data fusion. Eliminating the outliers before fusion greatly improves the
estimation quality. Figure 9 and Table 2 also shows the difference in fusion performance of CP WO-d
and CP WO-dC, when outliers are identified with and without consideration of cross-correlation in
distance d respectively. It can be noted that consideration of correlation in distance d improves the
estimation quality in presence of outliers by avoiding Type I and Type II errors.
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Table 2. Average RMSE for 1000 Monte Carlo Runs.

Average RMSE CP CP WO-d CP WO-dC

Position (m) 101.1605 93.0824 89.6491
Velocity (m/s) 43.0339 36.0899 31.2033

6.2. Target Tracking in the Presence of Linear Constraints

Consider a 2D target tracking problem [24] with the following system equation,

xk =


1 0 T 0
0 1 0 T
0
0

0
0

1
0

0
1

xk−1 +


0
0

Tsinθ

Tcosθ

uk−1 + wk−1 (41)
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where xk =
[
x1, x2,

.
x1,

.
x2
]T is the state vector, with the first two states as the north and east position

with the last two states as the north and east velocity of the target respectively. A sensor measures the
position and velocity of the system as,

zk = Hxk + vk (42)

with H =


1 3 2 1
3 1 0 1
2
2

1
2

3
0

3
1

. wk and vk are the Gaussian process and measurement noise,

respectively. Suppose that we have additional information that the vehicle is moving on the road with
a heading angle of θ from the east x2, then we can write,

tan θ = x1
x2
⇒ x1 − x2 tan θ = 0

tan θ =
.
x1.
x2
⇒ .

x1 −
.
x2 tan θ = 0

Due to the heading of the vehicle, the states are dependent on each other, thus providing us
additional constraints, [

1 − tan θ 0 0
0 0 1 − tan θ

]
xk =

[
0
0

]
(43)

Based on the constraint matrix M =
[

I4 H
]T

between the state prediction and sensor
measurement and linear constraints (43) among the state variables, the unified constraint matrix
Mc can be obtained as,

Mc =

[
tan θ

0
1
0

0
tan θ

0
1

3 + tan θ

1 + 2 tan θ

1 + 3 tan θ

1
1 + 2 tan θ

3 + 3 tan θ

2 + 2 tan θ

1

]T

(44)

The covariance of the process and measurement noise are assumed to be,

Q =


100 20 0 0
20 100 0 0
0 0 30 10
0 0 10 30

, R =


500 10 20 30
10 500 15 10
20 15 100 20
30 10 20 100


The target is set to an initial state of

[
0 0 15 tan θ 15

]
. The sampling time T is set to 1 s,

heading angle θ = π/3 and control input uk = 1 if
.
x1 or

.
x2 < 30 otherwise it is changed to −1 until

.
x1 or

.
x2 < 5. The process and measurement noise are assumed to be correlated with covariance,

PQR = ρF1FT
2

where F1 and F2 are the cholesky decomposition of Q and R respectively. ρ is the correlation coefficient
and assumed as 0.4 in the simulation.

Starting from the initial value, in each time step (41) is used to predict the states of the vehicle.
The states are then updated with the sensor measurements (42). Using Mc from (44) in (34) and (35),
the proposed method directly satisfies the constraint between the perdition and measurement as well
as the linear constraints among states due to the heading of the vehicle. On the other hand, the EP
method first employs a Kalman filter to obtain the unconstrained state estimates and then project the
unconstrained state estimates on the linear constraints subspace to satisfy the constraints among states.
The performance of the proposed method is compared with the unconstrained estimate and estimate
provided by the EP method in terms of RMSE. Table 3 summarizes the average RMSE of the individual
states for 1000 Monte Carlo runs. It can be observed from Table 3 that the RMSE of the CP method
is lower than the other estimators for all states. For the EP method, the use of Pu−1

as a weighting
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parameter provides better results than using I. The comparative results of different methods can be
also seen in Figure 10a,b, where Figure 10a is the RMSE of the northerly position and Figure 10b is
the RMSE of northerly velocity. It can be seen that the proposed method performs better as compared
to the unconstrained state estimation and EP method. Figure 11a,b show the variance of northerly
position and northerly velocity of the vehicle, respectively. It is proven that the EP method with
weighting parameter Pu−1

has the smallest covariance [24]. This can also be observed from Figure 11a,b
where the EP method with weight Pu−1

provides smaller variance than the unconstrained estimate
and EP method by identitying matrix I as the weighting parameter. However, the CP method results
in even smaller state variance than all the competing methods as seen in Figure 11a,b.

Table 3. Average RMSE for 1000 Monte Carlo Runs.

Methods
Average RMSE

x1 (m) x2 (m)
.
x1 (m/s)

.
x2 (m/s)

Unconstrained 95.479 87.496 52.413 49.972
CP 50.39 29.093 36.624 21.145

EP (I) 55.823 32.229 39.648 22.891
EP (Pu−1

) 53.023 30.613 37.186 21.469
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Figure 10. Simulation results for the constrained and unconstrained dynamic system. The covariance
projection (CP) method is compared with the unconstrained state estimate and estimate projection (EP)
method. (a) RMSE of northerly position of vehicle over 1000 runs; (b) RMSE of northerly velocity of
vehicle over 1000 runs.
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7. Conclusions

In this paper, we propose a general approach to data fusion under arbitrary correlations and linear
constraints as well as data inconsistency. The proposed method provides an unbiased and optimal
solution in the sense of MMSE for fusing data from multiple sources. The method improves the fusion
accuracy by automatically detecting and removing inconsistent estimates from the fusion pool by a
statistical confidence measure. Moreover, it is shown that by considering the cross-correlation among
local estimates, the proposed method avoids the deterioration of the fusion accuracy due to Type I
and Type II errors. Without any additional manipulation, the proposed method completely satisfies
any linear constraints among state variables. The method improves the accuracy of constrained state
estimation by satisfying the linear constraints among state variables and provides better results than the
unconstrained state estimation and constrained state estimation using the estimate projection method.

Future work includes the extension of the proposed method for state estimation of non-linear
dynamic systems. Another avenue is examining the proposed method for incorporating non-linear
constraints among state variables.
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Appendix A

The fused mean estimate and covariance of the covariance projection (CP) method are given as,

x̃ = W−1PrWx̂ (A1)

P̃ = W−1PrWPWT Pr
TW−T (A2)

Putting W = D−1/2ET , Pr = MW
(

MWT
MW

)−1
MWT

and MW = WM in (A2), we get,

P̃ = W−1
(

WM
(

MTWTWM
)−1

MTWT
)
×
(

WM
(

MTWTWM
)−1

MTWT
)T

W−T

Let α = MTWTWM, then,

P̃ = W−1WMα−1MTWTWMα−T MTWTW−T

P̃ = Mα−T MT (A3)

Putting the value of α in (A3) and simplifying, we get,

P̃ = M
(

MTED−1ET M
)−1

MT (A4)

By eigenvalue decomposition, we know that,

P = EDET ⇒ P−1 = ED−1ET

So,

P̃ = M
(

MT P−1M
)−1

MT (A5)

Similarly, using definitions of various components in CP fused mean (A1), we have,

x̃ = W−1
(

WM
(

MTWTWM
)−1

MTWT
)

Wx̂

x̃ = M
(

MTWTWM
)−1

MTWTWx̂ (A6)

Since WTW = P−1, (A6) can be simplified as,

x̃ = M
(

MT P−1M
)−1

MT P−1 x̂ (A7)
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Appendix B

The weighted distance from the joint mean of two data sources to the point on the manifold can
be calculated as,

d =
[
(x̂1 − x̃)T (x̂2 − x̃)T

][ P1 0
0 P2

]−1[
(x̂1 − x̃)
(x̂2 − x̃)

]

d = (x̂1 − x̃)T P−1
1 (x̂1 − x̃) + (x̂2 − x̃)T P−1

2 (x̂2 − x̃) (A8)

x̂1 − x̃ = x̂1 − P2(P1 + P2)
−1 x̂1 + P1(P1 + P2)

−1 x̂2

x̂1 − x̃ =
[

I − P2(P1 + P2)
−1
]

x̂1 −
[

P1(P1 + P2)
−1
]

x̂2

Since P1(P1 + P2)
−1 + P2(P1 + P2)

−1 = I

x̂1 − x̃ = P1(P1 + P2)
−1[x̂1 − x̂2] (A9)

Similarly,
x̂2 − x̃ =

[
I − P1(P1 + P2)

−1
]

x̂2 −
[

P2(P1 + P2)
−1
]

x̂1

x̂2 − x̃ = P2(P1 + P2)
−1[x̂2 − x̂1]

x̂2 − x̃ = −P2(P1 + P2)
−1[x̂1 − x̂2] (A10)

Putting (A9) and (A10) in (A8) we get,

d =
(

P1(P1 + P2)
−1[x̂1 − x̂2]

)T
P−1

1

(
P1(P1 + P2)

−1[x̂1 − x̂2]
)

+
(
−P2(P1 + P2)

−1[x̂1 − x̂2]
)T

P−1
2

(
−P2(P1 + P2)

−1[x̂1 − x̂2]
)

d =
(
[x̂1 − x̂2]

T(P1 + P2)
−1P1

)
P−1

1

(
P1(P1 + P2)

−1[x̂1 − x̂2]
)

+
(
[x̂1 − x̂2]

T(P1 + P2)
−1P2

)
P−1

2

(
P2(P1 + P2)

−1[x̂1 − x̂2]
)

d = [x̂1 − x̂2]
T
[
(P1 + P2)

−1(P1 + P2)(P1 + P2)
−1
]
[x̂1 − x̂2]

d = [x̂1 − x̂2]
T(P1 + P2)

−1 (A11)
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