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Abstract 

Diarrheal diseases caused by intestinal protozoan parasites are a major food-borne public health problem across the 
world. Vegetables and fruits provide important nutrients and minerals, but are also common sources of some food-
borne human pathogenic microorganisms. The contamination of raw vegetables and fruits with human pathogenic 
parasites are now a global public health threat, despite the health benefits of these foods in non-pharmacological 
prophylaxes against diseases. A large number of reports have documented the contamination of vegetables or fruits 
with human pathogenic microorganisms. In this paper, we reviewed the contamination and detection methods of 
human pathogenic intestinal protozoans that are frequently recovered from raw vegetables and fruits. The protozoan 
parasites include Cryptosporidium spp., Giardia duodenalis, Cyclospora cayetanensis, Entamoeba spp., Toxoplasma gondii, 
Balantioides coli, Blastocystis sp., Cystoisospora belli and Enterocytozoon bieneusi. The risk factors involved in the con-
tamination of vegetables and fruits with parasites are also assessed. 
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Background
Nearly 1.7 billion cases of diarrheal disease are reported 
globally every year, imposing an annual socioeconomic 
burden on health services of 72.8 million disability-
adjusted life years [1, 2]. A number of pathogens are 
responsible for causing diarrheal diseases, among which 
intestinal protozoan parasites are important contribu-
tors that can be transmitted by ingestion of the contami-
nated food [3, 4]. The intestinal protozoan infections are 
characterized by chronic to severe diarrhea, sometimes 
accompanied by abdominal cramping, flatulence, nausea, 
vomiting, anorexia, fatigue, low-grade fever and weight 
loss [5–7].

Vegetables and fruits provide important nutrients to 
humans, including various essential vitamins and min-
erals [8]. The ingestion of raw vegetables and fruits 

appear to be a quick, easy, and healthy source of nutri-
tion. However, these fresh vegetables and fruits can be an 
important source of some food-borne pathogenic micro-
organisms, if they are contaminated [9, 10]. The contami-
nation of raw vegetables and fruits with human parasites 
has recently been recognized as a global threat, despite 
the health benefits of these foods in non-pharmacologi-
cal prophylaxes against diseases.

A number of studies documented the contamination 
of vegetables and fruits with human pathogenic microor-
ganisms [11–15]. In this paper, we reviewed the detection 
methods and contamination of some human patho-
genic intestinal protozoans that are frequently recovered 
from raw vegetables and fruits. The protozoan para-
sites include Cryptosporidium spp., Giardia duodenalis, 
Cyclospora cayetanensis, Entamoeba spp., Toxoplasma 
gondii, Balantioides coli, Blastocystis sp., Cystoisospora 
belli and Enterocytozoon bieneusi.

We searched PubMed and Web of Science databases, 
with no language restrictions, using the following search 
terms: ‘Cryptosporidium’ or ‘Giardia’ or ‘Cyclospora’ 
or ‘Entamoeba’ or ‘Toxoplasma gondii’ or ‘Balantioides 
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coli’ or ‘Blastocystis sp.’ or ‘Cystoisospora belli’ or ‘Isos-
pora belli’ or ‘microsporidian’ and ‘vegetable’ or ‘fruit’. 
Articles were screened using Endnote X9. For articles 
whose full text was unavailable or that were published in 
other languages, the titles and abstracts in English were 
screened. Articles published up to December 31st 2019 
were included in this review.

Detection methods of intestinal protozoan parasites 
contaminating vegetables and fruits
The recovery of parasitic eggs/oocysts/cysts from con-
taminated vegetables and fruits with proper methods is 
the first and an important way for the detection of con-
taminating intestinal protozoa. The methods or tech-
niques for the detection of Cryptosporidium in food 
samples were well reviewed by Ahmed and Karanis in 
2018 [16].

Generally, a washing procedure is the first step in any 
recovery process. Several elution strategies have been 
used to isolate the parasites from vegetables and fruits. 
A portion (usually 50–250  g) of each vegetable or fruit 
sample is washed separately in a container containing 
some chemical solutions. The most widely used solutions 
are normal saline [14, 17–20] and phosphate-buffered 
saline [12, 21–24]. The commonly used solutions are gly-
cine [11, 25], sodium dodecyl sulfate [26],  Alconox® [27], 
and Tween 80 [28]. Other unusual solutions, such as 10% 
formal saline [29] and 0.1% peptone water [30] are also 
reported to isolate the contaminating parasites. Differ-
ent elution methods can lead to variable recovery rates 
for parasites from contaminated vegetables or fruits, 
however, the  Alconox® solution was reported to be more 
effective than the other commonly used solutions [27, 
31].

The isolation of the detergent solution sediments is the 
second key step in parasite detection. Two methods are 
commonly used to obtain these concentrated sediments. 
One is the overnight sedimentation of the washing solu-
tion [19, 30]. The supernatant is discarded and the sedi-
ment is then transferred to a new tube to remove any 
unwanted material [32]. The other is membrane filtra-
tion (more commonly and effectively used), in which the 
deposit is collected by centrifugation. Membrane filtra-
tion devices include stomacher bags [23, 30], zipper bags 
[22, 24], sieves [18], gauze [21], or cellulose acetate mem-
branes [28].

Finally, the sediment or deposit is screened with light 
microscopy, staining, immunofluorescence microscopy, 
or PCR to detect any parasite. More than one smear 
slide is usually prepared for each specimen to allow 
its precise detection [12, 26]. Oocysts or cysts can be 
detected microscopically based on their morphological 
features [14, 17, 20, 29], using Lugol’s iodine [12, 14, 29] 

or modified Ziehl-Neelsen staining (or any other stain-
ing technique) [14, 19, 26]. The extraction of the parasitic 
DNA from the sediment, followed by the PCR amplifica-
tion of specific genes, is also efficiently used for the pro-
tozoan detection in vegetable and fruit samples [22, 24].

Contamination of vegetables and fruits with intestinal 
protozoan parasites
Cryptosporidium contamination
Cryptosporidium spp. are widespread protozoan para-
sites that infect humans and animals, and the second 
commonest cause of diarrhea in children after rotavirus 
[9]. Cryptosporidium is characterized by its extensive 
genetic variation that results in the existence of 38 spe-
cies and more than 60 genotypes of this parasite [33]. At 
least 20 distinct species cause moderate or severe infec-
tions in humans, of which C. hominis and C. parvum are 
the major causative agents [34].

The detection of Cryptosporidium oocysts in vegetable 
and fruit samples with light microscopy is simple, con-
venient, and direct [13, 16], but it requires a high level of 
expertise to interpret the slides, while an immunofluores-
cence assay is standard practice and more sensitive [16]. 
Immunomagnetic separation (IMS) is used to concen-
trate Cryptosporidium oocysts for the efficient detection 
by microscopy or PCR [12, 25, 35]. The PCR amplifica-
tion and sequencing of specific genes of Cryptosporid-
ium recovered from contaminated vegetables and fruits 
is the most precise method of identification of human 
pathogenic and zoonotic species (e.g., [13, 23–25]. How-
ever, PCR is commonly used in developed countries, but 
most surveillance studies in developing countries involve 
microscopy.

The contamination of vegetables and fruits with 
Cryptosporidium spp. has been documented in many 
countries (Table  1), and the average prevalence is cal-
culated as 6.0% (375/6210; 95% confidence interval, CI: 
5.4–6.6%). Among the Cryptosporidium species, C. par-
vum, C. hominis, and C. ubiquitum were detected in the 
contaminated vegetable and fruit samples [12, 23, 25, 
36]. The Cryptosporidium species are important human 
pathogens and major causes of human cryptosporidiosis, 
representing a threat to public health through food as a 
vehicle.

Giardia duodenalis contamination
Giardia duodenalis (synonyms: G. intestinalis, G. lam-
blia) is a non-invasive protozoan parasite that adhere 
to and colonize the upper small intestine, causing acute 
watery diarrhea in humans and animals [37]. It is an 
important zoonotic protozoan and the main cause of 
human giardiasis, which therefore represents a threat to 
public health [38]. Eight genetically distinct assemblages 
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Table 1 Contamination of vegetables and fruits by Cryptosporidium spp.

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

Cryptosporidium species (n) References

Brazil PCR Vegetables 21 2 (9.5) Cryptosporidium spp. (1); C. 
parvum (1)

[45]

China PCR Lettuce 200 0 [36]

Coriander 152 0

Celery 70 0

Baby bok choy 59 0

Chinese cabbage 47 0

Leaf lettuce 44 0

Water spinach 28 0

Crown daisy 27 0

Fennel plant 26 0

Endive 25 0

Spinach 20 0

Schizonepeta 20 0

Cabbage 18 0

Leaf mustard 11 0

Chinese chive 132 1 (0.8) C. parvum (1)

Chive 128 0

Cucumber 41 0

Watermelon 15 0

Potato 3 0

Bean (kidney/French bean) 28 0

Green chili 5 0

Costa Rica Direct smear, followed by light 
microscopy

Cilantro leaves 80 4 (5.0) Cryptosporidium spp. (4) [79]

Cilantro roots 80 7 (8.7) Cryptosporidium spp. (7)

Lettuce 80 2 (2.5) Cryptosporidium spp. (2)

Radish, tomato, cucumbers, 
carrots

80 1 (1.2) Cryptosporidium spp. (1)

Costa Rica Zielh-Nielsen stain, Weber stain Lettuce 50 7 (14.0) Cryptosporidium spp. (7) [71]

Parsley 50 1 (2.0) Cryptosporidium spp. (1)

Cilantro 50 1 (2.0) Cryptosporidium spp. (1)

Strawberries 50 0

Blackberries 50 3 (6.0) Cryptosporidium spp. (3)

Egypt Wet mount, Weber modified 
trichrome, modified Ziehl-
Neelsen stains

Fresh fruit juices 61.3 Cryptosporidium spp. [80]

Ethiopia Modifed Zeihl-Neelsen stain Fruits and vegetables 360 46 (12.8) Cryptosporidium spp. (46) [19]

Ethiopia Modified Ziehl-Neelsen stain Fruits and vegetables 360 17 (4.7) Cryptosporidium spp. (17) [32]

Ethiopia Modified Zeihl-Neelsen stain Tomato 100 9 (9.0) Cryptosporidium spp. (9) [14]

Cabbage 96 0

Green pepper 66 2 (3.0) Cryptosporidium spp. (2)

Carrot 62 7 (11.3) Cryptosporidium spp. (7)

Salad 23 2 (8.7) Cryptosporidium spp. (2)

Ghana Ziehl-Neelsen stain Cabbage 90 18 (20.0) Cryptosporidium parvum (18) [12]

Green pepper 55 12 (21.8) Cryptosporidium parvum (12)

Carrot 47 6 (12.8) Cryptosporidium parvum (6)

Onion 70 9 (12.9) Cryptosporidium parvum (9)

Tomato 31 4 (12.9) Cryptosporidium parvum (4)

Lettuce 102 18 (17.6) Cryptosporidium parvum (18)
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Table 1 (continued)

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

Cryptosporidium species (n) References

Ghana Sediment smears and fluores-
cence stain

Cabbage 72 12 (16.7) Cryptosporidium spp. (12) [67]

Lettuce 72 15 (20.8) Cryptosporidium spp. (15)

Carrot 72 4 (5.6) Cryptosporidium spp. (4)

Spring onion 72 8 (11.1) Cryptosporidium spp. (8)

Tomatoes 72 1 (1.4) Cryptosporidium spp. (1)

Ghana Direct wet mount, Trichrome, 
modified Zielh-Nielsen stain

Tiger nuts 40 12 (30.0) Cryptosporidium parvum (12) [81]

India DAPI-stain followed by fluores-
cence microscopy, and PCR

Cabbage 47 3 (6.4) Cryptosporidium parvum (3) [13]

Chili 42 2 (4.8) Cryptosporidium spp. (2)

Coriander 28 2 (7.1) Cryptosporidium spp. (2)

Cucumber 52 3 (5.8) Cryptosporidium parvum (3)

Radish 14 1 (7.1) Cryptosporidium spp. (1)

Tomatoes 56 6 (10.7) Cryptosporidium spp. (6)

Iran Modified Ziehl-Neelsen acid-
fast stain

Mint 82 7 (8.5) Cryptosporidium spp. (7) [26]

Leek 90 3 (3.3) Cryptosporidium spp. (3)

Cress 90 8 (8.9) Cryptosporidium spp. (8)

Green onion 54 8 (14.8) Cryptosporidium spp. (8)

Coriander 90 6 (6.7) Cryptosporidium spp. (6)

Basil 90 1 (1.1) Cryptosporidium spp. (1)

Iran Modified Ziehl-Neelsen satin Vegetables 34 3 (8.8) Cryptosporidium spp. (3) [72]

Italy modified Ziehl-Neelsen stain 
and PCR

Ready-to-eat packaged 
salads

648 6 (0.9) Cryptosporidium parvum/C. 
ubiquitum (6)

[23]

Korea qPCR Carrots 3 1 (33.3) Cryptosporidium parvum (1) [22]

Cabbages 3 1 (33.3) Cryptosporidium parvum (1)

Blue berries 3 1 (33.3) Cryptosporidium parvum (1)

Korea Multiplex qPCR Perilla leaves 72 5 (6.9) Cryptosporidium spp. (5) [24]

Winter-grown cabbage 70 4 (5.7) Cryptosporidium spp. (4)

Chives 73 13 (17.8) Cryptosporidium spp. (13)

Sprouts 72 1 (1.4) Cryptosporidium spp. (1)

Blueberries 44 3 (6.8) Cryptosporidium spp. (3)

Cherry tomatoes 73 5 (6.8) Cryptosporidium spp. (5)

Norway Concentrated by IMS, and 
screening by light micros-
copy

Alfalfa sprouts 16 0 [35]

Dill 7 0

Lettuce 125 5 (4.0) Cryptosporidium spp. (5)

Mung bean sprouts 149 14 (9.4) Cryptosporidium spp. (14)

Mushrooms 55 0

Parsley 7 0

Precut salad mix 38 0

Radish sprouts 6 0

Raspberries 10 0

Strawberries 62 0

Norway Concentrated by IMS, and 
screening by light micros-
copy

Alfalfa 16 0 [82]

Mung bean 149 14 (9.4) Cryptosporidium spp. (14)

Radish 6 0

Peru Direct microscopic observa-
tion, acid-fast staining, and 
immunofluorescent assays

Vegetables 14.5 Cryptosporidium parvum [83]
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(A to H) of G. duodenalis have been defined, with the 
occurrence of zoonotic assemblages A and B in both 
humans and animals. However, the other assemblages 
are mostly specific to animal hosts [38]. This parasite is 
estimated to cause ~28.2 million cases of diarrhea annu-
ally through the ingestion of contaminated foods [7]. The 
outbreaks of giardiasis have also been associated with a 
variety of processed foods. Human infections of G. duo-
denalis are often associated with the consumption of 
contaminated raw vegetables and fruits [39–41].

Giardia duodenalis cysts can be detected with light 
microscopy based on their morphological features [19, 
42, 43], and staining with typical Lugol’s iodine is uni-
versally used for the detection of G. duodenalis cysts [12, 
14, 17, 18, 29]. However, an immunofluorescence assay is 
usually applied for the detection of Giardia cysts in food 
items with more sensitivity [7]. The IMS method is also 
applied to concentrate G. duodenalis cysts for further 
detection [11, 35]. The PCR amplification and sequencing 
of specific G. duodenalis genes recovered from contami-
nated food are also commonly used for the confirmatory 
detection of this parasite (e.g. [28, 39, 44]).

The contamination of vegetables and fruits with G. 
duodenalis cysts has been reported in many countries 
(Table 2), and the average prevalence is estimated as 4.8% 
(276/5739; 95% CI: 4.2–5.4%). In contaminated vegetable 
and fruit samples, G. duodenalis zoonotic assemblages A 
and B were commonly detected [23, 28, 39, 44, 45].

Cyclospora cayetanensis contamination
Cyclospora cayetanensis is another important protist 
parasite, usually transmitted via food that causes human 
gastrointestinal cyclosporiasis [5, 46]. Globally, C. cay-
entanesis is an important food-borne human protozoan 
[5, 46]. Many reports have documented the food-borne 
cyclosporiasis outbreaks that were associated with the 
consumption of contaminated raw vegetables or fruits.

Cyclospora cayetanensis oocysts can be detected simply 
and directly with light microscopy provided that there 

are a large number of oocysts present in the vegetables 
and fruits [23, 37]. Modified Ziehl-Neelsen staining, 
and autofluorescence or immunofluorescence assays are 
also commonly used for their detection [12, 14, 19, 47]; 
however, there are no immunofluorescence assays com-
mercially available for Cyclospora. Furthermore, PCR 
amplification and sequencing of C. cayetanensis genes 
have currently been used for the specific detection of this 
organism in contaminated food samples [23, 24, 48].

The contamination of vegetables and fruits with C. 
cayetanensis oocysts have been documented in many 
countries (Table 3). The average prevalence of C. cayetan-
ensis contamination is counted as 3.9% (180/4628; 95% 
CI: 3.3–4.5%).

Entamoeba contamination
Among the Entamoeba spp., E. histolytica is responsi-
ble for most cases of human amebiasis and remains one 
of the top three causes of parasitic mortality worldwide 
[49]. Although some of the E. histolytica infections are 
asymptomatic, many infections may lead to severe amoe-
bic colitis and disseminated disease [50]. Entamoeba spp. 
infections are significantly associated with the consump-
tion of contaminated vegetables and fruits [17, 41, 51, 
52].

Entamoeba spp. cysts can be detected with light 
microscopy based on their morphological features [29, 
42, 43]. Staining with Lugol’s iodine is widely used to 
detect the Entamoeba spp. cysts (e.g. [12, 14, 17, 19, 52]). 
The PCR technique is also commonly used to detect 
Entamoeba spp. in food items based on amplification and 
sequencing of specific genes [23, 53].

Many reports have documented the contamination 
of raw vegetables and fruits with Entamoeba spp. cysts 
worldwide (Table  4). The average prevalence of Enta-
moeba contamination is calculated as 3.5% (199/5647; 
95% CI: 3.0–4.0%). Entamoeba histolytica, E. dispar and 
E. coli were the most commonly detected species among 

Table 1 (continued)

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

Cryptosporidium species (n) References

Poland Separated by IMS and identi-
fied by immunofluorescence 
and DIC microscopy, and PCR 
identified

Fresh vegetables 128 6 (4.7) Cryptosporidium parvum or C. 
hominis (6)

[25]

Fruits 35 0

Spain Concentrated by IMS and stain 
oocysts for immunofluores-
cence assay

Chinese cabbage 6 2 (33.3) Cryptosporidium spp. (2) [11]

Lollo rosso lettuce 4 3 (75.0) Cryptosporidium spp. (3)

Romaine lettuce 9 7 (77.8) Cryptosporidium spp. (7)

Total 6210 375 (6.0)
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Table 2 Contamination of vegetables and fruits with Giardia duodenalis 

Location Detection method Vegetable or fruit 
item

No. of samples 
tested

No. of 
positive 
samples (%)

Giardia duodenalis assemblages 
identified (n)

References

Bangladesh Iodine and normal saline wet 
mount

Vegetables 200 2 (1.0) [52]

Brazil PCR Lettuce and chicory 11 2 (18.2) Assemblage BIV (2) [39]

Brazil Immunofluorescence, PCR Arugula 4 2 (50.0) Assemblage AII (2) [28]

Chives 12 1 (8.3) Assemblage AII (1)

Crisp lettuce 32 4 (12.5) Assemblage AII (4)

Greens collard 24 1 (4.2) Assemblage AI (1)

Parsley 12 2 (16.7) Assemblage AII (2)

Watercress 12 4 (33.3) Assemblage AII (4)

Wild chicory 12 2 (16.7) Assemblage AII (2)

Brazil Semi-nested PCR Regular lettuce 60 8 (13.3) Assemblage AI (4); Assemblage 
B (1); Assemblage E (1); N/D 
(2)

[44]

Crisp lettuce 100 5 (5.0) Assemblage AI (2); N/D (3)

Chicory 60 5 (8.3) Assemblage AI (3); N/D (2)

Rocket 20 1 (5.0) N/D (1)

Kale 20 0

Brazil PCR Vegetables 21 10 (47.6) Assemblage E (2); N/D (8) [45]

Brazil Sediment being stained in 
Lugolʼs solution

Lettuce 100 0 [15]

Coriander 100 1 (1.0)

Costa Rica Direct smear, followed by light 
microscopy

Cilantro leaves 80 4 (5.0) [79]

Cilantro roots 80 2 (2.5)

Egypt Lugol’s iodine stain Lettuce 101 16 (15.8) [18]

Watercress 116 13 (11.2)

Parsley 102 12 (11.8)

Green onion 103 4 (3.9)

Leek 108 2 (1.9)

Ethiopia Lugol’s iodine stain Fruits and vegetables 360 27 (7.5) [19]

Ethiopia Sediment smear under light 
microscope

Fruits and vegetables 360 36 (10.0) [32]

Ethiopia Sediment smear under light 
microscope

Tomatoes 45 1 (2.2) [43]

Lettuce 45 4 (8.8)

Carrot 45 7 (15.6)

Cabbage 45 8 (17.8)

Green pepper 45 6 (13.3)

Avocado 45 0

Ethiopia Sediment smear and Lugol’s 
iodine stain

Tomato 100 0 [14]

Cabbage 96 16 (16.7)

Green pepper 66 4 (6.1)

Carrot 62 4 (6.5)

Salad 23 0

Ghana Lugol’s iodine stain Cabbage 90 5 (5.6) [12]

Green pepper 55 3 (5.5)

Carrot 47 4 (8.5)

Onion 70 3 (4.3)

Tomato 31 2 (6.5)

Lettuce 102 5 (4.9)
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Table 2 (continued)

Location Detection method Vegetable or fruit 
item

No. of samples 
tested

No. of 
positive 
samples (%)

Giardia duodenalis assemblages 
identified (n)

References

India DAPI-stain followed by fluores-
cence microscopy, and PCR

Cabbage 47 1 (2.1) [13]

Carrot 25 1 (4.0)

Chili 42 4 (9.5)

Coriander 28 3 (10.7)

Cucumber 52 1 (1.9) Assemblage D (1)

Tomatoes 56 2 (3.6) Assemblage A (2)

Turnip 3 1 (33.3)

Iran Lugol’s iodine stain Vegetables 141 11 (7.8) [84]

Iran Sediment smear under light 
microscopy

Leek 30 3 (10.0) [42]

Spring onion 22 0

Basil 15 1 (6.7)

Parsley 21 0

Lettuce 23 0

Cress 17 0

Spearmint 18 0

Tarragon 19 0

Coriander 24 0

Radish 29 0

Italy Lugolʼs iodine satin and PCR Ready-to-eat pack-
aged salad

648 4 (0.6) Assemblage A (4) [23]

Jordan Lugol’s iodine stain Lettuce 30 7 (23.3) [20]

Tomato 33 2 (6.1)

Parsley 42 0

Cucumber 28 0

Norway Concentrated by IMS, and 
screening by light micros-
copy

Alfalfa sprouts 16 0 [35]

Dill 7 2 (28.6)

Lettuce 125 2 (1.6)

Mung bean sprouts 149 3 (2.0)

Mushrooms 55 0

Parsley 7 0

Precut salad mix 38 0

Radish sprouts 6 1 (16.7)

Raspberries 10 0

Strawberries 62 2 (3.2)

Norway Concentrated by IMS, and 
screening by light micros-
copy

Alfalfa 16 0 [82]

Mung bean 149 3 (2.0)

Radish 6 1 (16.7)

Saudi Arabia Lugol’s iodine stain Green onion 50 0 [17]

Watercress 50 0

Lettuce 50 0

Cucumber 50 0

Cabbage 50 0

Pea 50 0

Tomato 50 0

Carrot 50 4 (8.0)
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the isolates from contaminated vegetables and fruits [12, 
17, 29, 42].

Toxoplasma gondii contamination
Toxoplasma gondii is a ubiquitous protozoan parasite 
capable of infecting virtually all warm-blooded animals 
[54]. According to a new nomenclature system, T. gon-
dii genotypes are classified as Type I, Type II or Type III. 
Other atypical or exotic genotypes include Chinese 1, 
Type Br I, Type Br II, Type Br III, Type IV and Type 12 
[55, 56]. Among the three principal routes of toxoplasmo-
sis transmission, consumption of unwashed vegetables 
and fruits contaminated with cat feces is an important 
one that sometimes may lead to food-borne outbreaks 
[57]. The significant association of T. gondii infections 
with the consumption of contaminated raw vegetables is 
also observed in previous studies [58–60].

The detection of Toxoplasma gondii in contaminated 
vegetables and fruits is usually performed by PCR ampli-
fication [23, 61–63]. The contamination of vegetables and 
fruits with T. gondii was observed in Brazil, China, Italy 
and Poland (Table 5), and the average prevalence of the 
contamination was estimated as 3.8% (63/1676; 95% CI: 
2.9–4.7%). The T. gondii isolates obtained from vegeta-
bles and fruits belonged to genotypes Type I and II [23, 
61, 64].

Other intestinal protozoan contaminations
Fresh vegetables and fruits are occasionally contami-
nated with some other intestinal protozoans, such as 

Balantioides coli, Cystoisospora belli, Blastocystis sp. and 
Enterocytozoon bieneusi.

Several reports have documented B. coli contami-
nation of vegetables, leading to global public health 
concerns [65]. Balantioides coli is usually detected on 
vegetables and fruits with light microscopy [14, 30, 52, 
66, 67]. The contamination of vegetables with B. coli has 
been reported in Bangladesh, Brazil, Cameroon, Ethio-
pia, and Ghana (Table  6) and the average prevalence of 
the contamination is calculated as 9.3% (72/907; 95% CI: 
7.6–11.0%).

Cystoisospora belli infection is commonly reported 
in tropical and subtropical areas of the world [68]. Cys-
toisosporiasis can be acquired through the ingestion 
of contaminated food. Cystoisospora belli is commonly 
detected with modified Ziehl-Neelsen staining, followed 
by microcopy [32, 43]. There are three reports on Cys-
toisospora belli contamination in vegetables and fruits in 
Ethiopia and Ghana (Table 6). The average prevalence of 
the contamination is estimated as 1.9% (19/1025; 95% CI: 
1.1–2.7%).

The detection of Blastocystis sp. is usually based on 
microscopy and PCR [23]. Cell culture is also used for 
the detection of this parasite. The contamination of veg-
etables and fruits with Blastocystis sp. has only been 
documented in Brazil and Italy, with a prevalence of 4.4% 
(37/848; 95% CI: 3.0–5.8%) (Table 6).

Enterocytozoon bieneusi is an important microspo-
ridian species infecting humans [69]. The genetic 
diversity of the pathogen is inferred by the analysis of 

Table 2 (continued)

Location Detection method Vegetable or fruit 
item

No. of samples 
tested

No. of 
positive 
samples (%)

Giardia duodenalis assemblages 
identified (n)

References

Spain Concentrated by IMS and stain 
cysts for immunofluores-
cence assay

Chinese cabbage 6 2 (33.3) [11]

Lollo rosso lettuce 4 3 (75.0)

Romaine lettuce 9 5 (55.6)

Sudan Lugol’s iodine stain Tomatoes 36 1 (2.8) [29]

Cucumber 12 0

Armenian cucumber 16 0

Green pepper 25 1 (4.0)

Cayenne pepper 7 0

Radish 24 1 (4.2)

Beet 19 0

Watercress 23 2 (8.7)

Lettuce 11 1 (9.1)

Green onion 36 1 (2.8)

Carrot 50 1 (2.0)

Total 5739 276 (4.8)

Giardia duodenalis, G. intestinalis, G. lamblia
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Table 3 Contamination of vegetables and fruits with Cyclospora cayetanensis 

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

References

Cameroon Sediment smear, followed by light microscopy Green cabbage 30 0 [66]

Red cabbage 30 0

Lettuce 30 10 (33.3)

Cucumber 30 0

Carrots 30 0

Green pepper 30 20 (66.7)

China PCR Lettuce 200 1 [36]

Coriander 152 0

Celery 70 0

Baby bok choy 59 0

Chinese cabbage 47 0

Leaf lettuce 44 1 (2.3)

Water spinach 28 0

Crown daisy 27 0

Fennel plant 26 0

Endive 25 0

Spinach 20 0

Schizonepeta 20 0

Cabbage 18 0

Leaf mustard 11 0

Chinese chive 132 0

Chive 128 0

Cucumber 41 0

Watermelon 15 0

Potato 3 0

Bean (kidney/French bean) 28 0

Green chili 5 0

Costa Rica Zielh-Nielsen and Weber stain Lettuce 50 2 (4.0) [71]

Parsley 50 0

Cilantro 50 0

Strawberries 50 0

Blackberries 50 0

Egypt Weber modified trichrome and modified Ziehl-Neelsen stains Fresh fruit juices 14.5 [80]

Ethiopia Modifed Zeihl-Neelsen stain Fruits and vegetables 360 18 (5.0) [19]

Ethiopia Modified Ziehl-Neelsen stain Fruits and vegetables 360 25 (6.9) [32]

Ethiopia Modified Zeihl-Neelsen stain Tomato 100 4 (4.0) [14]

Cabbage 96 0

Green pepper 66 2 (3.0)

Carrot 62 0

Salad 23 1 (4.5)

Ghana Direct wet mount, trichrome modified Ziehl-Neelsen stain Tiger nuts 40 9 (22.5) [81]

Ghana Ziehl-Neelsen stain Cabbage 90 5 (5.6) [12]

Green pepper 55 3 (5.5)

Carro 47 3 (6.4)

Onion 70 3 (4.3)

Tomato 31 3 (9.7)

Lettuce 102 3 (2.9)

Italy qPCR Vegetables 49 6 (12.2) [48]
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single nucleotide polymorphisms (SNPs) in the inter-
nal transcribed spacer (ITS) that resulted in nearly 500 
valid genotypes of the pathogen [70]. The phyloge-
netic analysis of the valid genotypes recognized eleven 
genetic groups (Groups 1 to 11), figuring out their host 
specificity and zoonotic potential. Food-borne trans-
mission of E. bieneusi has been documented and the 
contamination of vegetables and fruits with this path-
ogen was reported in China, Costa Rica and Poland 
(Table  6). The parasite was successfully detected in 
contaminated vegetables and fruits by staining or 
with fluorescence in situ hybridization [21, 71], and 
PCR amplification [36]. The average prevalence of 
the reported contamination was estimated as 3.6% 
(52/1429; 95% CI: 2.6–4.6%).

Risk factors involved in the contamination of vegetables 
and fruits with parasites
Previous studies in Ethiopia, Ghana, Brazil and Iran 
reported a relatively higher prevalence of intestinal 
parasitic infections associated with the consumption of 
vegetables sold at open-aired markets than those asso-
ciated with supermarkets [12, 14, 15]. The parasitic 
load in the raw vegetables of open markets was high 
and posed a high risk of parasitic infections. The high 
contamination rates recorded in the open-market sam-
ples indicate poor hygiene in these locations, which is 

suitable for the propagation and transmission of the 
parasites [72].

High risk of diarrhea among raw vegetable consumers 
in the Kathmandu valley of Nepal, mostly due to the use 
of river water by farmers for washing vegetables, suggests 
a need to avoid the use of river water for washing veg-
etables [73]. There are also many reports that highlight 
the contamination of surface water with parasitic infec-
tive stages in Brazil [74], Iran [75], Poland [76] and Spain 
[77]. The use of such contaminated surface water for 
washing fresh vegetables and fruits might cause parasitic 
contamination.

Another study in the Czech Republic reported a sig-
nificantly higher contamination of T. gondii in vegeta-
bles collected from farm storage rooms than those from 
fields [64], indicating a higher chance of contamination of 
vegetables and fruits during processing and selling [78]. 
Therefore, the adaptation of good practices in every step 
between farm and fork, such as production, processing, 
storage and selling minimize the microbial contamina-
tion of vegetables and fruits.

Conclusions
The accidental ingestion of parasitic infective stages 
such as eggs, oocysts, cysts or spores with the contami-
nated raw vegetables or fruits causes varying intestinal 
diseases in humans that sometimes may lead to serious 

Table 3 (continued)

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

References

Italy modified Ziehl-Neelsen stain and PCR Ready-to-eat packaged salad 648 8 (1.2) [23]

Korea Multiplex qPCR Perilla leaves 72 0 [48]

Winter-grown cabbage 70 4 (5.7)

Chives 73 0

Sprouts 72 1 (1.4)

Blueberries 44 1 (2.3)

Cherry tomatoes 73 1 (1.4)

Peru Direct microscopic observation, acid-fast staining, and immuno-
fluorescent assay

Vegetables 1.8 [83]

Vietnam Modified acid-fast smear by light and UV epifluorescence micros-
copy

Basil 96 10 (10.4) [47]

Coriander sativum 80 3 (3.8)

Coriander 86 10 (11.6)

Lettuce 79 8 (10.1)

Vietnamese mint 61 6 (9.8)

Marjoram 26 2 (7.7)

Persicaria 68 7 (10.3)

Total 4628 180 (3.9)
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Table 4 Contamination of vegetables and fruits with Entamoeba spp.

Location Detection method Vegetable or fruit item Number 
of samples 
tested

Number 
of positive 
samples (%)

Entamoeba species identified 
(n)

References

Bangladesh Wet mount Vegetables 200 17 (8.5) Entamoeba histolytica [52]

Brazil Direct smear, followed by light 
microscopy

Lettuce 30 3 (10.0) Entamoeba coli (3) [85]

Brazil Lugol’s iodine stain Loose leaf  lettucea 1 1 Entamoeba sp. [30]

Red  lettucea 1 1 Entamoeba sp.

Curly  lettucea 1 1 Entamoeba sp.

Iceberg  lettucea 1 1 Entamoeba sp.

Parsleya 1 1 Entamoeba sp.

Chivea 1 1 Entamoeba sp.

Coriandera 1 1 Entamoeba sp.

Basila 1 1 Entamoeba sp.

Arugulaa 1 1 Entamoeba sp.

Chicorya 1 1 Entamoeba sp.

Kalea 1 1 Entamoeba sp.

Bean  sproutsa 1 1 Entamoeba sp.

Brazil Sediment smear, followed by 
light microscopy

Vegetables 100 32 (32.0) Entamoeba spp. (32) [86]

Brazil Sediment being stained in 
Lugolʼs solution

Lettuce 100 9 (9.0) Entamoeba histolytica (9) [15]

Lettuce 100 4 (4.0) Entamoeba coli (4)

Coriander 100 11 (11.0) Entamoeba histolytica (11)

Coriander 100 4 (4.0) Entamoeba coli (4)

Cameroon Lugol’s iodine stain Green cabbage 30 5 (16.7) Entamoeba spp. (5) [66]

Red cabbage 30 3 (10.0) Entamoeba spp. (3)

Lettuce 30 9 (30.0) Entamoeba spp. (9)

Cucumber 30 5 (16.7) Entamoeba spp. (5)

Carrots 30 3 (10.0) Entamoeba spp. (3)

Green pepper 30 5 (16.7) Entamoeba spp. (5)

Costa Rica Direct smear, followed by light 
microscopy

Cilantro leaves 80 5 (6.2) Entamoeba histolytica (5) [79]

Cilantro roots 80 2 (2.5) Entamoeba histolytica (2)

Lettuce 80 3 (3.8) Entamoeba histolytica (3)

Radish 80 2 (2.5) Entamoeba histolytica (2)

Egypt Lugol’s iodine stain Lettuce 101 14 (13.9) Entamoeba spp. (14) [18]

Watercress 116 9 (7.8) Entamoeba spp. (9)

Parsley 102 8 (7.8) Entamoeba spp. (8)

Green onion 103 2 (1.9) Entamoeba spp. (2)

Leek 108 3 (2.8) Entamoeba spp. (3)

Ethiopia Lugol’s iodine stain Fruits and vegetables 360 19 (5.3) Entamoeba histolytica/E. dispar 
(19)

[19]

Ethiopia Sediment smear Fruits and vegetables 360 52 (14.4) E. histolytica/dispar (52) [32]

Ethiopia Lugol’s iodine stain Tomato 100 22 (22.0) E. histolytica (22) [14]

Cabbage 96 0

Green pepper 66 0

Carrot 62 7 (11.3) E. histolytica (7)

Salad 23 0
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Table 4 (continued)

Location Detection method Vegetable or fruit item Number 
of samples 
tested

Number 
of positive 
samples (%)

Entamoeba species identified 
(n)

References

Ethiopia Sediment smear under light 
microscope

Tomatoes 45 1 (2.2) E. histolytica/E. dispar (1) [43]

Lettuce 45 4 (8.8) E. histolytica/E. dispar (4)

Carrot 45 6 (13.3) E. histolytica/E. dispar (6)

Cabbage 45 7 (15.6) E. histolytica/E. dispar (7)

Green pepper 45 5 (11.1) E. histolytica/E. dispar (5)

Avocado 45 5 (11.1) E. histolytica/E. dispar (5)

Ghana Lugol’s iodine stain Cabbage 90 5 (5.6) Entamoeba coli (5) [12]

Green pepper 55 4 (7.3) Entamoeba coli (4)

Onion 70 2 (2.9) Entamoeba coli (2)

Tomato 31 2 (6.5) Entamoeba coli (2)

Lettuce 102 4 (3.9) Entamoeba coli (4)

Ghana Lugol’s iodine stain Cabbage 90 11 (12.2) Entamoeba histolytica (11)

Carrot 47 4 (8.5) Entamoeba histolytica (4)

Onion 70 2 (2.9) Entamoeba histolytica (2)

Tomato 31 4 (12.9) Entamoeba histolytica (4)

Lettuce 102 6 (5.9) Entamoeba histolytica (6)

Iran Lugol’s iodine stain Vegetables 141 18 (12.8) Entamoeba coli (18) [84]

Iran Sediment smear under light 
microscopy

Leek 30 0 [42]

Spring onion 22 2 (9.1) Entamoeba coli (2)

Basil 15 0

Parsley 21 0

Lettuce 23 0

Cress 17 1 (5.9) Entamoeba coli (1)

Spearmint 18 0

Tarragon 19 1 (5.3) Entamoeba coli (1)

Coriander 24 2 (8.3) Entamoeba coli (2)

Radish 29 0

Iran Sediment smear under light 
microscopy

Leek 30 2 (6.7) Entamoeba histolytica (2) [42]

Spring onion 22 0

Basil 15 0

Parsley 21 0

Lettuce 23 0

Cress 17 0

Spearmint 18 1 (5.6) Entamoeba histolytica (1)

Tarragon 19 0

Coriander 24 0

Radish 29 0

Iran Lugol’s iodine stain Vegetables 34 1 (2.9) Entamoeba coli (1) [72]

Jordan Lugol’s iodine stain Lettuce 30 3 (10.0) Entamoeba histolytica (3) [20]

Tomato 33 2 (6.1) Entamoeba histolytica (2)

Parsley 42 0

Cucumber 28 0
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Table 4 (continued)

Location Detection method Vegetable or fruit item Number 
of samples 
tested

Number 
of positive 
samples (%)

Entamoeba species identified 
(n)

References

Saudi Arabia Lugol’s iodine stain Green onion 50 6 (12.0) Entamoeba spp. (6) [17]

Watercress 50 8 (16.0) Entamoeba spp. (8)

Lettuce 50 6 (12.0) Entamoeba spp. (6)

Cucumber 50 7 (14.0) Entamoeba spp. (7)

Cabbage 50 6 (12.0) Entamoeba spp. (6)

Pea 50 5 (10.0) Entamoeba spp. (5)

Tomato 50 0

Carrot 50 6 (12.0) Entamoeba spp. (6)

Saudi Arabia Lugol’s iodine stain Green onion 50 3 (6.0) Entamoeba coli (3)

Watercress 50 4 (8.0) Entamoeba coli (4)

Lettuce 50 2 (4.0) Entamoeba coli (2)

Cucumber 50 2 (4.0) Entamoeba coli (2)

Cabbage 50 4 (8.0) Entamoeba coli (4)

Pea 50 3 (6.0) Entamoeba coli (3)

Tomato 50 2 (4.0) Entamoeba coli (2)

Carrot 50 3 (6.0) Entamoeba coli (3)

Sudan Lugol’s iodine stain Tomatoes 36 1 (2.8) Entamoeba coli (1) [29]

Cucumber 12 0

Armenian cucumber 16 0

Green pepper 25 0

Cayenne pepper 7 0

Radish 24 1 (4.2) Entamoeba coli (1)

Beet 19 1 (5.3) Entamoeba coli (1)

Watercress 23 1 (4.3) Entamoeba coli (1)

Lettuce 11 1 (9.1) Entamoeba coli (1)

Green onion 36 0

Carrot 50 0

Sudan Lugol’s iodine stain Tomatoes 36 1 (2.8) Entamoeba spp. (1) [29]

Cucumber 12 0

Armenian cucumber 16 2 (12.5) Entamoeba spp. (2)

Green pepper 25 1 (4.0) Entamoeba spp. (1)

Cayenne pepper 7 0

Radish 24 0

Beet 19 1 (5.3) Entamoeba spp. (1)

Watercress 23 1 (4.3) Entamoeba spp. (1)

Lettuce 11 2 (18.2) Entamoeba spp. (2)

Green onion 36 4 (11.1) Entamoeba spp. (4)

Carrot 50 3 (6.0) Entamoeba spp. (3)

Total 5647 199 (3.5)

a Single sample in a case report
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health problems. On many occasions, the contamina-
tion of vegetables and fruits results in outbreaks of the 
parasitic diseases. Globally, the occurrence of proto-
zoan parasitic contamination in vegetables and fruits 
ranges from 1.9% to 9.3%. However, contamination 
with protozoans may be grossly underestimated, espe-
cially in regions with poor sanitation. Contamination of 
vegetables and fruits with parasites can occur in many 
ways. The common stages between farm and fork at 

which vegetables and fruits are contaminated include 
production, processing, storage and selling. Therefore, 
the implementation of hygienic practices at every step 
between production and consumption may eliminate 
the contamination. The appropriate local public health 
authority is recommended to establish a system for 
continuous monitoring of contamination of vegetables 
and fruits sold at local markets.

Table 5 Contamination of vegetables and fruits with Toxoplasma gondii 

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

Toxoplasma gondii 
genotypes identified (n)

References

Brazil PCR Smooth lettuce 62 1 (0.6) Toxo4-5 D (1) [62]

Crisp head lettuce 106 4 (3.7) B22-23 D (4)

Chicory 40 2 (5.0) B22-23 D (1); Toxo4-5 D (1)

Rocket 7 1 (14.3) B22-23 D (1)

Parsley 5 1 (20.0) B22-23 D (1)

Brazil PCR Vegetables 21 3 (14.3) N/A (3) [45]

China Quantitative real-time PCR 
(qPCR)

Lettuce 71 5 (7.0) Type I (4); Type II (1) [63]

Spinach 50 2 (4.0) Type I (2)

Pak choi 34 1 (2.9) Type I (1)

Chinese cabbage 26 0

Rape 22 1 (4.5) Type II (1)

Asparagus 18 0

Chrysanthemum coronarium 16 0

Endive 14 0

Chinese chives 11 0

Cabbage 9 0

Red cabbage 8 1 (12.5) Type II (1)

Czech Republic Triplex real time PCR Carrots 93 7 (7.5) [64]

Cucumbers 109 13 (11.9) Type II (5)

Salads 90 8 (8.9) Type II (2)

Italy qPCR Ready-to-eat packaged salad 648 5 (0.8) Type I (5) [23]

Poland qPCR Strawberries 60 0 [61]

Radish 60 3 (5.0) Type I (2); Type II (1)

Carrot 46 9 (19.6) Type I (3); Type II (1)

Lettuce 50 9 (18.0) Type I (1)

Total 1676 63 (3.8)
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Table 6 Contamination of vegetables and fruits with Balantidium coli, Cystoisospora belli, Blastocystis sp. and Enterocytozoon bieneusi 

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

Identified species or genotypes 
(n)

References

Balantidium coli

Bangladesh Sediment smears, followed by 
light microscopy

Vegetables 200 8 (4.0) B. coli [52]

Brazil Sediment smears, followed by 
light microscopy

Loose leaf  lettucea 1 1 B. coli [30]

Red  lettucea 1 1 B. coli

Curly  lettucea 1 1 B. coli

Iceberg  lettucea 1 1 B. coli

Parsleya 1 1 B. coli

Chivea 1 1 B. coli

Coriandera 1

Cameroon Sediment smears, followed by 
light microscopy

Green cabbage 30 3 (10.0) B. coli (3) [66]

Red cabbage 30 7 (23.3) B. coli (7)

Lettuce 30 8 (26.7) B. coli (8)

Cucumber 30 5 (16.7) B. coli (5)

Carrots 30 4 (13.3) B. coli (4)

Green pepper 30 2 (6.7) B. coli (2)

Ethiopia Sediment smears, followed by 
light microscopy

Tomato 100 0 [14]

Cabbage 96 4 (4.2) B. coli-like (4)

Green pepper 66 6 (9.1) B. coli-like (6)

Carrot 62 4 (6.5) B. coli-like (4)

Salad 23 1 (4.3) B. coli-like (1)

Ghana Sediment smears, followed by 
light microscopy

Cabbage 72 21 (29.2) B. coli (21) [67]

Lettuce 72 3 (4.2) B. coli (3)

Carrot 72 2 (2.8) B. coli (2)

Spring onion 72 1 (1.4) B. coli (1)

Tomatoes 72 22 (30.6) B. coli (22)

Subtotal 1087 101 (9.3)

Cystoisospora belli

Ethiopia Modified Ziehl-Neelsen stain Fruits and vegetables 360 11 (3.1) I. belli (11) [32]

Ethiopia Modified Ziehl-Neelsen stain Tomatoes 45 0 [43]

Lettuce 45 1 (2.2) C. belli (1)

Carrot 45 2 (4.4) C. belli (2)

Cabbage 45 4 (8.8) C. belli (4)

Green pepper 45 0

Avocado 45 0

Ghana Ziehl-Neelsen stain Cabbage 90 0 [12]

Green pepper 55 0

Carro 47 0

Onion 70 0

Tomato 31 1 (3.2) I. beli (1)

Lettuce 102 0

Subtotal 1025 19 (1.9)

Blastocystis sp.

Brazil Sediment being stained in 
Lugolʼs solution

Lettuce 100 15 (15.0) B. hominis (15) [15]

Coriander 100 19 (19.0) B. hominis (19)

Italy Lugolʼs stain, Giemsa Stain, 
and PCR

Ready-to-eat packaged salad 648 3 (0.5) B. hominis (3) [23]

Subtotal 848 37 (4.4)
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a Single sample in a case report

Table 6 (continued)

Location Detection method Vegetable or fruit item No. of 
samples 
tested

No. of 
positive 
samples (%)

Identified species or genotypes 
(n)

References

Enterocytozoon bieneusi

China PCR Lettuce 200 14 (7.0) E. bieneusi genotype CM8 (2); 
CD6 (7); EbpA (3); Henan-IV 
(1)

[36]

Coriander 152 1 (0.7) E. bieneusi genotype CM8 (1)

Celery 70 1 (1.4) E. bieneusi genotype EbpA (1)

Baby bok choy 59 1 (1.7) E. bieneusi genotype CHV3 (1)

Chinese cabbage 47 0

Leaf lettuce 44 2 (4.5) E. bieneusi genotype CHG19 (1)

Water spinach 28 3 (10.7) E. bieneusi genotype CD6 (1); 
BEB8 (1); CTS3 (1)

Crown daisy 27 0

Fennel plant 26 1 (3.9) E. bieneusi genotype EbpC (1)

Endive 25 1 (4.0) E. bieneusi genotype Henan-
IV (1)

Spinach 20 0

Schizonepeta 20 0

Cabbage 18 0

Leaf mustard 11 0

Chinese chive 132 6 (4.5) E. bieneusi genotype CD6 (1); 
EbpA (2); EbpC (1); CHV1 (1)

Chive 128 4 (1.4) E. bieneusi genotype CD6 (2); 
CHV2 (1); CTS3 (1)

Cucumber 41 1 (2.4) E. bieneusi genotype CD6 (1)

Watermelon 15 1 (6.7) E. bieneusi genotype CD6 (1)

Potato 3 1 (33.3) E. bieneusi genotype CHV4 (1)

Bean (kidney/French bean) 28 4 (14.3) E. bieneusi genotype CD6 (4)

Green chili 5 0

Costa Rica Zielh-Nielsen stain Lettuce 50 16 (32.0) E. bieneusi (16) [71]

Parsley 50 0

Cilantro 50 2 (4.0) E. bieneusi (2)

Strawberries 50 1 (2.0) E. bieneusi (1)

Blackberries 50 0

Poland Conventional stain and FISH Berries 25 6 (24.0) E. intestinalis (4); E. bieneusi (2) [21]

Sprouts 20 1 (5.0) E. bieneusi (1)

Vegetables 35 2 (5.7) E. cuniculi (1); E. bieneusi (1)

Sub-total 1429 52 (3.6)
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