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Abstract: In alcoholic pancreatitis, alcohol increases gut permeability, which increases the penetration
of endotoxins, such as lipopolysaccharides (LPS). LPS act as clinically significant triggers to increase
pancreatic damage in alcoholic pancreatitis. Ethanol or LPS treatment increases reactive oxygen
species (ROS) production in pancreatic acinar cells. ROS induce inflammatory cytokine produc-
tion in pancreatic acinar cells, leading to pancreatic inflammation. The nuclear erythroid-2-related
factor 2 (Nrf2) pathway is activated as a cytoprotective response to oxidative stress, and induces
the expression of NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Ly-
copene exerts anti-inflammatory and antioxidant effects in various cells. We previously showed
that lycopene inhibits NADPH oxidase to reduce ROS and IL-6 levels, and zymogene activation
in ethanol or palmitoleic acid-treated pancreatic acinar cells. In this study, we examined whether
lycopene inhibits IL-6 expression by activating the Nrf2/NQO1-HO-1 pathway, and reducing intra-
cellular and mitochondrial ROS levels, in ethanol and LPS-treated pancreatic AR42J cells. Lycopene
increased the phosphorylated and nuclear-translocated Nrf2 levels by decreasing the amount of Nrf2
sequestered in the cytoplasm via a complex formation with Kelch-like ECH1-associated protein 1
(Keap1). Using exogenous inhibitors targeting Nrf2 and HO-1, we showed that the upregulation
of activated Nrf2 and HO-1 results in lycopene-induced suppression of IL-6 expression and ROS
production. The consumption of lycopene-rich foods may prevent the development of ethanol and
LPS-associated pancreatic inflammation by activating Nrf2-mediated expression of NQO1 and HO-1,
thereby decreasing ROS-mediated IL-6 expression in pancreatic acinar cells.

Keywords: ethanol; lycopene; interleukin-6; nuclear factor erythroid-2-related factor 2; pancreatic
acinar cells

1. Introduction

Excessive alcohol consumption is associated with pancreatic damage, including pan-
creatitis and pathological inflammation of the pancreas. Alcohol-induced oxidative stress is
linked to ethanol (EtOH) metabolism in the pancreas [1]. The pancreas metabolizes EtOH
via both oxidative and non-oxidative pathways. The oxidative pathway involves the en-
zymes alcohol dehydrogenase and cytochrome P4502E1 (CYP2E1); these enzymes convert
EtOH into acetaldehyde, a toxic metabolite that reacts with proteins and lipids; ultimately
leading to cell damage. In the cytosol of acini, CYP2E1 is responsible for approximately 20%
of EtOH metabolism at physiological alcohol concentrations [2–4]. EtOH-induced increases
in reactive oxygen species (ROS) generation and lipid peroxidation have been shown to
be blocked by inhibitors of CYP2E1 and anti-CYP2E1 immunoglobulin G [5]. The non-
oxidative pathway involves the formation of an ester linkage between EtOH and fatty acids,
which is mediated by fatty acid ethyl ester (FAEE) synthases. An increase in FAEE levels
has been noted in the pancreas of rats and humans following alcohol consumption [6,7].
Laposata and Lange [8] showed that acetaldehyde could not fully explain alcohol-induced
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damage in the pancreas, where oxidative metabolism is minimal. Additionally, alcohol
intake causes a dose-dependent shift from oxidative to non-oxidative EtOH metabolism,
owing to the inhibition of the oxidative pathway [9–11]. Although the increase in toxic
non-oxidative EtOH metabolites may mainly contribute to pancreatic damage in alcoholic
pancreatitis, both oxidative and non-oxidative metabolism of alcohol induce oxidative
stress in the pancreas.

In addition, continuous exposure to alcohol disrupts intestinal barrier function by
increasing intestinal permeability and the penetration of endotoxins, such as lipopolysac-
charides (LPS) [12–14]. In a rat model, both acute and chronic alcohol consumption induced
damage to the intestinal mucosal membrane by disrupting the intestinal barrier [15]. LPS
are structural components of the outer membrane of Gram-negative bacteria. LPS consist
of three components: lipid A, a core oligosaccharide, and an O side chain. LPS bind to LPS-
binding proteins and are delivered to the cell surface receptor, cluster of differentiation 14
(CD14). LPS are then transferred to the transmembrane toll-like receptor 4 (TLR4) and its
accessory protein, myeloid differentiation factor-2 (MD-2). Since CD14 and MD-2 lack a
transmembrane domain, TLR4, a crucial receptor for LPS, is necessary to activate the signal-
ing cascade as a second receptor [16,17]. LPS recognition by TLR4 induces oxidative stress
and the release of pro-inflammatory cytokines via NF-κB activation in pancreatic acinar
cells [18]. Gu et al. [19] showed that alcohol-enhanced acinar cell-specific production of
TNFα and IL-6 after LPS injection in alcohol-fed, LPS-injected rats. They also demonstrated
that alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling
diminished TNFα production in pancreatic acinar cells in vitro. These studies demonstrate
the potential role of LPS in oxidative stress, and the expression of inflammatory cytokines
in alcohol-induced pancreatitis.

Mitochondria play a crucial role in the pathogenesis of pancreatitis because ROS are
generated during respiratory chain activity [20]. During EtOH metabolism, one molecule
of NADH is produced, which produces more reactive components, thereby increasing the
activity of the mitochondrial respiratory chain [21]. In mitochondria, NADH is shuttled
into respiratory complexes by the malate–aspartate shuttle, the activity of which increases
upon EtOH treatment [21]. High concentrations of reducing equivalents facilitate the
generation of superoxide anion radicals. These radicals have high oxidative capacity,
which accelerates the vicious cycle of ROS production and cell toxicity [22]. In alcoholic
pancreatitis, mitochondrial dysfunction (including decreased respiratory rates), lower ATP
synthesis, and the impaired ability to import glutathione into mitochondria, have been
shown [23], suggesting a possible role of oxidative stress and mitochondrial dysfunction in
the pathogenesis of pancreatitis.

Lycopene, a non-provitamin A carotenoid, is a powerful antioxidant [24–26]. It has
a variety of biological effects, including anti-inflammatory, anticancer, antidiabetic, car-
dioprotective, antioxidative, hepatoprotective, and neuroprotective effects [24]. It exhibits
a two-fold and ten-fold greater removal of singlet oxygen than beta-carotene and alpha-
tocopherol [25]. It can act on ROS, such as hydrogen peroxide, nitrogen dioxide, and
hydroxyl radicals [26]. The antioxidant activity of lycopene is mainly dependent on its
scavenging properties of singlet oxygen and hydroxyl radicals. Lycopene reportedly de-
creased the expression of inducible nitric oxide synthase and TNF-α level in the pancreatic
tissues of rats with L-arginine-induced pancreatitis [27]. We previously showed that ly-
copene reduced ROS levels, and inhibited nuclear factor-κB (NF-κB) activation and the
expression of IL-6, in cerulein-stimulated pancreatic acinar cells [28]. The supplementation
of antioxidants, including lycopene, reduced the levels of IL-6 in older women [29], and
the intake of lycopene reduced the serum levels of oxidative stress indicators, such as
lipid peroxides [30]. Thus, dietary supplementation of carotenoids may be beneficial for
preventing the development of pancreatitis, especially in individuals that are malnour-
ished due to alcohol consumption. The consumption of naturally occurring lycopene-rich
fruits and vegetables, including tomatoes, watermelon, pink grapefruit, pink guava, and
papaya, is recommended for the prevention of oxidative stress-associated inflammatory
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diseases, including pancreatitis [31]. The inflammatory cytokine IL-6 is a highly suitable
prognostic marker for severe pancreatitis, as IL-6 levels correlate with disease severity in
both experimental and human pancreatitis [32–34]. Therefore, in this study, we aimed
to determine the effect of lycopene on IL-6 expression to investigate whether lycopene
supplementation is beneficial in preventing alcohol/LPS-induced pancreatitis by activating
antioxidant mechanisms.

Recently, we demonstrated that lycopene inhibits EtOH/palmitoleic acid-induced
mitochondrial dysfunction, zymogen activation, and IL-6 expression, by reducing NADPH
oxidase-mediated ROS production in pancreatic acinar cells [35]. Morris-Stiff et al. [36]
found that patients with chronic pancreatitis had significantly lower plasma concentrations
of antioxidants (selenium, vitamin A, vitamin E, β-carotene, xanthine, β-cryptoxanthin,
and lycopene) than control subjects. A systematic review demonstrated that low-grade
inflammation is reduced by lycopene supplementation in humans [37]. These authors
suggested that it is beneficial to occasionally consume lycopene-rich foods in order to stay
healthy and maintain the circulation of lycopene at basal levels.

Lycopene supplementation (50 mg/kg BW/day) has been shown to decrease neuronal
oxidative damage by increasing nuclear factor erythroid-2-related factor 2 (Nrf2) activity
and increasing the expression of Nrf2-targeted genes NAD(P)H, quinone oxidoreductase 1
(NQO1) and heme oxygenase-1 (HO-1), as a cytoprotective response to oxidative stress in
H2O2-treated SH-SY5Y cells [38]. As alcohol/LPS increases the levels of ROS and inflam-
matory cytokines, reducing ROS levels using lycopene may be beneficial for preventing
the development of acute pancreatitis. This prompted us to investigate whether lycopene
activates Nrf2 to induce the expression of the antioxidant enzymes NQO1 and HO-1 in
pancreatic acinar cells stimulated with EtOH/LPS.

Nrf2, a Cap ‘n’ Collar (CNC)-basic leucine zipper (bZIP) transcription factor, is re-
sponsible for antioxidant stress responses and drug detoxification in mammals [39]. The
activation of Nrf2 is associated with many inflammatory diseases, as Nrf2 blocks inflam-
mation by directly inhibiting inflammatory cytokine transcription and NF-κB activity [40].
Nrf2 is normally suppressed in the cytoplasm by binding to Kelch-like ECH-associated
protein 1 (Keap1). Keap1 promotes ubiquitination and constantly degrades Nrf2 under
normal cellular conditions. Under stressful conditions, Nrf2 dissociates from the Nrf2–
Keap1 complex and translocates into the nucleus, where it binds to the ARE sequence,
leading to the activation of ARE-mediated gene expression [41–43]. The phosphorylation of
Nrf2 promotes the disruption of the Nrf2–Keap1 complex [44]. Nrf2 dimerizes with small
Maf proteins and binds DNA as an obligatory heterodimer to induce the transcription of
antioxidant enzymes, such as NQO1 and HO-1 [45,46].

NQO1, a FAD-dependent flavoprotein, is an obligate two-electron reductase of quinones,
quinone imines, and nitroaromatics, and it converts quinones into their corresponding
hydroquinones using NADH or NADPH as hydride donors [47,48]. NQO1 can, there-
fore, prevent quinone electrophiles from participating in either sulfhydryl depletion or
one-electron reduction, thereby reducing the generation of semiquinones and reactive
oxygen intermediates during redox cycling. NQO1 also exhibits superoxide scavenging
activity [49].

Heme oxygenase-1 (HO-1) is the rate-limiting enzyme of the heme degradation pro-
cess, which, in addition to removing toxic heme, produces carbon monoxide, free iron,
and biliverdin. Biliverdin is then converted by biliverdin reductase to bilirubin, which
serves as an endogenous radical scavenger [50]. HO-1 inhibits NADPH oxidase p47phox
and p67phox subunit activity, thus decreasing ROS generation and preventing oxidative
damage [51]. Collectively, the Nrf2-target genes NQO1 and HO-1 may protect against
pancreatic inflammation by suppressing oxidative stress-mediated cytokine expression in
pancreatic acinar cells.

The current study aimed to investigate the inhibitory effects and mechanisms of
lycopene on EtOH/LPS-induced oxidative stress and IL-6 expression in pancreatic acinar
AR42J cells. To determine the possible antioxidant mechanism of lycopene, we examined
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the effect of lycopene on Nrf2 activation, and the induction of NQO1 and HO-1, in AR42J
cells stimulated with EtOH/LPS.

2. Materials and Methods
2.1. Cell Line and Culture Conditions

The rat pancreatic acinar cell line AR42J (pancreatoma; ATCC CRL 1492) was obtained
from American Type Culture Collection (Manassas, VA, USA) and cultured as described
previously [28].

2.2. Experimental Protocol

To determine the effect of lycopene (L9879, Sigma-Aldrich), dissolved in tetrahydro-
furan (THF), on Nrf2 activation to induce the expression of NQO1 and HO-1, AR42J cells
(1.0 × 106/10 mL/dish) were treated with lycopene (at a final concentration of 0.5 µM) for
1, 2, and 3 h, and the expression levels of phosphorylated and total Nrf2, Keap1, NQO1, and
HO-1 were assessed in whole-cell extracts or nuclear extracts. AR42J cells incubated with
THF (0.01%) alone served as a vehicle control. For each experiment, lycopene-untreated
cells received a vehicle THF (0.01%) alone instead of lycopene.

To assess the dissociation of the Nrf2–Keap1 complex, cells (1.0 × 106/10 mL/dish)
were treated with lycopene (at a final concentration of 0.5 µM) for 1 h, and the interaction
between Nrf2 and Keap1 was determined in whole-cell extracts and whole-cell extract-
derived immunoprecipitates, obtained using the anti-Nrf2 and anti-Keap1 antibodies by
precipitation. To observe the nuclear translocation of Nrf2, AR42J cells (2 × 105/2 mL/well
in 6-well plates) were treated with lycopene (at a final concentration of 0.5 µM) for 1 h, and
confocal microscopic images of immunofluorescence staining of the fixed cells were obtained.

To determine the appropriate incubation time for ROS and IL-6 mRNA expression,
time course experiments were performed after treatment of AR42J cells with EtOH/LPS.
AR42J cells (2.0 × 105/2 mL/well in 6-well plates) were treated with EtOH (at a final
concentration of 250 mM)/LPS (10 µg/mL) for 15, 30, 45, and 60 min (for intracellular and
mitochondrial ROS levels) or 1, 2, 4, and 6 h (for IL-6 mRNA expression). AR42J cells were
pretreated with lycopene (at a final concentration of 0.1, 0.2, or 0.5 µM) for 1 h, and then
treated with EtOH (at a final concentration of 250 mM)/LPS (10 µg/mL) for 30 min (to
measure intracellular and mitochondrial ROS levels, mitochondrial membrane potential
(MMP), and ATP levels), 6 h (to determine IL-6 mRNA expression), or 24 h (to measure
IL-6 protein levels).

To assess the involvement of Nrf2, NQO1, and HO-1 in the inhibitory effect of lycopene
on EtOH/LPS-induced IL-6 expression, the cells were pretreated with the Nrf2 inhibitor
ML385 (at a final concentration of 5 µM, SML1833-5MG, Sigma, St. Louis, MO, USA) or
HO-1 inhibitor ZnPP (zinc protoporphyrin, at a final concentration of 1 µM, sc-691550,
Santa Cruz, CA, USA) in the presence of lycopene (at a final concentration of 0.5 µM) for
1 h before EtOH/LPS stimulation. ML385 and ZnPP were dissolved in dimethyl sulfoxide
(DMSO). For each experiment, ML385 or ZnPP-untreated cells received a vehicle DMSO
(0.05%) alone instead of ML385 or ZnPP.

2.3. Preparation of Whole-Cell and Nuclear Extracts

Whole-cell extracts were prepared by the method described previously [52]. Nuclear
extracts were prepared using a NE-PER® nuclear extraction kit (Thermo Fisher, Waltham,
MA, USA). Nuclear extract specificity was confirmed by the level of lamin B1. Protein
concentrations were determined using the Bradford assay (Bio-Rad Laboratories, Hercules,
CA, USA).

2.4. Measurement of Intracellular ROS Levels

Intracellular ROS levels were determined using dichlorofluorescein diacetate (DCF-
DA; Sigma-Aldrich). The cells were incubated with 10 µM DCF-DA in 5% CO2/95% air
at 37 ◦C for 30 min. Subsequently, the medium was removed and the cells were washed
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with phosphate-buffered saline (PBS). The intensities of 2′,7′-dichlorofluorescein (DCF)
fluorescence in the cells (in 6-well plates) were measured at 522 nm (excitation at 498 nm)
with a Victor 5 multilabel counter (PerkinElmer Life and Analytical Sciences, Boston, MA,
USA). Intracellular ROS levels were normalized to the cell number and expressed as the
relative percentage of control cells.

2.5. Measurement of Mitochondrial ROS Levels

The levels of mitochondrial ROS were measured by MitoSOX (Life Technologies,
Grand Island, NY, USA). The cells were incubated with 10 µM MitoSOX in 5% CO2/95% air
at 37 ◦C for 30 min. Following this, the cells were washed and scraped into PBS. The
intensity of MitoSOX fluorescence at 585 nm (excitation at 524 nm) was measured using
a Victor 5 multilabel counter (PerkinElmer Life and Analytical Sciences). Mitochondrial
ROS levels were normalized to the cell number and expressed as a relative percentage
of controls.

2.6. Assessment of MMP

MMP was assessed using 5,5,6,6-tetrachloro-1,1,3,3-tetraethyl benzimidazolyl carbo-
cyanine iodide (JC-1) reagent (1:100; 10009908, Cayman Chemical Company, Ann Arbor,
MI, USA). After removing the media, the cells were dried for 15 min at 20–22 ◦C, washed
twice with PBS for 5 min, and mounted with mounting solution (M-7534, Sigma-Aldrich,
St. Louis, MO, USA). JC-1 fluorescence (red, excitation at 590 nm and emission at 610 nm;
green, excitation at 485 nm and emission at 535 nm) was measured with a confocal laser
scanning microscope (LSM 880, Carl Zeiss Inc., Oberkochen, Germany). Fluorescent images
were used in conjunction with NIH ImageJ 5.0 software (National Institutes of Health,
Bethesda, MD, USA) to determine the relative ratio of red/green fluorescence intensities.
MMP level in control cells (cells not treated with EtOH/LPS, lycopene, ML385, or ZnPP)
was set as 100%. Data are expressed as the mean ± SE (n = 3 in each group).

2.7. Measurement of ATP Levels

ATP levels were measured using a luminescent ATP detection assay kit, according to
the manufacturer’s protocol (ab113849; Abcam, Cambridge, UK). This ATP detection assay
kit is used to measure the level of ATP within the cell. The luminescent ATP assay involves
lysis of the cell sample, addition of luciferase enzyme and luciferin, and measurement of the
emitted light using a microplate-based luminometer. Cells (2.0 × 105 cells/2 mL/well) in
6-well plates were pretreated with lycopene and subsequently stimulated with EtOH/LPS
for 30 min. Following this, a substrate buffer was added to the lyophilized ATP substrate
to prepare a luminescent substrate solution. The luminescence was measured using a
Victor 5 multilabel counter. The ATP concentration (µM) was determined by interpolat-
ing within the ATP standard reference. ATP level in control cells (cells treated without
EtOH/LPS, lycopene, ML385, or ZnPP) was set as 100%.

2.8. Western Blotting

Western blot analysis was performed using a previously described method [53]. Briefly,
the whole-cell or nuclear extracts (20–50 µg protein/lane) were separated by 8–12% SDS
polyacrylamide gel electrophoresis and transferred onto nitrocellulose membranes by
electroblotting. The proteins on membranes were blocked and incubated with specific
antibodies against Nrf2 (ab62352; Abcam, Cambridge, UK), p-Nrf2 (ab76026, Abcam),
HO-1 (ADI-SPA-895, Enzo Life Science Inc., Farmingdale, NY, USA), Keap1 (8047S, Cell
Signaling Technology, Danvers, MA, USA), NQO1 (ab2346, Abcam), lamin B1 (ab16048,
Abcam), and actin (sc-1615, Santa Cruz Biotechnology, Dallas, TX, USA), diluted in TBS-T
containing 3% non-fat dry milk overnight at 4 ◦C, followed by incubation with secondary
antibodies (anti-goat, anti-mouse, or anti-rabbit conjugated to horseradish peroxidase from
Santa Cruz Biotechnology). Proteins were visualized using Clarity Western ECL Substrate
(705061; Bio-Rad).
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Protein levels were determined by densitometry analysis of whole-cell extracts or
nuclear extracts, using actin as the loading control and lamin B1 as the index for the nuclear
extracts. The ratios of Keap1/actin, p-Nrf2/Nrf2, HO-1/actin, and NQO1/actin in whole-
cell extracts, and Nrf2/lamin B1 in nuclear extracts, represent mean ± S.E. from three
immunoblots. The ratio at 0 h or that of control cells (cells without EtOH/LPS stimulation
and without any treatment) was set at 100%.

2.9. Real-Time PCR Analysis for IL-6

Total RNA was isolated using TRI Reagent® (Molecular Research Center, Inc., Cincin-
nati, OH, USA) and reverse-transcribed into cDNA using a random hexamer and MuLV
reverse transcriptase (Promega, Madison, WI, USA). cDNA was used for real-time PCR
with primers specific for IL-6 and β-actin. The sequences of the IL-6 primers used to pro-
duce the desired 590 bp PCR products were 5-GAGAGGAGACTTCACAGAGGATACCA-3
(forward primer) and 5-CCACAGTGAGGAATGTCCACAA-3 (reverse primer). For β-
actin cDNA production, a 349-bp PCR product was obtained using the forward primer 5-
ACCAACTGGGACGACATGGAG-3 and reverse primer 5-GTGAGGATCTTCATGAGGTA
GTC-3′. The thermal cycling conditions were as follows: 35 cycles of denaturation at 95 ◦C
for 30 s, annealing at 53 ◦C for 30 s, and extension at 72 ◦C for 45 s. During the first cycle,
the 95 ◦C step was extended for 3 min. The β-actin gene was amplified in the same reaction
to serve as the reference gene.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA) for IL-6

The level of IL-6 in the medium was determined using an ELISA kit (R&D Systems,
Minneapolis, MN, USA), according to the manufacturer’s instructions.

2.11. Immunoprecipitation of the Nrf2–KEAP1 Complex

Immunoprecipitation of the Nrf2–KEAP1 complex was determined by using the
method described previously [54]. Briefly, the cells were lysed in immunoprecipitation
buffer and centrifuged. Polyclonal antibody and protein G-agarose were added to the
supernatant, and the mixture was incubated overnight. The protein G-antibody–antigen
complex was collected with immunoprecipitation buffer. The pellet was resuspended in
SDS sample buffer and boiled. The preparations were subjected to western blot analysis.

2.12. Immunofluorescence Staining

Immunofluorescence staining was assessed by the method described previously [54].
Briefly, The cells were fixed, permeabilized, and incubated with a primary antibody against
Nrf2. And then, the cells were incubated with a rhodamine-conjugated mouse anti-rabbit
IgG antibody (sc-2492, Santa Cruz Biotechnology). After removal of the secondary antibody,
the cells were washed and coverslipped with Vectashield antifade medium containing 40,6-
diamidino-2-phenylindole (DAPI). Cells stained with rhodamine-conjugated antibodies
were examined under a confocal laser scanning microscope (Zeiss LSM 880, Carl Zeiss Inc.,
Thornwood, NY, USA). For measuring theNrf2 red fluorescence in the nuclei, ZEN Blue 3.1
software (Carl Zeiss Inc., Thornwood, NY, USA) was used.

2.13. Statistical Analysis

One-way analysis of variance followed by Tukey’s post hoc test was used for statistical
analysis. All values are expressed as the mean ± SE (n = 12 in each group). Statistical
significance was set at p ≤ 0.05.

3. Results
3.1. Lycopene Induces Activation of Nrf2 and Expression of Nrf2-Target Genes NQO1 and HO-1
but Decreases the Interaction between Keap1 and Nrf2 in AR42J Cells

As shown in Figure 1A, lycopene increased the levels of phosphorylated Nrf2, HO-1,
and NQO1 in whole-cell extracts, as well as Nrf2 levels in nuclear extracts. Nuclear Nrf2
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levels, and the levels of NQO1 and HO-1, peaked at 1 h and subsequently decreased until
the termination of lycopene treatment at 3 h. The levels of actin, the loading control, and
lamin B1 (the index for nuclear extracts) were not altered by lycopene treatment.

Following this, we investigated the effect of lycopene on the nuclear translocation of
Nrf2. AR42J cells were incubated with lycopene for 1 h and subjected to immunofluores-
cence staining. The level of DAPI, a nuclear marker, was unchanged; conversely, the nuclear
level of Nrf2, as determined by red immunofluorescence staining, increased (Figure 1B).
These results show that lycopene increased the nuclear translocation of Nrf2 in AR42J cells.
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oxidoreductase 1 (NQO1), and Keap1-bound Nrf2 in AR42J cells. Cells (1 × 106/10 mL/dish) were
treated with lycopene for the indicated periods (A). Cells (1 × 106/10 mL/dish) were treated with
lycopene for 1 h (B,C). (A) Protein levels were determined by western blot analysis of whole-cell
extracts or nuclear extracts, using actin as the loading control and lamin B1 as the index for the
nuclear extracts (left panel). The densitometry analysis-derived ratios of Keap1/actin, p-Nrf2/Nrf2,
HO-1/actin, and NQO1/actin in whole-cell extracts, and Nrf2/lamin B1 in nuclear extracts, represent
mean ± S.E. from three immunoblots. The ratio at the start of the experiment (at 0 h) was set at
100% (right panel). (B) Immunofluorescence was performed to observe the nuclear translocation of
Nrf2 using confocal microscopic images of AR42J cells treated with lycopene (0.5 µM) for 1 h. Nrf2
was visualized using fluorescein/rhodamine-conjugated anti-rabbit IgG antibody (red) with DAPI
counterstaining (blue) of the same field. (C) Interaction between Nrf2 and Keap1 was determined via
immunoprecipitation–western blot (IP-WB) analysis of lycopene-treated cells immunoprecipitated
with anti-Nrf2 and anti-Keap1 antibodies (left panel). The densitometry analysis-derived ratios
of Keap1 Co-IP with Nrf2/Input and Nrf2 Co-IP with Keap1/Input represent mean ± S.E. from
three immunoblots. The ratio of control cells (cells without lycopene treatment) was set at 100%
(right panel). * p < 0.05 vs. control. The cells incubated with THF (0.01%) alone served as a vehicle
control. For each experiment, control cells received a vehicle THF (0.01%) alone instead of lycopene.

As the activity of Nrf2 is inhibited by Keap1 through protein–protein interactions, we
examined whether lycopene changes the interaction between Keap1 and Nrf2 in AR42J
cells. We performed coupled immunoprecipitation and western blot analysis using anti-
Nrf2 and anti-Keap1 antibodies. Cells (2 × 105/2 mL/well) were treated with or without
lycopene for 1 h. The protein levels of Keap1 and Nrf2 in the whole-cell extracts of
lycopene-treated cells were unchanged (Figure 1C, lower panel, Input), whereas those in
the immunoprecipitated fractions significantly decreased (Figure 1C, upper pane, IP). These
results suggest that lycopene disturbs the interaction between Keap1 and Nrf2, indicating
that lycopene increases Nrf2 activity by inhibiting the Keap1-mediated sequestration
of Nrf2.

3.2. EtOH/LPS Increases the Levels of Intracellular and Mitochondrial ROS and IL-6 mRNA in
AR42J Cells

As high levels of inflammatory cytokines and ROS are crucial factors in the progression
of acute pancreatitis, we examined whether EtOH/LPS increases the levels of IL-6 and
ROS in AR42J cells using time course experiments. As shown in Figure 2, EtOH/LPS
increased intracellular and mitochondrial levels of ROS and IL-6 mRNA in AR42J cells;
intracellular and mitochondrial ROS levels were maximum at 3 min, and then tended to
decrease until 60 min (Figure 2A,B), whereas IL-6 mRNA levels peaked at 6 h, and then
decreased (Figure 2C). Thus, for further studies on the effect of lycopene on EtOH/LPS-
induced increases in IL-6 mRNA and ROS levels, cells were pretreated with lycopene for
1 h, followed by treatment with EtOH/LPS for 30 min (for ROS levels) or 6 h (for IL-6
mRNA expression levels).
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Figure 2. Effect of ethanol (EtOH)/lipopolysaccharides (LPS) on the levels of reactive oxygen species
(ROS) and IL-6 mRNA in AR42J cells. Cells (2 × 105/2 mL/well) were stimulated with EtOH (at
a final concentration of 250 mM)/LPS (10 µg/mL) for the indicated periods. (A) Intracellular ROS
levels were determined by dichlorofluorescein (DCF) fluorescence. (B) Mitochondrial ROS levels
were measured by determining the level of fluorescent MitoSOX. The value for ROS levels at the
start of the experiment (at 0 min) was set at 100%. (C) mRNA expression of IL-6 was determined by
real-time polymerase chain reaction and normalized to that of β-actin. The IL-6 mRNA level at the
start of the experiment (at 0 h) was set as 1. Data are expressed as the mean ± SE (n = 12 in each
group). * p < 0.05 vs. the cells at the start of the experiment (at 0 min or 0 h).

3.3. Lycopene Inhibits EtOH/LPS-Induced Increase in ROS and IL-6 Levels by Activating Nrf2
and Inducing the Expression of NQO1 and HO-1 in AR42J Cells

To investigate the effect of lycopene on the expression of HO-1 and NQO1 in EtOH/LPS-
stimulated AR42J cells, cells (1.0 × 106/10 mL/dish) were pretreated with lycopene for
1 h, and then stimulated with EtOH/LPS for 30 min. EtOH/LPS treatment decreased the
levels of phosphorylated Nrf2, HO-1, and NQO1 in AR42J cells. Lycopene inhibited these
alterations caused by EtOH/LPS (Figure 3A). The levels of Keap1 and total Nrf2 were
unchanged following EtOH/LPS treatment with or without lycopene.

To investigate the effect of lycopene on ROS levels and IL-6 expression, the cells
were pretreated with lycopene (0.1, 0.2, or 0.5 µM) for 1 h, and then stimulated with
EtOH/LPS for 30 min (for ROS levels, Figure 3B,C), 6 h (for IL-6 mRNA expression,
Figure 3D), or 24 h (for IL-6 protein levels in the medium, Figure 3E). Lycopene suppressed
the EtOH/LPS-induced increase in intracellular and mitochondrial ROS, and IL-6 mRNA
and protein levels.
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Figure 3. Effect of lycopene on ethanol (EtOH)/lipopolysaccharides (LPS)-induced changes in the
levels of phosphorylated Nrf2, HO-1, NQO1, ROS, and IL-6 in AR42J cells. Cells (1 × 106/10 mL/dish
or 2 × 105/2 mL/well) were pretreated with the indicated concentrations of lycopene for 1 h, and
subsequently stimulated with EtOH (at a final concentration of 250 mM)/LPS (10 µg/mL) for
30 min. (A) Protein levels were determined by western blot analysis of whole-cell extracts, using
actin as the loading control (left panel). The densitometry analysis-derived ratios of Keap1/actin,
p-Nrf2/Nrf2, HO-1/actin, and NQO1/actin in whole-cell extracts represent mean ± S.E. from three
immunoblots. The ratio of control cells (cells without EtOH/LPS stimulation and without any
treatment) was set at 100% (right panel). (B) Intracellular ROS levels were determined by DCF
fluorescence. (C) Mitochondrial ROS levels were measured by determining the level of fluorescent
MitoSOX. The value for ROS levels in control cells (cells in the absence of EtOH/LPS and without
lycopene treatment) was set at 100%. (D) mRNA expression level of IL-6 was determined by real-time
polymerase chain reaction and normalized to that of β-actin. The IL-6 mRNA level in control cells
(cells in the absence of EtOH/LPS and without lycopene treatment) was set as 1. (E) Levels of IL-6 in
the medium were measured using enzyme-linked immunosorbent assay. Data are expressed as the
mean± SE (n = 12 in each group). * p < 0.05 vs. control cells (cells without EtOH/LPS stimulation and
without lycopene treatment). The cells incubated with tetrahydrofuran (THF, 0.01%) alone served as
a vehicle control. For each experiment, lycopene-untreated cells received a vehicle THF (0.01%) alone
instead of lycopene. +, treatment.
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To determine whether EtOH/LPS induces mitochondrial dysfunction in AR42J cells,
their MMPs were measured by cytofluorimetric analysis using a JC-1 fluorescent probe.
The formation of red fluorescent J-aggregates leads to a membrane potential-sensitive
color shift. The green and red fluorescence images (Figure 4A, left panel), and the ratios
of red to green fluorescence (Figure 4A, right panel), are here reported to show relative
MMP. EtOH/LPS treatment decreased MMP, as validated by the observed decrease in the
red/green fluorescence ratio (Figure 4A, right panel; “cells not treated with EtOH/LPS
and lycopene” vs. “cells treated with EtOH/LPS but not lycopene”). Lycopene suppressed
the EtOH/LPS-induced decrease in the ratio of red/green fluorescence, which indicates
that lycopene inhibits EtOH/LPS-induced decrease in MMP in a dose-dependent manner
(Figure 4A, right panel; “cells treated with EtOH/LPS but not lycopene” vs. “cells treated
with EtOH/LPS and lycopene”). ATP levels decreased after EtOH/LPS treatment, and
pretreatment with lycopene blocked this decrease in a dose-dependent manner (Figure 4B).
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Figure 4. Effect of lycopene on ethanol (EtOH)/lipopolysaccharides (LPS)-induced decrease in
mitochondrial membrane potential (MMP) and ATP levels in AR42J cells. Cells (2 × 105/2 mL/well)
were pretreated with the indicated concentrations of lycopene for 1 h, and subsequently stimulated
with EtOH (at a final concentration of 250 mM)/LPS (10 µg/mL) for 30 min. (A) The cells were
stained with JC-1 dye and visualized with a confocal laser scanning microscope (left panel). The MMP
was determined by measuring the intensity of red emission relative to the intensity of green emission
(right panel). A decrease in the red/green fluorescence intensity ratio indicates mitochondrial
depolarization. Data are expressed as the mean ± SE (n = 3 in each group). (B) ATP levels were
quantified using luminescent ATP substrate. The ATP concentration was determined by interpolating
within the ATP standard reference. The fluorescence ratio or ATP level in control cells (cells not
treated with EtOH/LPS or lycopene) was set as 100%. Data are expressed as the mean ± SE (n = 12 in
each group). * p < 0.05 vs. control cells (cells not treated with EtOH/LPS and lycopene); + p < 0.05 vs.
stimulated cells without lycopene (cells treated with EtOH/LPS and without lycopene). AR42J cells
incubated with tetrahydrofuran (THF, 0.01%) alone served as a vehicle control. For each experiment,
lycopene-untreated cells received a vehicle THF (0.01%) alone instead of lycopene. +, treatment.
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3.4. Nrf2 Inhibitor ML385 Blocked the Effect of Lycopene on the Levels of HO-1, NQO1, ROS, and
IL-6 in EtOH/LPS-Stimulated AR42J Cells

To determine whether Nrf2 is involved in the effect of lycopene on the levels of HO-1,
NQO1, ROS, and IL-6 in EtOH/LPS-stimulated AR42J cells, the cells were pretreated with
the Nrf2 inhibitor ML385 (5 µM) in the presence of lycopene for 1 h, followed by EtOH/LPS
stimulation for 30 min (for the levels of NQO1, HO-1, and ROS), 6 h (for IL-6 mRNA), or 24 h
(for IL-6 protein). ML385 suppressed the inhibitory effect of lycopene on the EtOH/LPS-
induced reduction in NQO1 and HO-1 levels (Figure 5A). ML385 reversed the inhibitory
effect of lycopene on intracellular ROS (Figure 5B), mitochondrial ROS (Figure 5C), IL-6
mRNA (Figure 5D), and IL-6 protein levels (Figure 5E) in EtOH/LPS-stimulated AR42J cells.
Taken together, ML385 reversed the effects of lycopene on EtOH/LPS-induced changes in
the levels of NQO1, HO-1, ROS, and IL-6 in EtOH/LPS-stimulated AR42J cells.
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Figure 5. Effect of the Nrf2 inhibitor ML385 on the levels of HO-1, NQO1, ROS, and IL-6 in
ethanol (EtOH)/lipopolysaccharide (LPS)-stimulated and lycopene-treated AR42J cells. The cells
(1 × 106/10 mL/dish or 2 × 105/2 mL/well) were pretreated with ML385 (5 µM) in the presence
of lycopene (0.5 µM) for 1 h and stimulated with EtOH (at a final concentration of 250 mM)/LPS
(10 µg/mL) for 30 min (A), 6 h (B), or 24 h (C). (A) Protein levels of NQO1 and HO-1 in whole-cell
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extracts were determined by western blot analysis, with actin as the loading control (left panel). The
densitometry analysis-derived ratios of HO-1/actin and NQO1/actin in whole-cell extracts represent
mean ± S.E. from three immunoblots. The ratio of control cells (cells not treated with EtOH/LPS
or lycopene) was set at 100% (right panel). (B) Intracellular ROS levels were determined by DCF
fluorescence. (C) Mitochondrial ROS levels were measured by determining the level of fluorescent
MitoSOX. The value for ROS levels in control cells (cells not treated with EtOH/LPS, lycopene, or
ML387) was set at 100%. (D) mRNA expression of IL-6 was determined by real-time polymerase chain
reaction and normalized to that of β-actin. The IL-6 mRNA level in control cells (cells not treated
with EtOH/LPS, lycopene, or ZnPP) was set as 1. (E) IL-6 levels in the medium were measured by
enzyme-linked immunosorbent assay. Data are expressed as the mean ± SE (n = 12 in each group).
* p < 0.05 vs. control cells (cells not treated with EtOH/LPS, lycopene, or ML387); + p < 0.05 vs.
cells with EtOH/LPS stimulation and without any treatment; ++ p < 0.05 vs. cells with EtOH/LPS
stimulation and lycopene treatment. The cells incubated with tetrahydrofuran (THF, 0.01%) alone
served as a vehicle control. For each experiment, lycopene-untreated cells received a vehicle THF
(0.01%) alone instead of lycopene. ML385 was dissolved in dimethyl sulfoxide (DMSO). For each
experiment, ML385-untreated cells received a vehicle DMSO (0.05%). +, treatment.

3.5. A HO-1 Inhibitor ZnPP Blocks the Effect of Lycopene on the Levels of ROS and IL-6 in
EtOH/LPS-Stimulated AR42J Cells

To evaluate the involvement of HO-1 in the effect of lycopene on EtOH/LPS-stimulated
ROS and IL-6 levels, cells were pretreated with the HO-1 inhibitor ZnPP (1 µM) in the
presence of lycopene for 1 h, followed by EtOH/LPS stimulation for 30 min (for ROS
levels), 6 h (for IL-6 mRNA), or 24 h (for IL-6 protein). The treatment of cells with ZnPP
significantly suppressed the inhibitory effect of lycopene on intracellular (Figure 6A) and
mitochondrial (Figure 6B) ROS, IL-6 mRNA (Figure 6C), and IL-6 (Figure 6D) levels, which
had been increased by EtOH/LPS stimulation. Collectively, these results suggest that HO-1
contributes to the effect of lycopene in reducing the levels of ROS and IL-6 through the
upregulation of HO-1 in EtOH/LPS-stimulated AR42J cells.

3.6. ML385 and ZnPP Inhibit the Effect of Lycopene on EtOH/LPS-Induced Mitochondrial
Dysfunction in AR42J Cells

To assess the involvement of Nrf2 and HO-1 on the effect of lycopene on EtOH/LPS-
induced mitochondrial dysfunction, the cells were pretreated with ML385 (5 µM) or ZnPP
(1 µM) with lycopene for 1 h and treated with EtOH/LPS for 30 min. As shown in Figure 7,
lycopene prevented reduction in MMP and ATP levels in EtOH/LPS-stimulated cells,
which was suppressed by ML385 and ZnPP. Therefore, inhibitory effect of lycopene on
mitochondrial dysfunction may be mediated with Nrf2/HO-1 pathway in EtOH/LPS-
stimulated cells.
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Figure 6. Effect of the HO-1 inhibitor ZnPP on the levels of ROS and IL-6 in
ethanol (EtOH)/lipopolysaccharide (LPS)-stimulated and lycopene-treated AR42J cells. Cells
(2 × 105/2 mL/well) were pretreated with ZnPP (1 µM) in the presence of lycopene (0.5 µM) for
1 h and stimulated with EtOH (at a final concentration of 250 mM)/LPS (10 µg/mL) for 30 min
(A,B), 6 h (C), or 24 h (D). (A) Intracellular ROS levels were determined by DCF fluorescence.
(B) Mitochondrial ROS levels were measured by determining the level of fluorescent MitoSOX.
The value for ROS levels in control cells (cells not treated with EtOH/LPS, lycopene, or ZnPP)
was set at 100%. (C) mRNA expression of IL-6 was determined using real-time polymerase chain
reaction and normalized to that of β-actin. The IL-6 mRNA level in control cells (cells not treated
with EtOH/LPS, lycopene, or ZnPP) was set as 1. (D) Levels of IL-6 in the culture medium were
measured by enzyme-linked immunosorbent assay. Data are expressed as the mean ± SE (n = 12
in each group). * p < 0.05 vs. control cells (cells not treated with EtOH/LPS, lycopene, or ZnPP);
+ p < 0.05 vs. cells with EtOH/LPS stimulation and without any treatment;. ++ p < 0.05 vs. cells
with EtOH/LPS stimulation and lycopene treatment. The cells incubated with tetrahydrofuran (THF,
0.01%) alone served as a vehicle control. For each experiment, lycopene-untreated cells received a
vehicle THF (0.01%) alone instead of lycopene. ZnPP was dissolved in dimethyl sulfoxide (DMSO).
For each experiment, ZnPP-untreated cells received a vehicle DMSO (0.05%). +, treatment.
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Figure 7. Effect of ML385 and ZnPP on mitochondrial dysfunction in ethanol (EtOH)/lipopolysaccharide
(LPS)-stimulated and lycopene-treated AR42J cells. Cells (2 × 105/2 mL/well) were pretreated with
ML385 (5 µM) or ZnPP (1 µM) in the presence of lycopene (0.5 µM) for 1 h and stimulated with
EtOH (at a final concentration of 250 mM)/LPS (10 µg/mL) for 30 min. (A,C) The cells were stained
with JC-1 dye and visualized with a confocal laser scanning microscope (left panel). The MMP was
determined by measuring the intensity of red emission relative to the intensity of green emission
(right panel). A decrease in the red/green fluorescence intensity ratio indicates mitochondrial
depolarization. Data are expressed as the mean ± SE (n = 3 in each group). (B,D) ATP levels were
quantified using luminescent ATP substrate. The ATP concentration was determined by interpolating
within the ATP standard reference. The fluorescence ratio and/or ATP level in control cells (cells
treated without EtOH/LPS, lycopene, ML385, and ZnPP) was set as 100%. Data are expressed as the
mean± SE (n = 12 in each group). * p < 0.05 vs. control cells (cells without EtOH/LPS stimulation and
without any treatment); + p < 0.05 vs. cells with EtOH/LPS stimulation and without any treatment;.
++ p < 0.05 vs. cells with EtOH/LPS stimulation and lycopene treatment. The cells incubated with
tetrahydrofuran (THF, 0.01%) alone served as a vehicle control. For each experiment, lycopene-
untreated cells received a vehicle THF (0.01%) alone instead of lycopene. ML385 and ZnPP were
dissolved in dimethyl sulfoxide (DMSO). For each experiment, ML385- or ZnPP-untreated cells
received a vehicle DMSO (0.05%). +, treatment.
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4. Discussion

Heavy alcohol consumption is a potential risk factor for the development of pancreati-
tis, a painful and potentially fatal condition. Approximately one-third of acute pancreatitis
cases are associated with alcohol intake, and 60–90% of patients with pancreatitis are
heavy drinkers. It has been suggested that drinking more than 80 g, or approximately
ten standard drinks, of alcohol per day, for a minimum of 6–12 years, is a risk factor for
symptomatic pancreatitis [55]. Alcohol promotes the production of ROS while lowering
cellular antioxidant levels, leading to oxidative stress in the pancreas [56]. Ample evidence
indicates that oxidative stress plays an important role in the development of alcoholic pan-
creatitis. Excessive intracellular ROS levels upregulate the expression of the inflammatory
cytokine IL-6, which contributes to acute pancreatitis [57]. We previously reported that
EtOH and a palmitoleic acid cocktail activated NADPH oxidase to produce ROS and induce
mitochondrial dysfunction and cell death in AR42J cells [58]. Furthermore, fatty acid ethyl
esters cause mitochondrial dysfunction with reduced MMP, and impair the production of
ATP in the pancreas [59]. Therefore, reducing ROS levels may be beneficial in reducing the
risk of alcoholic pancreatitis.

Despite several trials, the pathogenesis of alcoholic pancreatitis remains elusive. This
is because it is difficult to access pancreatic tissue in live human subjects, owing to its
position in the abdomen. This can also be attributed to the lack of a suitable animal model
for alcoholic pancreatitis research. Nevertheless, most recent studies have focused on
the toxic effects of alcohol on acinar cells, and significant progress has been made. The
question of why clinically overt pancreatitis develops in only a small number of alcohol
abusers—approximately 5% of alcoholics—has evoked interest in identifying other predis-
posing factors besides alcohol that may confer individual susceptibility to the disease [60].
In response to this question, endotoxins, such as LPS, are candidate trigger factors for alco-
holic pancreatitis, as patients with pancreatitis have increased serum LPS concentrations,
which have been correlated with the severity of acute pancreatitis [61]. LPS-induced endo-
toxemia is relevant not only for alcoholic pancreatitis, but also for other metabolic diseases,
such as diabetes and cardiovascular disease [62]. Several experimental models have re-
vealed that LPS exacerbates the development of alcoholic acute pancreatitis, and continual
exposure to LPS induces fibrogenesis and chronic pancreatitis [63–66]. In addition, LPS
exerts a direct effect on pancreatic acinar cells. A single injection of LPS (10 ug/mL) into the
superior pancreaticoduodenal artery of rabbits resulted in acute necrotizing pancreatitis. In
human monocytes, LPS activates a series of intracellular signaling pathways that include
the NF-κB and mitogen-activated protein kinase pathways. These signaling pathways, in
turn, activate a range of transcription factors, such as NF-κB and AP-1, which coordinate
the induction of inflammatory cytokines, including IL-6 [67]. Furthermore, HO-1 can inhibit
the activation of NF-κB, which is associated with the pathogenesis of acute pancreatitis [68].

Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to upreg-
ulate Nrf2-mediated HO-1 expression, leading to the inhibition of the transcription and
nuclear translocation of NF-κB [69]. Lian et al. showed that enzymatic metabolites of
lycopene induce Nrf2-mediated expression of antioxidant enzymes in human bronchial
epithelial cells [70]. Serum levels of LPS are higher in excessive drinkers than those in
non-drinkers. Therefore, we used EtOH/LPS-treated pancreatic acinar cells as an in vitro
model of alcoholic pancreatitis.

This study was conducted to gain insight into the mechanism by which lycopene
attenuates EtOH/LPS-induced increases in oxidative stress and levels of the inflammatory
cytokine IL-6. Our results indicate that lycopene upregulates NQO1 and HO-1 expression
via the activation of Nrf2, thereby alleviating the EtOH/LPS-stimulated increase in ROS
and IL-6 expression. In addition, we demonstrated the inhibitory effect of lycopene on
EtOH/LPS-induced mitochondrial dysfunction by blocking EtOH/LPS-induced decrease
in MMP and ATP levels. ML385 is N-[4-[2,3-Dihydro-1-(2-methylbenzoyl)-1H-indol-5-
yl]-5-methyl-2-thiazolyl]-1,3-benzodioxole-5-acetamide. It is a specific Nrf2 inhibitor that
interferes with the binding of Nrf2 to the ARE sequence, as well as abolishes the inhibitory
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effect of lycopene on EtOH/LPS-induced reductions in NQO1 and HO-1 levels, increases
in ROS and IL-6 levels, and mitochondrial dysfunction, in pancreatic acinar cells.

Moreover, we validated that ZnPP, an HO-1 inhibitor, reversed the inhibitory effect of
lycopene on EtOH/LPS-induced increases in ROS and IL-6 levels, as well as mitochondrial
dysfunction, in AR42J cells. These results show that Nrf2-mediated expression of the
antioxidant enzyme HO-1 is associated with the protective role of lycopene in an in vitro
alcoholic pancreatitis model. Lin et al. showed that the inhibitory effect of lycopene on
LPS-induced expression of cyclooxygenase-2 is mediated by HO-1 activation in microglial
cells [71]. Lycopene alleviates hepatic hypoxia/reoxygenation injury by promoting the
translocation of Nrf2 into the nucleus, activating the Nrf2/HO-1 pathway in hepatic
cells [72].

Regarding the possible toxicity of THF, we used 0.01% of THF for a vehicle of lycopene.
Even though THF is a toxic compound, THF (0.1%) did not decrease the cell viability of
prostate cancer cell line DU145 and SH-SY5Y Neuroblastoma cell line SY5Y [73,74]. In
addition, THF, up to the maximum concentration of 1.25% in the cell culture medium, did
not affect the viability of the gastric cancer cell line HepG2 [75]. Therefore, 0.01% THF, used
as control in the present study, may not affect cell viability.

5. Conclusions

Lycopene enhances antioxidant defense activities via the upregulation of Nrf2 signal-
ing, and its target antioxidant genes NQO1 and HO-1, in pancreatic acinar cells. Reducing
ROS levels using lycopene suppresses the EtOH/LPS-induced expression of IL-6, increases
in intracellular and mitochondrial ROS levels, and mitochondrial dysfunction, in pancreatic
acinar cells.

Therefore, the consumption of lycopene-rich foods may prevent the development of
alcohol/LPS-associated pancreatitis by activating Nrf2-mediated expression of NQO1 and
HO-1, thereby downregulating ROS-mediated IL-6 expression in pancreatic acinar cells.
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