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The human silent information regulator (Sir)2
homologue hSIRT3 is a mitochondrial nicotinamide
adenine dinucleotide-dependent deacetylase
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links cellular metabolism and transcriptional silenc-

ing through its nicotinamide adenine dinucleotide
(NAD)-dependent histone deacetylase activity. We report
that mitochondria from mammalian cells contain intrinsic
NAD-dependent deacetylase activity. This activity is inhibited
by the NAD hydrolysis product nicotinamide, but not by
trichostatin A, consistent with a class Il deacetylase. We
identify this deacetylase as the nuclear-encoded human
Sir2 homologue hSIRT3, and show that hSIRT3 is located
within the mitochondrial matrix. Mitochondrial import of

The yeast silent information regulator (Sir)2 protein

hSIRT3 is dependent on an NH,-terminal amphipathic
a-helix rich in basic residues. hSIRT3 is proteolytically
processed in the mitochondrial matrix to a 28-kD product.
This processing can be reconstituted in vitro with recombin-
ant mitochondrial matrix processing peptidase (MPP)
and is inhibited by mutation of arginines 99 and 100. The
unprocessed form of hSIRT3 is enzymatically inactive and
becomes fully activated in vitro after cleavage by MPP.
These observations demonstrate the existence of a latent
class Ill deacetylase that becomes catalytically activated
upon import into the human mitochondria.

Introduction

Reversible protein acetylation is emerging as a critical post-
translational modification involved in the regulation of
many biological processes. Although most of the pioneering
experiments focused on the role of histone acetylation in
transcriptional control, recent findings have generalized the
concept of reversible protein acetylation to many nonhistone
proteins (Sterner and Berger, 2000). Histone proteins are
acetylated at lysines in their NH,-terminal tails under the
control of competing histone acetyltransferases and histone
deacetylases (HDACG:s).* Eighteen distinct human histone
deacetylases have been identified and are grouped in three
classes based on their homology to Saccharomyces cerevisiae
histone deacetylases: RPD3 (class I), HDAI (class II), and

silent information regulator (Sir)2 (class III).
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Sir2 protein participates in transcriptional silencing at
telomeres, mating-type loci, and the ribosomal RNA locus.
Sir2 has also been implicated in the repair of chromosomal
double-strand breaks, in cell cycle progression, and in the
control of chromosome stability in yeast (Gottschling et al.,
1990; Martin et al., 1999). Increased dosage of the Sir2 gene
increases life span in yeast and in Caenorbabditis elegans
(Kaeberlein et al., 1999; Lin et al., 2000; Tissenbaum and
Guarente, 2001). Yeast Sir2 has nicotinamide adenine dinu-
cleotide (NAD)-dependent histone deacetylase activity that
links Sir2 functions to cellular metabolism (Guarente,
2000). This activity is conserved from bacteria to humans
and is also exhibited by mammalian Sir2 homologues (Imai
et al., 2000; Smith et al., 2000). The NAD dependency of
Sir2-like enzymes distinguishes them from the class I and
class II HDACGCs, which use a zinc-catalyzed mechanism
(Finnin et al., 1999). Seven human Sir2 homologues have
been identified in humans and are designated hSIRT1-7
(Frye, 1999, 2000). hSIRTT, 2, 3, and 5 have NAD-depen-
dent deacetylase activity (unpublished data; Luo et al., 2001;
Vaziri et al., 2001). Although a silencing function of SIRT
proteins can be anticipated by analogy to their S. cerevisiae
homologues, little is known about their biological activities.
It is likely that the deacetylase activity of this family of en-
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zymes is not restricted to histone proteins. Indeed, a distant
homologue of Sir2 called CobB is found in Salmonella ty-
phimurium, which do not have histones, where it can com-
pensate for the loss of the phosphoribosyltransferase CobT,
suggesting a ribosyltransferase activity (T'sang and Escalante-
Semerena, 1998). Recent findings also support the concept
that nonhistone proteins can serve as substrates for Sir2-like
proteins in mammalian cells. hSIRT1 deacetylates the tran-
scription factor p53 and inhibits its activation in response to
DNA damage and oxidative stress (Luo et al., 2001; Vaziri
et al., 2001). Mouse Sir2a deacetylates the TAF;68 subunit
of the TATA-box binding protein—containing factor, lead-
ing to the repression of RNA polymerase I transcription
(Muth et al., 2001). Here, we provide further evidence for
the role of Sir2-like proteins on nonhistone substrates by
demonstrating that hSIRT3 is an exclusive mitochondrial
NAD-dependent deacetylase.

Results
Mitochondria contain Sir2-like deacetylase activity

A systematic survey of subcellular fractions for the presence
of histone deacetylase activities led to the detection of a
deacetylase activity in human mitochondrial fractions pre-
pared from HEK293T cells (Fig. 1 A). This activity was
strictly dependent on NAD and was suppressed by nicotina-
mide, a product of NAD hydrolysis that inhibits Sir2-like
proteins (Landry et al., 2000a, 2000b; Tanner et al., 2000;
Tanny and Moazed, 2001; Fig. 1 A). In contrast, trichosta-
tin A (TSA), a specific inhibitor of class I and class II
deacetylases, had no effect (Fig. 1 A). Under the same condi-
tions, TSA inhibited the activity of a prototypic class II
HDAC, HDACG6 (unpublished data). These findings indi-
cated the presence of Sir2-like class III protein deacetylases
in mitochondria.

hSIRT3 mediates NAD-dependent deacetylase activity

in the mitochondria

In transfected mammalian cells, hRSIRT1, 2, 3, and 5 exhibit
bona fide NAD-dependent deacetylase activity, while
hSIRT4, 6, and 7 do not (unpublished data). To determine
which hSIRT protein contributed to the mitochondrial ac-
tivity, we transfected expression vectors for hSIRT1, 2, and
3 (epitope tagged with FLAG at the COOH terminus) or a
control vector into HEK293T cells. Cells were harvested,
whole-cell and mitochondrial lysates were prepared, and
hSIRT proteins were immunoprecipitated with anti-FLAG
antibodies. In whole-cell lysates, all three proteins were de-
tected by Western blotting, including two forms of hSIRT3:
a 44-kD product of the expected size given the cDNA se-
quence (predicted molecular mass, 43.6 kD) and a smaller,
28-kD product (Fig. 1 B, top). However, in the mitochon-
drial lysates, only hSIRT3 (28-kD product) was detected
(Fig. 1 B, bottom). All three hSIRTs showed robust NAD-
dependent enzymatic activity after immunoprecipitation
from whole-cell lysates (Fig. 1 C), but only anti-FLAG
immunoprecipitates from cells transfected with hSIRT3
showed mitochondrial deacetylase activity (Fig. 1 D). These
results suggest that hSIRT3 mediates NAD-dependent de-

acetylase activity specifically within mitochondria.
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Figure 1. Mitochondria contain Sir2-like deacetylase activity.

(A) Mitochondrial lysates were prepared from HEK293T cells and
assayed for deacetylase activity on a histone H4 peptide in the
presence or absence of NAD (1 mM) or in combination with
nicotinamide (5 mM) or TSA (400 nM) for 2 h at 25°C. Released
acetyl was quantitated as described in Materials and methods. A
representative experiment is shown. (B) Western blot analysis of
anti-FLAG immunoprecipitates obtained from whole-cell lysates
(top) or purified mitochondria (bottom) after transfection of hSIRT3.
Because different amounts of cellular and mitochondrial lysates
were used in the immunoprecipitation, the top and bottom panels
cannot be compared quantitatively. (C) hSIRT proteins were immuno-
precipitated from whole-cell lysates of transfected HEK293T cells
with anti-FLAG antibodies and assayed in the presence or absence
of NAD (1 mM). (D) Purified mitochondria from HEK293T cells
transfected with hSIRT proteins were lysed and FLAG-tagged proteins
were immunoprecipitated and analyzed for in vitro deacetylase
activity. (E) Mitochondria were isolated from HEK293T cells trans-
fected with hSIRT3-FLAG (WT), hSIRT3N229A-FLAG, hSIRT3H248Y-
FLAG, or control vector (pFLAG). Lysates were prepared and tested
for deacetylase activity. (F) Mitochondria were analyzed for wild-
type and mutant hSIRT3 by Western blotting. Two hSIRT3-FLAG
specific forms (asterisks) were detected.

Transfection of an expression vector for hSIRT?3 increased
the NAD-dependent HDAC activity of mitochondrial ly-
sates in comparison to cells transfected with the empty vec-
tor (Fig. 1 E). Mitochondrial lysates from hSIRT3 and con-
trol cells had similar sensitivities to nicotinamide and TSA
(unpublished data). In contrast, transfection of two cata-
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Figure 2. Subcellular localization of
hSIRT3 in mitochondria. (A) hSIRT3-
GFP was transfected into Hela cells
grown on coverslips. Cells were
stained with the mitochondrial marker
MitoTracker, embedded, and analyzed
by confocal laser scanning microscopy.
(Left) Fluorescence from the hSIRT3—
GFP fusion protein. (Middle) Fluores-
cence from the MitoTracker—stained
mitochondria in the same focal plane.
(Right) Merged image showing complete
overlap of the two staining patterns. (B)
HEK293T cells transfected with hSIRT3—
FLAG were homogenized and fraction-
ated by differential centrifugation. Equal
amounts (30 pg) of heavy membranes
(HM), light membranes (LM) and cytosolic
proteins (S-100) fraction were analyzed
by immunoblotting. hSIRT3-FLAG was
revealed by detection with monoclonal
M2 anti-FLAG antibodies. Two hSIRT3—
FLAG specific forms (asterisks) were
detected. Nitrocellulose membranes
were stripped and reprobed with anti-
bodies against cytochrome c (cyt c) and
Hsp90a. (C) Mitochondria were pre-
pared from HEK293T cells and lysates
were analyzed by Western blotting with
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a polyclonal rabbit hSIRT3 antiserum or preimmune serum obtained from the same rabbit. (D) hSIRT3 was immunoprecipitated from HEK293T
cells with hSIRT3 antiserum (0.35 mg/ml), preimmune serum (0.35 mg/ml), or protein G Sepharose. Equal amounts of immunoprecipitate were
analyzed for in vitro deacetylase activity in the absence (—) or presence (+) of NAD.

lytically inactive mutants, hSIRT3-N229A and hSIRT3-
H248Y, did not increase basal HDAC activity of mitochon-
drial lysates (Fig. 1 E). Both mutants were shown to have
lost all HDAC activity after immunoprecipitation in sepa-
rate experiments (unpublished data). Importantly, both mu-
tants were efficiently targeted to mitochondria, were equally
well expressed after transfection, and were processed to the
smaller 28-kD product produced as wild-type hSIRT3 (Fig.
1 F). These observations are consistent with the selective tar-

geting of hSIRT3 to mitochondria.

Visualization of hSIRT3 in mitochondria

To further determine the subcellular localization of hSIRT?3
in cells, we generated a GFP fusion protein (hSIRT3-GFP).
Confocal laser scanning microscopy of Hela cells trans-
fected with hSIRT3—-GFP revealed that it localized exclu-
sively to cytoplasmic substructures. Costaining with a mi-
tochondria-specific dye (MitoTracker red) showed total
overlapping of the two signals (Fig. 2 A), indicating that
hSIRT3 exclusively localizes to mitochondria. Similar results
were obtained with an epitope-tagged (FLAG) hSIRT3 re-
combinant protein using indirect immunofluorescence (un-
published data).

This observation was further verified in cell fractionation
experiments with hSIRT3-FLAG-transfected cells. Equal
amounts of protein from each subcellular fraction were sub-
jected to SDS-PAGE and immunoblotting with an anti-
FLAG antibody. hSIRT3-FLAG and cytochrome c were de-
tected only in the heavy membrane fraction representing mi-
tochondria; two FLAG-reactive bands of ~44 and 28 kD
were detected in the mitochondrial fraction (Fig. 2 B). Im-

munoblotting of subfractions prepared from untransfected
cells confirmed that both bands were specific for hSIRT3-
FLAG (unpublished data).

hSIRT3 is a mitochondrial protein with
NAD-dependent deacetylase activity

The subcellular localization of endogenous hSIRT3 was
examined with a specific antiserum against a peptide cor-
responding to the last 15 amino acids of hSIRT3 (N-
DLVQRETGKLDGPDK-C). This antiserum recognized
two peptides (~44 and ~28 kD) in the mitochondrial frac-
tions, whereas the preimmune antiserum obtained from the
same rabbit was unreactive to these proteins (Fig. 2 C).
These two bands corresponded in size to the fragments de-
tected after transfection of the FLAG-tagged hSIRT3. Im-
munoprecipitation of the mitochondrial fraction with this
antiserum showed the presence of a specific NAD-dependent
deacetylase activity that was not identified with the preim-
mune serum or with protein G Sepharose alone (Fig. 2 D).
These experiments demonstrate that endogenous hSIRT3 is
located in the mitochondria and is associated with NAD-
dependent deacetylase activity in that compartment.

The NH, terminus of hSIRT3 is required

for mitochondrial import

Mitochondrial targeting signals frequently contain an am-
phipathic a-helix and tend to contain positively charged hy-
drophobic and hydroxylated amino acids (Roise et al., 1986,
1988; von Heijne et al., 1989; Abe et al., 2000). Secondary
structure predictions of hSIRT3 revealed that an NH,-ter-
minal peptide corresponding to residues 1-25 has a high
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Figure 3. The NH,-terminal region of A
hSIRT3 is required for mitochondrial
import. (A) Schematic diagram of
hSIRT3. The orange box illustrates the
region involved in mitochondrial targeting
(left). Parts of the NH,-terminal region
show a high probability of forming an
amphiphatic a-helix (middle). A helical
wheel plot of residues 4-21 reveals a
cluster of basic amino acids (black) on
one side of the putative helix (right).

(B) Hela cells grown on coverslips were
transfected with hSIRT3A1-25-GFP for
36 h, stained with MitoTracker, and
analyzed by confocal laser scanning
microscopy. (left) GFP fluorescence
emitted by the fusion protein (green).
(Middle) MitoTracker signal (red).
(Right) Merged image.
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probability of containing an amphipathic a-helix (Fig. 3 A,
middle). When plotted as a helical wheel (Fig. 3 A, right),
residues 4-21 showed a cluster of positively charged arginine
residues on one side of the helix opposed by hydrophobic
residues on the other side, a typical feature of mitochondrial
presequences (for review see Pfanner and Geissler, 2001). To
test the importance of this putative a-helix in hSIRT3 mi-
tochondrial import, we deleted amino acids 1-25 from
hSIRT3 and fused it to GFP (hSIRT3A1-25-GFP). Expres-
sion of this construct in Hela cells showed pancellular dis-
tribution (Fig. 3 B). No significant colocalization between
the fusion protein and MitoTracker—stained mitochondria
could be observed. This localization was in sharp contrast to
the subcellular localization observed after expression of full-
length hSIRT3 fused to GFP (Fig. 2 A) and indicated that
the NH,-terminal 25 amino acids of hSIRT?3 are necessary
for mitochondrial targeting.

To further define the requirements for mitochondrial im-
port of hSIRT3, we used cell-free mitochondrial in vitro im-
port assays. Similar assays have been used to elucidate the
import requirements of a variety of mitochondrial proteins.
[>S]-labeled hSIRT3 or hSIRT3A1-25 was synthesized in
rabbit reticulocyte lysates and incubated with isolated mam-
malian mitochondria at 30°C for 2, 5, or 15 min in the pres-
ence of succinate and ATP. Mitochondria were reisolated
from the mixture by centrifugation, and cosedimenting pro-
teins were analyzed by SDS-PAGE and autoradiography.
We observed a time-dependent accumulation of hSIRT3,
but not of hSIRT3A1-25, into mitochondria (Fig 4, A and
B). The import of hSIRT3 across the mitochondrial mem-
brane was dependent on the mitochondrial transmembrane
potential (AWm), as import was inhibited by antimycin (8
wM), oligomycin, (20 wM), and valinomycin (1 pM). (Fig.
4 A, lane 4). Because A¥m is involved in the translocation
of proteins across the inner mitochondrial membrane, this
finding suggests that hSIRT3 is imported across the inner
mitochondrial membrane (Martin et al., 1991). When the

proteinase K digestion performed at the end of the import
reaction was omitted, both hSIRT3 and hSIRT3A1-25
could bind to the outer surface of mitochondria in vitro, in-
dicating that adhesion to mitochondria was not dependent
on the NH)-terminal 25 amino acids of hSIRT3 (unpub-
lished data). To exclude the possibility that proteins had ag-
gregated and cosedimented nonspecifically, similar experi-
ments were carried out in the absence of mitochondria, but
no nonspecific sedimentation occurred (unpublished data).

Next, we generated a series of point mutations in the first
25 amino acids. We used two strategies. First, we disrupted
the a-helix by introducing prolines at positions 12 and 13.
Second, we modified the charge of the amphipathic helix by
replacing arginines with glycines or glutamines. The polar
but uncharged glutamine residues were predicted to preserve
the a-helical conformation while changing the amphipathic
character of the a-helix. To study the import efficiency,
wild-type hSIRT3 and mutants were synthesized in rabbit
reticulocyte lysates in the presence of [*°S]-methionine and
assayed using the in vitro import assay described above. Mu-
tation of R7 and R13 to glycines or glutamines resulted in a
loss of mitochondrial import. In contrast, mutation of R17
and R21 reduced import by ~50% (Fig. 4 C). Mutating all
four arginines to glutamines or glycines reduced import effi-
ciency even further. Disrupting the putative helical structure
by introducing two prolines reduced mitochondrial import
to about the same extent as the R7/13G mutation. These re-
sults demonstrate that the positively charged residues and
the o-helical structure of region 1-25 are important for the
import of hSIRT?3 into mitochondria.

hSIRT3 is a mitochondrial matrix protein

To determine the exact localization of hSIRT3 in the mito-
chondria, we isolated mitochondria from HEK293T cells
expressing hSIRT3-FLAG and incubated them in hypotonic
MOPS-buffer. This treatment leads to the rupture of the
outer mitochondrial membrane (mitoplast formation) and
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Figure 4. Mitochondrial import of hSIRT3 in vitro. (A) [**S]-labeled
hSIRT3-FLAG or hSIRT3A1-25-FLAG synthesized in rabbit reticulo-
cyte lysate was imported into isolated mammalian mitochondria at
30°C. Import in the absence of Aym (lane 4), was arranged by adding
valinomycin (1 pM), antimycin (8 wM), and oligomycin (20 pM)

to mitochondria 5 min before the addition of proteins. Import was
stopped after 2, 5, or 15 min by dissipating Aym (addition of 1 uM
valinomycin) and incubation at 0°C. Samples were treated with
proteinase K to remove nonimported proteins. Imported proteins
were visualized by autoradiography after reisolation of mitochondria
and SDS-PAGE. (B) Quantitation of data from panel A by phosphor-
imaging. (C, left) Mutants were generated to assess the role of the
amphipathic helix of hSIRT3 in mitochondrial import. [**S]-labeled
hSIRT3 wild-type or mutants were imported into isolated mitochon-
dria for 20 min at 30°C. Import was stopped as described above and
nonimported proteins were removed by proteinase K treatment.
Reisolated and washed mitochondria were lysed in SDS sample
buffer and analyzed by SDS-PAGE. Standards representing 50% of
the input used in the individual import reactions were loaded adjacent
to each import sample. (Right) Import efficiency of individual hSIRT3
mutants was quantitated in relation to their standards by phosphor-
imaging. The import efficiency of hSIRT3 (WT) was set to 100%.

to the release of soluble proteins in the intermembrane
space. Mitoplasts and mitochondria were reisolated by cen-
trifugation and analyzed by Western blotting (Fig. 5 A). The
~28-kD form of hSIRT3 was not affected by rupture of the
outer mitochondrial membrane and subsequent proteinase
K digestion (Fig. 5 A). To exclude the possibility that
hSIRT3-FLAG had formed a protease-stable aggregate, mi-
tochondria from cells transfected with hSIRT3-FLAG were
lysed in 0.5% Triton X-100 and digested with proteinase K.
Under these conditions, hSIRT3 was completely degraded
(unpublished data). In this respect, hSIRT3 behaved simi-
larly to the matrix protein Hsp60 (Cheng et al., 1990; Fig. 5
A). Confirmation of the rupture of the outer membrane by
the hypotonic treatment was obtained by blotting against
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Figure 5. hSIRT3 is localized in the mitochondrial matrix.

(A) Mitochondria were isolated from HEK293T cells transfected
with hSIRT3-FLAG and treated with proteinase K to remove pro-
teins bound to the outer mitochondrial surface. Mitochondrial
preparations were divided, and one half was diluted with hypotonic
buffer to create mitoplasts (MP), while the other half was maintained
under isotonic conditions (M). After incubation (20 min at 0°C),
mitochondria and mitoplasts were treated again with proteinase K
and reisolated by centrifugation followed by Western blotting.
Rupture of the outer mitochondrial membrane was confirmed by
detection of endogenous intermembrane space protein cytochrome
¢ (cyt o). Integrity of the inner mitochondrial membrane was deter-
mined with the matrix protein Hsp60 as a marker. hSIRT3-FLAG
was detected using anti-FLAG M2 antibodies. (B) Mitochondria
were isolated from HEK293T cells transfected with hSIRT3—-FLAG
and treated with proteinase K. The preparation was divided, and
one half was resuspended in SDS sample buffer (Total, left lane).
The other half of the preparation was resuspended in sodium car-
bonate (Na,CO;) buffer. The extract was centrifuged at 100,000 g
at 4°C, and the mitochondrial membranes (Pellet, middle lane)
were resuspended in SDS sample buffer. The supernatant contain-
ing the soluble and peripheral membrane proteins (Soluble, right
lane ) was precipitated with TCA. Samples were analyzed by
Western blotting. hSIRT3 was detected with anti-FLAG antibodies.
Alkaline extraction was controlled by detection of the marker
proteins COXIV and mtHsp70.

the intermembrane space protein cytochrome c. In contrast
to hSIRT3, cytochrome ¢ was lost after protease treatment
of mitoplasts (Fig. 5 A). These results were consistent with
three possible locations for hSIRT3: (a) the mitochondrial
matrix; (b) peripherally attached to the inner side of the in-
ner mitochondrial membrane; and (c) in the inner mito-
chondrial membrane.

To differentiate between these possibilities, we extracted
mitochondria with sodium carbonate, pH 11.5. This treat-
ment releases soluble and peripheral membrane proteins into
the supernatant, while integral membrane proteins sediment
with the membranes in the pellet (Fujiki et al., 1982). The
~28 kD form of hSIRT3 was found in the supernatant, indi-
cating that it is either a soluble matrix protein or is peripher-
ally attached to the inner face of the inner membrane (Fig. 5
A). The ~44-kD form of hSIRT3 was detected mostly in the
pellet, suggesting that it is associated with the inner mitochon-
drial membrane. As expected, the soluble matrix chaperonin
mtHsp70 was detected in the supernatant, whereas the inner-
membrane protein COXIV was associated with the mem-
brane fraction (Fig. 5 B). These experiments indicate that the
28-kD form of hSIRT?3 is a soluble matrix protein.
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Proteolytic processing of hSIRT3

As discussed above, the majority of hSIRT?3 is present in mi-
tochondria as a truncated 28-kD protein. Because this form
is reactive to the anti-FLAG antibody after transfection of a
COOH-terminal FLAG fusion protein, we concluded that
hSIRT3 is proteolytically cleaved at its NH, terminus. Most
mitochondrial proteins carrying NH,-terminal targeting sig-
nals are processed by matrix processing peptidase (MPP) af-
ter import into the mitochondrial matrix (Jensen and
Johnson, 2001). Incubation of radiolabeled hSIRT3 with re-
combinant yeast MPP yielded a 28-kD cleavage product,
undistinguishable in size from the product detected in vivo
in mitochondria (Fig. 6 A). Cleavage of a fusion protein be-
tween subunit 9 of FO/F1-ATPase and DHFR (Su9-DHFR)
by MPP in vitro resulted in the appearance of digestion
products similar to what has been previously reported, con-
firming the specificity of the MPP enzyme preparation used
(Geli, 1993). Based on the size of the processed hSIRT3
protein, we scanned the primary sequence of hSIRT3 for
putative MPP recognition motifs. MPP specifically processes
many mitochondrial precursor proteins but no consensus
processing site has emerged. However, an arginine at -2 rel-
ative to the cleavage site and additional aromatic or hydro-
phobic residues in position 1 relative to the cleavage site
appear to be necessary for cleavage (Hartl et al., 1989; Hen-
drick et al., 1989; Gavel and von Heijne, 1990). Several
hSIRT3 mutants targeting arginines at positions 99, 100,
133, 135, 139, and 158 were constructed by site-directed
mutagenesis and synthesized in rabbit reticulocyte lysates in
the presence of [’S]-methionine. A mutant carrying two
glycines substituted for arginines 99 and 100 was not
cleaved by MPP in vitro (Fig. 6 B), whereas other mutants
were unaffected (unpublished data). These results indicate
that residues R99/100 are critical for the processing of
hSIRT3 by MPP. Transfection of this construct into mam-
malian cells led to a partial inhibition of the processing of
hSIRT3 into the 28-kD fragment and a new fragment of
higher molecular weight was detected (unpublished data).

Catalytic activation of a latent hSIRT3

by MPP-mediated proteolytic processing

We had noted that the in vitro translated hSIRT3 protein
was catalytically inactive in our in vitro deacetylase assay.
Similarly, hSIRT3 expressed in Escherichia coli was not pro-
cessed and was enzymatically inactive (unpublished data).
This led us to test the hypothesis that proteolytic processing
of hSIRT3 might lead to its catalytic activation. Unlabeled
hSIRT3 was synthesized in vitro in rabbit reticulocyte ly-
sates. Samples were split in half and one half was subjected
to cleavage by recombinant MPP in vitro while the other
half was incubated in the same buffer in the absence of
MPP. hSIRT3 was immunoprecipitated and assayed for
deacetylase activity in the presence or absence of NAD. Re-
markably, the hSIRT3 processed by MPP showed NAD-
dependent deacetylase activity, whereas the full-length un-
cleaved hSIRT3 remained inactive (Fig. 6 C). These results
linked processing of hSIRT3 to the activation of its NAD-
dependent deacetylase activity. To exclude the possibility
that unspecific factors or MPP itself had caused the NAD-
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Figure 6. Proteolytic processing of hSIRT3 by MPP leads to

enzymatic activation. (A) [**S]-labeled hSIRT3-FLAG (left) or
pSu9-DHER (right) was incubated with purified recombinant yeast
MPP for 45 min at 27°C. Samples were analyzed by SDS-PAGE and
autoradiography. m, mature form of pSu9-DHFR; p, precursor form.
(B) [*°S]-labeled hSIRT3-FLAG (WT) and hSIRT3R99/100G-FLAG
(R99/1006) were incubated with MPP and analyzed as in A. (Left)
Efficiency of proteolytic processing by recombinant yeast MPP

was quantitated by phosphorimaging. (Right) Autoradiography

of the same experiment. (C) Unlabeled hSIRT3-FLAG (WT) or
hSIRT3H248Y-FLAG (H2484) synthesized in vitro in rabbit
reticulocyte lysates was incubated with recombinant yeast MPP for
45 min at 27°C. FLAG-tagged proteins were immunoprecipitated
with anti-FLAG M2-agarose beads and analyzed for deacetylase
activity in vitro with the H4 histone peptide assay in the presence or
absence of NAD (1 mM,; left). Western blot analysis of immunopre-
cipitates used in the deacetylase assay (right).

dependent deacetylase activity, we tested the catalytically in-
active hSIRT3-H248Y mutant for deacetylase activity after
incubation and cleavage with MPP. No NAD-dependent
deacetylase activity was detected (Fig. 6 C, left and right).

These results demonstrate that proteolytic processing of
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hSIRT3 by MPP leads to the activation of its latent enzy-
matic activity.

Discussion

The identification of a Sir2-related enzyme in the mamma-
lian mitochondrion raises a number of interesting questions
related to the NAD-dependent enzymatic activity associated
with this family of enzymes and the pivotal role played by
NAD in mitochondrial metabolism. In almost every respect,
hSIRT3 behaves as a classical mitochondrial matrix protein.
Its dependency on an NH,-terminal cleavable presequence
has been reported for other mitochondrial matrix proteins
(Roise et al., 1986, 1988; von Heijne et al., 1989; Abe et al,,
2000). Mitochondrial targeting sequences are characterized
by the presence of positively charged and hydrophobic resi-
dues (negative charged residues are very rare) (Roise et al.,
1988) and tend to adopt a helical, frequently amphipathic,
conformation. Mutational analysis of an amphipathic helix
within the NH, terminus of hSIRT3 showed that eliminat-
ing the positive charges by substituting arginines with gly-
cines or glutamines led to a loss of mitochondrial import.
Disrupting the putative helical conformation of the target-
ing signal by introducing proline residues within the helix
also suppressed import despite the conservation of three
charged residues. Thus, both the net charge and the helical
nature of the targeting region are necessary for import of
hSIRT3 into mitochondria. Whereas the NH, terminus of
hSIRT?3 is critical for mitochondrial import, preliminary ex-
periments indicate that a fusion protein consisting of the
NH,-terminal 25 amino acids of hSIRT3 and GFP is not
targeted to mitochondria. This result indicates that other
domains of hSIRT3, most likely the first NH,-terminal 100
amino acids are involved in its mitochondrial import.

The hSIRT3 ¢cDNA predicts a protein product of ~43.6
kD; however, an antiserum specific for the COOH terminus
of hSIRT3 detected a smaller form of 28 kD as the major
form in cultured cells. A product of similar size was observed
as the major protein after transfection of hSIRT3 with
COOH-terminal FLAG tag. Both experiments are consis-
tent with the deletion of a leader sequence at the NH, termi-
nus of hSIRT3. The observation that a deletion mutant of
hSIRT3 lacking the first 25 amino acids was not targeted to
the mitochondria and was also not processed to a smaller
product suggests either that mitochondrial targeting is nec-
essary for proteolytic processing or that targeting of the pro-
tease to hSIRT3 is dependent on its first 25 amino acids.

Most proteins with NH,-terminal mitochondrial target-
ing sequences are processed after import into the mitochon-
drial matrix by MPP (Arretz et al., 1991). MPP processed
hSIRT3 in vitro to a new product similar in size to the 28-
kD processed endogenous hSIRT3 protein, suggesting that
MPP is responsible for hSIRT3 cleavage within the mito-
chondrial matrix. Mutational analysis of hSIRT3 revealed
that arginines 99 and 100 are necessary for cleavage by MPP
in vitro. The presence of critical arginine residues within the
cleavage site recognized by MPP has been described previ-
ously (Ogishima et al., 1995; Song et al., 1996; Shimokata
et al., 1997). Although these mutations completely sup-
pressed cleavage by MPP in vitro, we observed residual

cleavage of the same mutant (hSIRT3-R99/100G) in vivo
after transfection. These results are likely to reflect the limit-
ing digestion conditions imposed by our in vitro assay or,
less likely, the presence of an alternative mitochondrial pro-
cessing enzyme. In addition, transfection of hSIRT3/R99-
100G into mammalian cell led to the appearance of novel
cleavage products, suggesting additional processing events.
Interestingly, 30% of mitochondrial precursor proteins pro-
cessed by MPP are further processed by the mitochondrial
intermediate peptidase (MIP) (Kalousek et al., 1988; Isaya et
al., 1991). MIP cleavage removes an additional octapeptide
from the NH, terminus of the MPP-processed precursor. It
is possible that cleavage by MIP or another mitochondrial
protease is responsible for the processing of hSIRT3 when
MPP processing has been inhibited. Finally, we noted in our
alkaline fractionation experiments that the incompletely
processed form of hSIRT3 was associated with the mem-
brane fraction, indicating that entry of hSIRT?3 into the ma-
trix compartment is likely to represent a critical step in its
proteolytic processing, consistent with the matrix localiza-
tion of MPP.

We had initially observed that hSIRT3 expressed in E. coli
or after in vitro translation systems was catalytically inactive.
Remarkably, MPP cleavage of hSIRT3 synthesized in vitro
resulted in its catalytic activation. This was not observed
with a catalytically inactive hSIRT3-H248Y, although this
mutant protein was cleaved to the same extent as wild-type
hSIRT3. This observation indicates that enzymatic activa-
tion of hSIRT3 by proteolytic processing by MPP is not an
artifact linked to the MPP preparation but is strictly depen-
dent on the intrinsic enzymatic activity of hSIRT3. This
control also indicates indirectly that enzymatic activity of
hSIRT3 is not necessary for its proteolytic processing.

These observations suggest that hSIRT3 is synthesized as
an inactive precursor within the cytoplasm, transported to
the mitochondrial matrix, where it is proteolytically pro-
cessed to activate its enzymatic potential. This model would
allow the safe transfer of a latent enzyme and its selective ac-
tivation when the proper destination in the mitochondrial
matrix has been reached. While our in vitro evidence
strongly supports this model, we have had difficulties evalu-
ating the role of hSIRT3 cleavage on its enzymatic activity
in vivo. When the mutant hSIRT3-R99/100G harboring
the mutated MPP recognition site was transfected into cells,
cleavage efficiency was reduced, but a certain amount of pro-
cessed hSIRT3 protein could still be immunoprecipitated
and exhibited NAD-dependent deacetylase activity. There-
fore, whether uncleaved full-length hSIRT3 can exert NAD-
dependent deacetylation in vivo remains an unanswered
question. However, our experimental evidence indicates that
the processed form of hSIRT3, either endogenous or after
transfection, is indeed enzymatically active.

Although we have demonstrated that hSIRT3 can de-
acetylate a histone H4 peptide, mitochondria lack histone
proteins. Therefore, other nonhistone mitochondrial pro-
teins are likely to be substrate(s) of hSIRT3. Two recent re-
ports have described the specific deacetylation of the tran-
scription factor p53 by another human Sir2 homologue
protein, hSIRT1 (Luo et al., 2001; Vaziri et al., 2001). We

have also obtained evidence that a third human Sir2 protein,
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hSIRT?2, is predominantly cytoplasmic (unpublished data).
These observations are in agreement with previous reports
that several mammalian Sir2 homologues are found in non-
nuclear subcellular localizations (Zemzoumi et al., 1998; Af-
shar and Murnane, 1999; Yang et al., 2000; Perrod et al.,
2001). As an alternative, hSIRT3 could also target a nonpro-
tein substrate for deacetylation.

The selective targeting of a mammalian Sir2-like protein
to mitochondria is intriguing because mitochondria repre-
sent the bioenergetic and metabolic centers of eukaryotic
cells. It had been speculated that the phylogenetically con-
served family of Sir2 proteins is involved in sensing cellular
energy and redox states (Smith et al., 2000). Given its mito-
chondrial matrix localization, hSIRT3 might differ from
other Sir2 proteins in its sensitivity to metabolic activity. In
contrast to the cytoplasm where NAD levels can change in
response to ATP abundance, the mitochondrial matrix con-
tent of NAD is believed to be stable and not subject to
changes caused by varying ATP levels (Vinogradov et al.,
1972; Devin et al., 1997; Tischler et al., 1977; Di Lisa et al.,
2001). The presence of stable NAD levels might ensure the
constitutive activity of hSIRT3 in the mitochondrial matrix
leading to the constitutive deacetylation of one or several
mitochondrial proteins.

In contrast to class I and II HDAC:, the deacetylation re-
action catalyzed by Sir2-like proteins does not lead to the
production of acetate. Rather, Sir2-like enzymes catalyze a
unique reaction in which the cleavage of NAD and the
deacetylation of substrate are coupled with the formation of
O-acetyl-ADP-ribose, a novel metabolite (Tanner et al,
2000; Borra et al., 2002; Jackson and Denu, 2002). This
metabolite has intrinsic biological activity and causes a de-
lay/block in oocyte maturation (Borra et al., 2002). These
observations imply the existence of cellular enzymes that can
efficiently utilize O-acetyl-ADP-ribose. We will explore the
possibility that hSIRT3 functions as an NAD-dependent
sensor and controls a variety of metabolic activities through
the formation of O-acetyl-ADP-ribose.

In addition, certain conditions leading to an abrupt de-
crease in mitochondrial NAD might shut off or severely
decrease the activity of hSIRT3, leading to a relative hy-
peracetylation of its substrates and to a decrease in O-ace-
tyl-ADP-ribose production. These conditions include the
opening of the mitochondrial permeability transition pore
(mtPTP), a high-conductance channel within the inner mi-
tochondrial membrane. Adding calcium to isolated mito-
chondria leads to a rapid depletion of mitochondrial NAD,
most likely due to the opening of mtPTP (Vinogradov et al.,
1972). NAD released from the matrix is hydrolyzed by
NAD glycohydrolases (NADases) in the intermembrane
space. Hydrolysis of NAD by NADases leads to the forma-
tion of ADP-ribose and nicotinamide, itself an inhibitor of
hSIRT3 enzymatic activity. Reactive oxygen species (ROS)
can also trigger mtPTP opening and NADase stimulation
(Bernardi, 1999; Bernardi et al., 1999; Ziegler et al., 1997).
Interestingly, as we show in this article, disruption of Aym
inhibits mitochondrial import of hSIRT3, thereby reduc-
ing its mitochondrial content. Therefore, mtPTP opening
caused by apoptotic stimuli, ROS or calcium elevation is

likely to inhibit hSIRT3 function by several independent

mechanisms including matrix NAD depletion, increased
NAD hydrolysis, formation of nicotinamide and inhibition
of hSIRT3 import into the matrix. According to this model,
constitutive hSIRT3 activity could play an important role in
protection against apoptosis, and its inhibition might lead to
increased acetylation of factors directly involved in apoptotic
pathways.

HSIRT3 could also play a pathogenic role in cancer. The
gene encoding hSIRT3 maps to chromosome 11p15.5, a re-
gion close to the telomere subjected to genomic imprinting.
This region contains a major yet unidentified tumor sup-
pressor gene (Henry et al., 1991; Weksberg et al., 1993; for
review see Feinberg, 2000) and a locus associated with the
Beckwith-Wiedemann syndrome (BWS), which causes pre-
natal overgrowth and predisposition to cancer (Lee et al.,
1999).

The exact function of hSIRT?3 remains to be elucidated.
However, the localization of this enzyme to the mitochon-
drial matrix already gives important clues to its potential
substrates and biological functions. Future experiments will
address these important questions.

Materials and methods

Plasmid construction

Plasmids expressing hSIRT3 were constructed by PCR amplification of the
hSIRT3 coding sequence using primers containing EcoRl sites and pCR2.1-
SIRT3 as a template. The SIRT3 sequence was PCR amplified from human
spleen Marathon cDNA library (CLONTECH Laboratories, Inc.) and cloned
into pCR2.1 (Invitrogen). Amplified sequences were digested with EcoRI and
cloned into a modified pcDNA3.1 + vector (Invitrogen) to yield hSIRT3 with
a COOH-terminal FLAG tag. hSIRT3A1-25-FLAG was constructed by using
modified NH,-terminal PCR primers to introduce EcoRlI sites and a methio-
nine start codon before amino acid 26 of the wild-type protein. Site-directed
mutagenesis (QuikChange Mutagenesis Kit; Stratagene) was used to con-
struct hSIRT3N229A-FLAG, hSIRT3H248Y-FLAG, hSIRT3R7/13G-FLAG,
hSIRT3R17/21G-FLAG, hSIRT3R7/13/17/21G-FLAG, hSIRT3R7/13Q-FLAG,
hSIRT3R17/21Q-FLAG, hSIRT3R7/13/17/21Q-FLAG, hSIRT3L12P/R13P-
FLAG, and hSIRT3R99/100G-FLAG. All constructs were verified by DNA se-
quencing. pSu9-DHFR was provided by J. Brix and N. Pfanner (Institut fuer
Biochemie und Molekularbiologie, Freiburg, Germany).

GFP fusion constructs

To generate fusion proteins of GFP with wild-type hSIRT3 or with amino
acids 26-399 of hSIRT3, corresponding coding sequences were amplified
by PCR and cloned into pEGFP-NT (CLONTECH Laboratories, Inc.).

Cell culture and transfection

HEK293T and Hela cells were cultured in DME supplemented with 10%
FCS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 pg/ml streptomycin
and grown in 5% CO, at 37°C. Calcium phosphate transfection was used
to transfect HEK293T cells (Chen and Okayama, 1987). Hela cells were
transfected with Lipofectamine (Life Technologies).

Immunoblot analysis

Antibodies used for immunoblotting included anti-mtHsp70 (Clone JGT1;
Affinity Bioreagents), anti-Hsp60 (Clone 4B9/89; Affinity Bioreagents),
anti-Hsp90a (StressGen), anti—cytochrome c¢ oxidase subunit IV (Clone
20E8-C12; Molecular Probes), anti-FLAG M2 (Sigma-Aldrich), and anti—
cytochrome c (clone 7H8.2C12; Pharmingen). hSIRT3 antisera were raised
in rabbits against a COOH-terminal peptide (H,N-DLVQRETGKLDGPDK-
COOH,). Western blots were revealed with enhanced chemiluminescence
(Amersham Biosciences). Membranes were either nitrocellulose (Hybond
ECL; Amersham Biosciences) or polyvinylidene fluoride (Immun-Blot; Bio-
Rad Laboratories).

Confocal microscopy
Hela cells grown on coverslips were incubated for 45 min with 30 nM Mi-
toTracker red (CMXRos; Molecular Probes) in DME at 37°C, transferred to
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fresh DME, and were incubated for 60 min. Cells on coverslips were rinsed
in PBS, fixed in 3.7% formaldehyde/PBS for 30 min, washed again in PBS,
and mounted. Images were acquired on a BioRad Radiance 2000 laser
scanning microscope equipped with an Olympus BX60 microscope and
an Olympus PlanApo 60%/1.40 oil objective. Excitation laser line was 488
nm for EGFP and 578 nm for MitoTracker.

Preparation of subcellular fractions

Subcellular fractionation was performed as described with minor modifi-
cations (Yang et al., 1997; Condorelli et al., 2001). All steps were per-
formed at 4°C. In brief, cells were homogenized in ice-cold buffer A (250
mM sucrose, 10 mM KCl, 1.5 mM MgCl,, T mM EDTA, T mM EGTA, 1
mM dithiotreithol, 0.1 mM phenylmethylsulfonyl fluoride, 20 mM Hepes-
KOH, pH 7.5) and homogenized in a Dounce homogenizer (Wheaton).
Homogenization was checked by phase-contrast microscopy. The homo-
genate was centrifuged twice at 800 g to remove nuclei and unbroken
cells. Mitochondria were sedimented by centrifugation at 7,000 g for 15
min, washed twice with buffer A, and resuspended in TXIP-1 buffer (1%
Triton X-100 [vol/vol], 150 mM NaCl, 0.5 mM EDTA, 50 mM Tris-HCl, pH
7.4) supplemented with protease inhibitors. Postmitochondrial superna-
tants were fractionated by ultracentrifugation at 100,000 g for 30 min. The
supernatant constituting the cytosolic S-100 fraction was removed, and the
pellet was resuspended in TXIP-1 buffer. Protein concentrations of the frac-
tions were determined (DC Protein Assay; Bio-Rad Laboratories) and equal
amounts of each fraction were separated by sodium dodecylsufate—poly-
acrylamide gel electrophoresis (SDS-PAGE) and blotted to nitrocellulose
membranes.

Isolation of mitochondria from mammalian cells

Mitochondria were isolated by differential centrifugation as described
(Yang et al., 1997). After several washes in SEM buffer (250 mM sucrose, 1
mM EDTA, 10 mM MOPS-KOH, pH 7.2), mitochondria were resuspended
in SEM buffer. Mitochondria were further purified by layering a crude mi-
tochondrial fraction on a discontinuous sucrose gradient (1-1.5 M) in TyoE,
buffer (1 mM EDTA, 10 mM Tris-HCI, pH 7.5). After centrifugation for 20
min at 60,000 g at 4°C, mitochondria were recovered from the 1.0 M/1.5 M
interface, carefully adjusted to 250 mM sucrose, and washed twice in SEM
buffer.

Immunoprecipitation

Cells or isolated mitochondria were lysed in ice-cold TXIP-1 buffer contain-
ing either PMSF or protease inhibitor cocktail (Roche). Lysates were centri-
fuged at 16,000 g for 5 min at 4°C, and anti-FLAG monoclonal M2 antibody
covalently coupled to agarose was added. Samples were incubated at 4°C
for 12 h, centrifuged, and washed four times in TXIP-1 buffer. For the
deacetylation assays, the fourth wash was carried out in SIRT deacetylase
buffer (4 mM MgCl,, 0.2 mM dithiothreitol, 50 mM Tris-HCI, pH 9.0).

Import of radiolabeled proteins into isolated mitochondria
Proteins were imported into isolated mitochondria as previously reported
(Wiedemann et al., 2001). Proteins were synthesized in the presence of
[**S]-methionine by coupled transcription—translation in rabbit reticulocyte
lysate (Promega; Pelham and Jackson, 1976). In vitro translation reactions
were centrifuged at 108,000 g, for 15 min at 2°C and adjusted to 250 mM
sucrose. Import reactions contained 5% (vol/vol) reticulocyte lysate in im-
port buffer (3% [wt/vol] fatty acid—free BSA, 250 mM sucrose, 80 mM KClI,
5 mM MgCl,, 2 mM KH,PO,4, 5 mM t-methionine, 10 mM 3—[N-mor-
pholino]propanesulfonic acid-KOH, pH 7.2). In each import reaction, 50
ug of freshly isolated mammalian mitochondria was mixed with radiola-
beled proteins and incubated at 30°C. ATP (2 mM) and sodium succinate
(10 mM) were added to maintain coupling of isolated mitochondria. Im-
port was stopped by adding valinomycin (1 wM) and placing the mixture
on ice. Where indicated, samples were treated with proteinase K (50 wg/
ml) for 10 min on ice. Protease treatment was stopped by adding 2 mM
PMSF. Mitochondria were reisolated by centrifugation at 10,000 g for 5
min at 4°C, washed in SEM buffer, and recentrifuged as above. Mitochon-
drial pellets were resuspended in SDS sample buffer containing DTT and
heated to 95°C for 5 min. Samples were subjected to SDS-PAGE. Dried
gels were exposed to Biomax MR film (Kodak) at —=70°C and analyzed on a
Fuji FUJIX BAS 1000 phosphorimager. Where indicated, mitochondrial
transmembrane potential was disrupted by blocking complex IlI of the re-
spiratory chain (antimycin, 8 uM), Fo/F;-ATPase (oligomycin, 20 uM), and
potassium flux (valinomycin, 1 uM).

Swelling experiments were performed according to published protocols
(Ryan et al., 2001). Mitochondria were isolated from hSIRT3-FLAG trans-
fected HEK293T cells, washed, and treated with proteinase K (150 ug/ml)

to remove nonimported protein. Mitochondria were reisolated by centrifu-
gation at 10,000 g for 5 min, washed with SEM buffer, and recentrifuged.
Mitochondrial pellets were resuspended in SM buffer (250 mM sucrose, 10
mM MOPS-KOH, pH 7.2) diluted tenfold into M buffer (10 mM MOPS-
KOH, pH 7.2) to induce swelling, and incubated on ice for 15 min. Mito-
plasts and nonswollen mitochondria were treated with proteinase K (150
wg/ml) for 10 min at 0°C. Protease digestion was stopped by adding 2 mM
PMSF, and mitoplasts and mitochondria were reisolated by centrifugation,
washed, and lysed in sample buffer. Samples were separated by SDS-
PAGE and blotted onto polyvinylidene fluoride membrane.

Fractionation of mitochondrial proteins by alkaline treatment
Mitochondrial proteins were fractionated as described (Fujiki et al., 1982;
Honlinger et al., 1996). In brief, washed mitochondrial pellets were resus-
pended in freshly prepared 0.1 M sodium carbonate, pH 11.5, and incu-
bated at 0°C for 30 min. Mitochondrial membranes were sedimented by
ultracentrifugation at 100,000 g for 30 min at 4°C. The pellet was resus-
pended in SDS sample buffer, and proteins in the supernatant were con-
centrated by trichloracetate precipitation and resuspended in sample
buffer.

In vitro deacetylase assay

Deacetylase assays were performed in 100 wl of SIRT deacetylase buffer (4
mM MgCl,, 0.2 mM dithiothreitol, 50 mM Tris-HCI, pH 9.0) containing
immunoprecipitated proteins or mitochondrial lysates and a peptide corre-
sponding to the first 23 amino acids of histone 4 chemically acetylated in
vitro. (Emiliani et al., 1998). The histone peptide was acetylated in vitro by
overnight incubation with [*H]-acetate (5 mCi, 5.3 Ci/mmol; NEN) in 500
ul of EtOH in the presence of 0.24 M benzotriazole-1-yloxy-tris(dimeth-
ylamino)phosphonium hexafluorophosphate (Sigma-Aldrich) and 0.2 M
triethylamine followed by reverse-phase HPLC purification. Where indi-
cated, T mM NAD, 5 mM nicotinamide, or 400 nM TSA (WAKO) was
added. Deacetylation reactions were stopped after 2 h of incubation at
room temperature by adding 25 ul of stop solution (0.1 M HCI, 0.16 M
acetic acid). Released acetate was extracted into 500 .l ethyl acetate, and
samples were vigorously shaken for 15 min. After centrifugation for 5 min,
400 pl of the ethyl acetate fraction was mixed with 5 ml of scintillation
fluid (Packard), and the released radioactivity was measured with a liquid
scintillation counter.

MPP cleavage assay

Purified recombinant yeast MPP (Geli, 1993) was obtained from G. Isaya
(Mayo Clinic Foundation, Rochester, MN). Cleavage of radiolabeled in
vitro-translated proteins was carried out in reaction buffer (1 mM dithio-
threitol, T mM MnCl,, 10 mM Hepes-KOH, pH 7.4). Purified MPP or reac-
tion buffer was added to each sample followed by incubation at 27°C for
45 min. Reactions were stopped by adding SDS sample buffer and boiling
at 95°C for 5 min. Samples were separated by SDS-PAGE and analyzed by
phosphorimaging.
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