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Abstract: The nasopharynx is the ecological niche where evolution towards resistance occurs 

in respiratory tract isolates. Dynamics of different bacterial populations in  antibiotic-free 

 multibacterial niches are the baseline that antibiotic treatments can alter by shifting the 

 competitive balance in favor of resistant populations. For this reason, antibiotic resistance is 

increasingly being considered to be an ecological problem. Traditionally, resistance has implied 

the need for development of new antibiotics for which basic efficacy and safety data are required 

prior to licensing. Antibiotic development is mainly focused on demonstrating  clinical efficacy 

and setting susceptibility breakpoints for efficacy prediction. However, additional informa-

tion on pharmacodynamic data predicting absence of selection of resistance and of resistant 

subpopulations, and specific surveillance on resistance to core antibiotics (to detect emerging 

resistances and its link with antibiotic consumption in the community) are valuable data in 

defining the role of a new antibiotic, not only from the perspective of its therapeutic potential but 

also from the ecologic perspective (countering resistances to core antibiotics in the community). 

The documented information on cefditoren gleaned from published studies in recent years is 

an example of the role for an emerging oral antibacterial facing current antibiotic resistance in 

community-acquired respiratory tract infections.
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Nasopharyngeal colonization  
and prevalent isolates
Mucosal surfaces are simultaneously colonized by multiple species, with an  intricate 

balance in the nasopharynx between Streptococcus pneumoniae, Streptococcus 

pyogenes, Haemophilus influenzae, and other nasopharyngeal flora. These bacterial 

species share three characteristics, ie, they colonize the nasopharynx of humans as 

their exclusive host, are exogenously transmitted to colonize the nasopharynx of 

new hosts, and are common etiological agents (most prevalent isolates) of bacterial 

community-acquired respiratory tract infections when they endogenously migrate to 

different ecosystems or when changes within their natural ecosystem occur. Thus the 

upper respiratory tract, with its commensal flora, acts both as a colonization defense 

mechanism and as a primary bacterial source for respiratory tract infections, S. pyogenes 

being the etiologic agent of tonsillitis, and S. pneumoniae and H. influenzae being the 

causative agents of otitis media, sinusitis, and lower respiratory tract infections, ie, 

acute exacerbation of chronic bronchitis (AECB) and pneumonia.

Carriage of these common respiratory isolates depends on multiple factors, such as 

active or passive smoking, crowding, age, bacterial fitness, specific  vaccination, and 
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 bacterial interference in antibiotic-free niches.1–3  Approximately 

80% of healthy individuals carry H. influenzae,4 with mul-

tiple strains in 50% positive samples and a high turnover of 

strains.2,5 In the case of S. pneumoniae, carriage ranges from 

10% to 40% in an age-dependent manner,6 with lower percent-

ages of multiple strains in the same sample7 and a duration 

of  nasopharyngeal carriage depending on age, seasonality, 

 resistance to  penicillin, serotype, and simultaneous carriage by 

other family members.8,9 S. pyogenes frequently colonizes the 

nasopharynx of asymptomatic persons, with carriage rates of 

15%–20% in school children (crowding favors interpersonal 

spread), but this is considerably lower in adults.10

Bacterial evolution towards 
resistance in respiratory tract 
isolates
The nasopharynx is the ecological niche where evolution 

towards resistance occurs in respiratory tract isolates. 

The evolution of antibiotic resistance involves two pro-

cesses, ie, emergence and spread.11,12 Resistance to β-lactams 

and macrolides is mostly due to acquisition of exogenous 

resistance genes, and has been described in S. pneumo-

niae and H. influenzae (in both cases, resistance to both 

β-lactams and to macrolides) and in S. pyogenes (resistance 

to macrolides),13–16 with de novo resistance occurring rarely 

within a given host in a susceptible bacterial population.13 

In contrast, resistance to fluoroquinolones in S. pneumoniae 

arises within a given host due to point mutations.13

Evolution is based on production of variation, management 

of variation, and natural selection of variants.17 Dynamics of 

different bacterial populations in antibiotic-free niches are the 

baseline that antibiotic treatments can alter18,19 by shifting the 

competitive balance in favor of resistant populations. For this 

reason, antibiotic resistance is increasingly regarded as an eco-

logic problem. Once resistance has emerged, physiologic con-

centrations of different antibiotics may select resistant strains 

by eradicating the susceptible ones (thus unmasking resistant 

populations),19 or by selecting intrastrain-resistant subpopula-

tions.20 Because multiple individuals harbor multiple bacterial 

populations exhibiting different degrees of antibiotic resistance 

at the community level, the prevalence of resistance is directly 

related to antibiotic consumption in the community.21

Antibiotic consumption as the 
driver of resistance: a global 
problem
Infection, mainly of the respiratory tract,22,23 is the most  frequent 

reason for seeking medical attendance in the  community. 

Around 85%–90% of antibiotic consumption occurs in the 

community, and 80% of this consumption is for the treatment 

of respiratory tract infections.24 Antibiotic consumption has 

been associated with resistance selection.21 Consumption of 

β-lactams and macrolides has been associated with penicillin/

erythromycin resistance in S. pneumoniae, both temporally25 

and geographically,26 with high correlations between penicil-

lin/erythromycin resistance and consumption of long half-life 

macrolides and second-generation oral cephalosporins.25,26 

Associations between ampicillin/amoxicillin resistance in 

H. influenzae and Moraxella catarrhalis and consumption 

of aminopenicillins (with or without clavulanic acid),27,28 as 

well as the association between erythromycin resistance in S. 

pyogenes and consumption of long half-life macrolides, have 

also been described.29,30

Because antibiotic consumption in the community has 

been associated with resistance prevalence, in geographic 

locations with high antibiotic consumption, eg, Spain, 

 associations between the resistance rates found in  different 

bacterial species of respiratory tract isolates could be 

expected. In Spain, penicillin resistance in S. pneumoniae has 

been significantly associated with erythromycin resistance 

(due to the coresistance selection phenomenon),31,32 and with 

ampicillin resistance in H. influenzae (due to the phenomenon 

of coselection of resistance). In addition, geographically, 

erythromycin resistance in S. pyogenes was significantly 

related to penicillin and/or erythromycin resistance in 

S. pneumoniae and to ampicillin resistance in H. influenzae.13 

Considering these associations, in Spain, as in other coun-

tries, resistance should be considered as a global problem 

with regard to respiratory isolates in the community.

Current resistances in respiratory 
isolates in the community
Streptococcus pneumoniae
Penicillin/erythromycin nonsusceptibility in S. pneumoniae 

is mainly clustered in a reduced number of serotypes. In 

invasive isolates, the increase in the prevalence of antibiotic 

nonsusceptibility and of certain serotypes that occurred in the 

1980s and 1990s related to antibiotic consumption reversed 

in the 2000s when the seven-valent conjugate pneumococcal 

vaccine (PCV7) (including serotypes most associated with 

penicillin/erythromycin nonsusceptibility) was introduced 

for childhood immunization.33,34 The introduction of PCV7 

produced not only a dramatic reduction in the incidence of 

invasive pneumococcal disease, but also a marked decrease in 

PCV7 serotypes which consequently affected penicillin and 

erythromycin nonsusceptibility in invasive isolates.34,35
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With respect to noninvasive isolates in Spain, surveillance 

including high number of isolates has shown that nonsuscep-

tibility to penicillin was 45%–50% from 1998 to 2002, with 

full oral penicillin resistance rates of approximately 20%.31,36 

Amoxicillin nonsusceptibility remained around 10% in 

this period but, among full penicillin-resistant isolates, this 

rate increased to around 40%.31,36 These penicillin-resistant 

isolates exhibited nearly 100% resistance to oral second-

generation cephalosporins, eg, cefaclor or cefuroxime, and 

55% resistance to macrolides.31 In a worldwide surveillance 

(1999–2004) of isolates from community-acquired infections 

in patients $65 years (including a high number of noninva-

sive isolates), penicillin nonsusceptibility was approximately 

22% in Eastern Europe and North America, and up to about 

60% in Far East.37

The emergence of amoxicillin resistance within pre-existing 

penicillin-resistant clones has also been related to macrolide 

and ciprofloxacin resistance,31,36,38 with reports of spread of 

troublesome clones with MIC values of amoxicillin higher than 

those of penicillin,39 mainly the four Spanish multiresistant ones 

(Spain23F-1, Spain6B-2, Spain9V-3, and Spain14-5).

Erythromycin resistance in pneumococci has remained 

relatively stable in Spain, with rates of around 35% between 

1996 and 2002 in surveillances including high numbers of 

noninvasive isolates.31,36,40 The main resistant phenotype is 

MLS
B
 (approximately 90%), with M-efflux representing 

approximately 10%,31 thus erythromycin resistance also 

implies clarithromycin and azithromycin resistance. Similar 

resistance rates are found in the US (30.0%–35.3%), with 

an increase in highly resistant strains in recent years, and a 

decrease in M-efflux-mediated resistant strains.41

In the same surveillance, ciprofloxacin resistance 

(MIC $ 4 µg/mL) was around 5%–7%,31,37 but .85% of these 

isolates were susceptible to levofloxacin and  moxifloxacin. 

From these data it is deduced that rates of nonsusceptibility to 

respiratory fluoroquinolones (levofloxacin and moxifloxacin) 

are not .1%.36 Worldwide, a 2.2% nonsusceptibility rate has 

been reported for levofloxacin.37

Multiple resistance, defined as full resistance to two or 

more of the six classes of antibacterials represented by peni-

cillin, erythromycin, cefuroxime, tetracyclines, trimethoprim-

sulfamethoxazole, and levofloxacin, has been reported in 

S. pneumoniae, with rates as high as 19.1% in North America, 

27.7% in Western Europe, and 80.4% in the Far East.37

Streptococcus pyogenes
S. pyogenes is highly susceptible to all β-lactams.  Prevalence 

of resistance to erythromycin was 37% in 2001–2002 

in Spain,31 with the M-efflux phenotype being the most 

prevalent (86%), and with 14% of strains from the MLS
B
 

phenotype showing constitutive resistance.31 Since both 

mechanisms imply resistance to 14- and 15-membered 

macrolides, erythromycin resistance implies resistance to 

azithromycin and clarithromycin.42

In the last few years, S. pyogenes isolates showing low-

level resistance to fluoroquinolones have been reported,43–45 

with infrequent high-level resistance to date. However, due 

to the high prevalence of isolates harboring parC mutation, 

in the near future the frequency of high-level resistance 

may increase because only one new mutation in gyrA is 

required.46 In Spain, there has been a marked increase in the 

number of isolates with low-level resistance, and isolates 

showing high-level resistance have also been detected.47

Haemophilus influenzae
The basic problem of resistance in this species is defined by 

ampicillin as the resistance marker. According to  successive 

surveillance studies carried out from 1996 to 2002, 

 approximately 25% of H. influenzae isolates are resistant 

to ampicillin in Spain.31,48,49 Up to 80% of these ampicillin-

resistant isolates produce β-lactamases (TEM-1, TEM-2, and 

with lower frequency ROB-1) that are inhibited by clavulanic 

acid. The remaining 20% ampicillin-resistant isolates (5% of 

all H. influenzae isolates in Spain) are resistant to ampicillin 

due to mutations in the ftsI gene that cause alterations in the 

amino acid sequences of penicillin-binding protein 3 (PBP3).50 

This resistance genotype defines BLNAR (β-lactamase nega-

tive ampicillin-resistant) strains and since alterations in PBP3 

preclude the adequate binding of ampicillin and amoxicillin, 

BLNAR strains are also resistant to amoxicillin–clavulanic 

acid, ampicillin–sulbactam, cefaclor, and cefuroxime.51

Both mechanisms of resistance, ie, β-lactamase 

 production and mutations in the ftsI gene, are present in 

BLPACR (β-lactamase positive amoxicillin–clavulanic acid 

resistant) strains. Among Spanish isolates, according to data 

from different studies, there is an increasing prevalence of 

BLNAR (from 10% in 1997–1998 to approximately 30% in 

2004–2005) and to a lesser extent BLPACR phenotypes,52,53 

in relation to β-lactam consumption over time, mainly 

 amoxicillin with or without clavulanic acid.53

Efficacy prediction for commonly 
used antibiotics
While “microbiologic breakpoints” detect wild-type 

bacterial populations that do not harbor any acquired 

or selected resistance to the antibacterial examined, 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Infection and Drug Resistance 2010:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

38

Aguilar et al

 “pharmacokinetic/pharmacodynamic (PK/PD) breakpoints” 

have been associated with microbial killing as an endpoint 

to predict bacterial eradication and clinical outcome.54–56 

By relating pharmacokinetic variables and susceptibility 

data (ie, antibiotic drug exposure relative to in vitro MIC), 

PK/PD breakpoints indicate the highest MIC value that pro-

duces the adequate value for the relevant PK/PD parameter. 

In the case of S. pneumoniae and H. influenzae, and β-lactams 

or macrolides, the time (expressed as the percentage of the 

dosing interval) that antibiotic concentrations exceed the 

value of MIC (T . MIC) is the parameter predicting efficacy, 

with a cutoff value of 40%, but in the case of fluoroquinolo-

nes, the parameter is the relationship between the area under 

the serum concentration-time curve (AUC) and the MIC 

(AUC/MIC), with a cutoff value of 30.

In a multicenter surveillance study in Spain, similar sus-

ceptibility rates were found for S. pneumoniae by applying 

the breakpoints defined by the Clinical Laboratory Standards 

Institute (CLSI) and PK/PD breakpoints for amoxicillin 

(approximately 92%), cefuroxime–axetil (about 67%), eryth-

romycin and azithromycin (about 64%), but not for cefaclor 

(61.7% versus 40.5%).31

For H. influenzae, the use of CLSI or PK/PD breakpoints 

does not influence susceptibility rates of ciprofloxacin 

(100%), ampicillin (about 75%) or amoxicillin–clavulanic 

acid (about 97%), but changes the rates of susceptibility 

to cefuroxime–axetil (from 100% to 72.8%) and cefaclor 

(from 82.1% to 1.4%), with lower rates when applying 

PK/PD breakpoints.31 In the case of macrolides, differences 

are clearly evident, with reductions in susceptibility rates to 

clarithromycin and azithromycin from 72% 100%, respec-

tively, by applying CLSI breakpoints, to 2.2% and 1.2%, 

respectively, by applying PK/PD breakpoints.31

Management strategies 
to overcome resistance
Under circumstances of a global problem of resistance among 

prevalent isolates in community respiratory pathogens, there 

is a need for strategies countering resistance, ie, selection 

of coresistance within the same species and coselection of 

resistances between species. One possible strategy is based 

on increasing oral doses for the treatment of respiratory tract 

infections in the community that, although not adequate for 

macrolides (high-level resistance), has been used in the case 

of amoxicillin–clavulanic acid, with the development of new 

formulations adequate to minimize amoxicillin resistance 

in S. pneumoniae, but inadequate to counter BLNAR and 

BLPACR diffusion among H. influenzae. Another  possible 

strategy is the development of new antibiotics with adequate 

pharmacokinetics and high in vitro activity against commu-

nity prevalent isolates, achieving values of pharmacodynamic 

parameters predicting bacterial eradication. The need for new 

antibiotics in the community is mainly defined by antimicro-

bial activity against the prevalent resistance phenotypes rather 

than the activity against phenotypes susceptible to antibiotics 

previously used in the community. For this reason new anti-

biotics for the treatment of respiratory tract infections should 

demonstrate in vitro activity against S. pneumoniae not sus-

ceptible to previous antibiotics (with specific phenotypes of 

resistance and clones) and H. influenzae nonsusceptible to 

ampicillin (BLNAR, BLPACR).

Cefditoren for community-acquired 
respiratory tract infections
In vitro activity
Cefditoren is an oral, third-generation aminothiazolyl 

cephalosporin with structural components similar to those 

of first- and third-generation cephalosporins.57 In general, 

cephalosporins differ from one another mainly in the 

two side chain components attached to the cephem scaffold. 

In cefditoren, the group attached at the C-7 position affords 

activity against Gram-negative microorganisms, whereas 

the one attached at the C-3 position affords activity against 

Gram-positive bacteria (not seen in other non-first-generation 

cephalosporins).

In vitro studies carried out to explore the activity of 

 cefditoren included not only a high number of strains iso-

lated in the community but also a significant number of 

strains with troublesome resistance phenotypes/genotypes. 

Cefditoren exhibited potent intrinsic activity, inhibiting all 

penicillin-susceptible S. pneumoniae at concentrations of 

0.12 µg/mL (MIC
90

 of #0.03 µg/mL).58 At concentrations 

of 0.5 µg/mL, cefditoren inhibited 92.6% of cefotaxime 

nonsusceptible pneumococci and .97% of strains nonsus-

ceptible to the other antibiotics (penicillins, cephalosporins, 

macrolides, ketolides, and quinolones).59 With respect to 

Spanish multiresistant clones, cefditoren exhibited an MIC
90

 

of #0.5 µg/mL against strains belonging to Spain23F-1 (with 

susceptibility rates to amoxicillin–clavulanic acid of 4.2%, to 

macrolides of 66.7%, and to cefotaxime of 95.8%), Spain9V-3 

(with susceptibility rates to amoxicillin–clavulanic acid of 

30%, to macrolides of 81.7%, and to cefotaxime of 85%), and 

Spain6B-2 (with susceptibility rates to amoxicillin–clavulanic 

acid of 6.8%, to macrolides of 4.5%, and to cefotaxime 

of 81.8%).60 Against the most troublesome strains of the 

clone Spain14-5 (that exhibited susceptibility rates of 7.3% 
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to amoxicillin, 4.9% to macrolides, 57.3% to cefotaxime, 

and only 65.9% to  levofloxacin), cefditoren MIC
50

/MIC
90

 

values were 0.5/1 µg/mL, one dilution lower than values for 

cefotaxime.60

Against H. influenzae, while amoxicillin–clavulanic 

acid and cefuroxime MIC
50

/MIC
90

 values increased from 

0.5/1 µg/mL for ampicillin-susceptible strains to 2/4 and 

1/4 µg/mL, respectively, for BLNAR strains, and up to 4/8 

and 4/16 µg/mL, respectively, for BLPACR strains, cefdito-

ren exhibited similar intrinsic activity to that of cefotaxime 

against ampicillin-susceptible, BLNAR and BLPACR strains 

with MIC
50

/MIC
90

 values of 0.03/0.06 µg/mL.61,62 The excel-

lent intrinsic activity of cefditoren against H. influenzae has 

recently been confirmed in a multicenter European study 

testing 665 clinical isolates, with MIC
50

/MIC
90

 for cefditoren 

of #0.06/#0.06 µg/mL.63

Pharmacokinetics and 
pharmacodynamics
In a Phase I study administering a single dose of 400 mg 

cefditoren–pivoxil with food to 10 healthy Caucasian male 

volunteers, Cmax was 3.7 ± 0.7 µg/mL, T
max

 was 2 hours, 

AUC
0–α was 12.5 ± 1.6 µg × hour/mL, and the elimination 

half-life was 1.54 ± 0.20 hours.64 In the theoretical pharmaco-

dynamic assessment performed with these data, considering 

T . MIC as the relevant PK/PD parameter, the 400 mg bid 

regimen of cefditoren–pivoxil obtained a value of T . MIC 

for total drug of approximately 55% for MIC 0.5 µg/mL, 

68% for MIC 0.25 µg/mL, 81% for MIC 0.12 µg/mL and 

94% for MIC 0.06 µg/mL.64

This pharmacodynamic analysis was performed consider-

ing the total drug. Cefditoren is a highly protein-bound anti-

microbial with 88% protein binding.57 It has been suggested 

that only the unbound fraction of an antimicrobial is active 

in vitro, but the reversibility of protein binding implies that 

limitation of activity may be far from absolute, even in highly 

protein-bound agents.65 To explore the activity of cefditoren 

in the presence of human albumin, a one-compartmental in 

vitro dynamic model simulating the cefditoren 400 mg bid 

serum profile over 24 hours, using media consisting of 75% 

human serum and 25% broth with albumin at physiologic 

concentration (4.9 g/dL), was used.66 Antibacterial activity 

was determined over time against S. pneumoniae exhibiting 

MICs of 0.25 and 0.5 µg/mL.66 The cefditoren protein bind-

ing in the system was 87.1%, thus potentially interfering 

with cefditoren activity as in in vivo situations. Under these 

circumstances, at 24 hours, initial inoculum reductions for 

strains with MIC of 0.25 µg/mL was .99.9% (bactericidal 

activity), and ranged from 53% to 97% (an effect higher than 

simply bacteriostatic) for strains with MIC 0.5 µg/mL.66

For extrapolation to humans, a Monte Carlo simulation, 

ie, the method for determining the probability to achieve a 

specific value of a PK/PD index in the general population, was 

performed using cefditoren data from a Phase I study,64 and 

considering both total and free (calculated using the rate of 

protein binding) concentrations of cefditoren.67  Considering 

the target attainment of T . MIC $ 40% (as predictive 

of efficacy),68,69 cefditoren covered (.90%  probability to 

achieve this value of T . MIC) strains with MIC values of 

#0.5 µg/mL (total drug), and #0.12 µg/mL (free drug). 

When the bacteriostatic target attainment (33% T . MIC)70 

was considered, based on definitions of “susceptibility” 

by the FDA71 and CLSI51 as “pathogen likely inhibition by 

blood concentrations”, cefditoren had a .90% probability 

to achieve this bacteriostatic endpoint for MICs #0.5 µg/mL 

and #0.25 µg/mL for total and free drug, respectively.67

Cefditoren breakpoints
Experimental data (in vitro susceptibility and PK/PD 

 experimental data) and Monte Carlo extrapolations are 

 valuable data for assessing potential breakpoints for 

 cefditoren. Different values have been proposed or defined 

for cefditoren. While breakpoint values proposed by the FDA 

are #0.12 µg/mL for susceptibility and $0.5 µg/mL for 

resistance, some authors have suggested cefditoren suscep-

tibility breakpoint values of #0.5 µg/mL or #1 µg/mL,72–74 

 considering cefditoren MIC
90

 values lower than the  breakpoint 

values for parenteral third-generation  cephalosporins and 

the pharmacokinetics of cefditoren. Although nowadays 

there are no established breakpoints defined by the CLSI 

or the  European Committee on Antimicrobial  Susceptibility 

 Testing,  experimental and Monte Carlo results are in accor-

dance with the susceptibility breakpoint approved by the 

Spanish Agency during the registration procedure in Europe 

(susceptibility #0.5 µg/mL).75 With this breakpoint value, 

100% isolates of H. influenzae and S. pyogenes and 94% of 

S. pneumoniae are covered in Spain.76

Clinical data on cefditoren 
in community-acquired 
respiratory tract infections
Upper respiratory tract infections
Data from all six clinical trials carried out during the 

clinical development of cefditoren in upper respiratory 

tract  infections were combined in a pooled analysis.77 With 
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respect to pharyngotonsillitis, no significant differences in 

clinical response were found between cefditoren and peni-

cillin V, with success rates ranging from 89.4% to 95.3% 

when pooling data from the three comparative multicenter 

studies (two previously published)78,79 already performed.77 

Eradication of S. pyogenes was higher with cefditoren at 

the end of therapy (90.4% versus 82.7%; P = 0.002) and 

at the end of follow-up (84.7% versus 76.7%; P = 0.008), 

although statistical significance (set at P , 0.001) was not 

reached.77

Similarly, in acute sinusitis, no differences in clinical 

response were found between cefditoren and comparators 

(cefuroxime or amoxicillin-clavulanic acid) both at the end 

of therapy (80.2% versus 84.8%) and at the end of follow-up 

(71.2% versus 77.4%) pooling data from the three studies 

(one previously published)80 performed during the clinical 

development of cefditoren.77

Lower respiratory tract infections
Seven studies were carried out in the clinical development of 

cefditoren for the treatment of lower respiratory tract infec-

tions, four studies in community-acquired pneumonia (CAP), 

and three studies in AECB. A pooled analysis of data was 

performed including a total of 4159 randomized patients.81 

In CAP studies (two previously published),82,83 no significant 

differences were found in pooled clinical response rates 

between cefditoren and comparators (amoxicillin–clavulanic 

acid or cefpodoxime), with percentages of responders ranging 

from 89.2% to 91.8% at the end of therapy, and from 85.9% 

to 90.4% at the end of follow-up.

In AECB, pooled data from the three published  studies84–86 

showed clinical response rates ranging from 85.8% to 91.3% 

at the end of therapy, and from 81.2% to 83.3% at the end of 

follow-up, without significant differences between cefditoren 

and the comparators, ie,  cefuroxime or clarithromycin.

CAP and AECB data were pooled to explore micro-

biologic outcomes.81 With respect to S. pneumoniae, there 

were no significant between-group differences in the rate of 

bacteriologic responders, with rates ranging from 88.5% to 

92.0%. All penicillin nonsusceptible (MIC $0.12 µg/mL) 

isolates of S. pneumoniae in the cefditoren 400 mg group 

(n = 20), 16 of 19 strains (84.2%) in the cefditoren 200 mg 

group, and 16 of 17 strains (94.1% ) in the comparator group 

were eradicated or presumed to be eradicated.81 Among 

penicillin-resistant (MIC $2 µg/mL) isolates, 17 of 18 

(94.4%) isolates in both cefditoren arms were eradicated or 

presumed to be eradicated compared with 10 of 11 (90.9%) 

in the comparator group.81

No significant differences in microbiologic outcome 

with respect to H. influenzae were found between groups, 

with pooled response rates ranging from 82.7% to 86.6%.81

Safety profile
Safety data from all the 13 clinical trials carried out with 

cefditoren in the treatment of community-acquired respira-

tory tract infections were analyzed in a pooled analysis.87 

The safety population was defined as all randomized patients 

with at least one dose intake, and consisted of 4592 patients 

for cefditoren. Cefditoren exhibited an adverse event profile 

similar to that of other antibiotics currently used in the treat-

ment of community-acquired respiratory tract infections, 

with diarrhea being the most frequent adverse event (9.9%) 

followed by nausea (3.5%), abdominal pain (1.8%), and 

dyspepsia (1.1%).87 The rate of vaginosis reported in the 

female population was 3.9%.87

Conclusions
There is increasingly evidence confirming that  bacterial 

eradication should be the primary goal of antibiotic 

 therapy because eradication is the main determinant of 

both  therapeutic outcome and prevention of resistance. 

In the most  prevalent bacterial isolates from community-

acquired respiratory tract infections, that are responsible 

for 80% of consumption of antibiotics in the community, 

there is a global problem of resistance. This means that 

geographic correlations of resistances are consistently 

found between different antibiotics in one species and in 

different species, due to the selection of coresistance and 

coselection of resistance by antibiotic pressure. Resistance 

has traditionally implied the development of new antibiotics 

for which basic efficacy and safety data are required prior 

to licensing. However, during the clinical development 

of a new compound, apart from collecting data on safety 

and tolerance, there is a need to explore the adequacy of 

pharmacodynamic parameters in predicting eradication 

(bacteriologic response) and subsequent clinical efficacy to 

establish breakpoints. Since evolution of bacteria towards 

resistance is a dynamic process, several issues should also 

be addressed after the introduction of a new antibiotic to 

the market. These issues will establish differences between 

the new compound and older antibiotics, and are mainly 

focused on the pharmacodynamic data needed to predict 

selection of resistance and of resistant subpopulations in 

 multibacterial niches (simulating the nasopharynx as the 

specific site for emergence of resistance in respiratory 

tract isolates),  followed in the postmarketing phase by 
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specific  surveillance on resistance to core antibiotics to 

detect  emerging resistances and any link with antibiotic 

consumption in the community.88 This will define the role 

of the new antibiotic, not only from the perspective of 

its therapeutic potential, but also from the ecologic per-

spective, ie,  countering resistances to core antibiotics in 

the  community. The introduction of new antibiotics with 

documented adequate PK/PD and ecologic potentials might 

impact antibiotic policies, ie, decreased use of antibiotics 

with high resistance selection potential.

The documented information on cefditoren gathered from 

published studies in recent years, including those showing its 

ecologic potential in multibacterial niches,11,89 is an example 

of the role for an emerging oral antibacterial facing the cur-

rent antibiotic resistances in community-acquired respiratory 

tract infections.
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