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To better support the design of peptide-based vaccines, refinement of methods to predict B-cell epitopes necessitates meaningful
benchmarking against empirical data on the cross-reactivity of polyclonal antipeptide antibodies with proteins, such that the
positive data reflect functionally relevant cross-reactivity (which is consistent with antibody-mediated change in protein function)
and the negative data reflect genuine absence of cross-reactivity (rather than apparent absence of cross-reactivity due to artifactual
masking of B-cell epitopes in immunoassays). These data are heterogeneous in view of multiple factors that complicate B-cell
epitope prediction, notably physicochemical factors that define key structural differences between immunizing peptides and their
cognate proteins (e.g., unmatched electrical charges along the peptide-protein sequence alignments). If the data are partitioned
with respect to these factors, iterative parallel benchmarking against the resulting subsets of data provides a basis for systematically
identifying and addressing the limitations of methods for B-cell epitope prediction as applied to vaccine design.

1. Introduction

The timely development of new vaccines is imperative to
address the complex and rapidly evolving global burden of
disease [1–7]. Vaccines typically induce protective immunity
by eliciting antibodies that neutralize the biological activity
of proteins (e.g., bacterial exotoxins) [6]. These proteins
comprise B-cell epitopes, that is, molecular substructures
whose defining feature is their capacity for binding by
antibodies. In turn, each B-cell epitope comprises spatially
proximate amino acid residues or atoms thereof [8]; but its
physical boundaries cannot be precisely delineated due to the
limited specificity of molecular recognition by antibodies [9].

A peptide may induce antipeptide antibodies that cross-
react with a cognate protein; if the antibodies neutralize
the biological activity of the protein and thereby confer
protective immunity, the peptide is a candidate vaccine
component [6]. Such peptides are routinely designed to
contain B-cell epitopes that have been predicted (i.e.,
presumptively identified) through computational analysis of
cognate protein sequence or higher-order structure [3, 10].

For this application, the refinement of methods to predict
B-cell epitopes necessitates benchmarking against empirical
data [8].

Empirical data for benchmarking B-cell epitope predic-
tion are customarily organized into individual records, each
of which contains three key components, namely structural
data on an immunogen, structural data on an antigen, and
data on the outcome of an antibody-antigen binding assay
[11–13]; the immunogen (e.g., peptide or protein conjugate
thereof) induces antibodies while the antigen (e.g., cognate
protein or biological source thereof) is used in the assay to
determine the binding capacity of the antibodies. In many
cases, the only structural data available are the sequences
of both the immunogen and antigen while the outcome of
the assay is expressed as either positive or negative binding
even when the original outcome variable (e.g., inhibition of
biological activity) is continuous rather than dichotomous.
For a single record containing these minimal data, the task
actually benchmarked is the exhaustive identification of
putative epitopes as sequences that are predicted to both
induce antibodies as part of the immunogen and act as
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targets for binding by the antibodies as part of the antigen. If
the immunogen is found to contain at least one such putative
epitope, positive binding is the predicted outcome of the
assay; otherwise, negative binding is the predicted outcome
of the assay.

In the discussion of approaches to benchmark B-cell
epitope prediction, a major source of confusion is the
superficial parallelism between cross-reaction of antipeptide
antibodies with proteins and cross-reaction of antiprotein
antibodies with peptides. B-cell epitope prediction for both
types of cross-reaction may be benchmarked against data in
records of the same format, with the core of each record
containing data on an immunogen, an antigen and the
outcome of an antibody-antigen binding assay; but the roles
of peptide and cognate protein are reversed for the latter
type of cross-reaction, wherein cognate protein serves as
immunogen while peptide serves as antigen for the binding
assay. The physicochemical ramifications of this difference
[14] imply that cross-reaction of antiprotein antibodies with
peptides is mechanistically irrelevant to peptide vaccination
and, by extension, that data on this type of cross-reaction are
inappropriate for benchmarking B-cell epitope prediction
where the intended application is the design of peptide-based
vaccines [15].

Against an unprecedentedly large set of empirical
data from high-throughput peptide-scanning experiments,
benchmarking has revealed apparent underperformance of
methods for B-cell epitope prediction that are based solely on
sequence [12]. This outcome has long been anticipated from
the gross oversimplification of modeling proteins as if they
were unidimensional entities [16]. However, the data used
for the analysis are irrelevant to peptide vaccination because
they pertain exclusively to cross-reaction of antiprotein
antibodies with peptides [15]; furthermore, the analysis itself
neglects the multiplicity of factors that complicate B-cell
epitope prediction, which merit closer scrutiny considering
the pitfalls of reductionism in vaccine design [17–20]. In
light of the fact that conclusions drawn from benchmarking
are highly dataset-dependent [21], the present work explores
the ensuing problems and suggests how to avoid them
through judicious selection and partitioning of empirical
data.

2. Conceptual Basis

B-cell epitope prediction can be employed to arrive at a com-
putational result on the capacity of antipeptide antibodies to
cross-react with a protein, but a definitive empirical result is
established by observing for evidence of actual cross-reaction
in a real system [8]. The essence of benchmarking is appraisal
of the computational result against the empirical result:
If these two results are in agreement, the computational
result is deemed true; otherwise, it is deemed false. By
convention, each result is either positive if it affirms cross-
reaction or negative if it negates cross-reaction. Hence, the
computational result falls into one of four mutually exclusive
categories, namely true-positive, true-negative, false-positive
and false-negative (hereafter denoted by TP, TN, FP and FN,
resp.) [22, 23].

Benchmarking entails computation of sensitivity as
TP/(TP + FN) and specificity as TN/(TN + FP), where each
algebraic symbol represents the number of computational
results falling within the denoted category [22, 23]. Sensi-
tivity and specificity both range from zero to one, and would
both be equal to one for a perfect predictive method; but in
practice, either may be greater than zero only if the other is
less than one. The accuracy of B-cell epitope prediction is
increased by simultaneously increasing both sensitivity and
specificity, or by increasing either without decreasing the
other.

The mathematical definitions of sensitivity and speci-
ficity clarify the inherent problems of attempting to bench-
mark B-cell epitope prediction against irrelevant empirical
results; insofar as the design of peptide-based vaccines is
concerned, the most obvious of these results are from
experiments that do not even simulate vaccination with
peptides (e.g., where antibodies are never elicited by pep-
tides in the first place). The designation of such results
as either positive or negative is meaningless; at worst, it
leads to erroneous appraisal of computational results that
translates to miscalculation of both sensitivity and specificity.
Consequently, methods for B-cell epitope prediction can
be either underrated or overrated, thereby compromising
efforts to assess their performance and address their limita-
tions accordingly.

3. Selection of Data for Benchmarking

B-cell epitope prediction has been largely benchmarked
against data acquired by probing antiprotein antibodies for
cross-reactivity with peptides [11, 12]; yet for the design of
vaccine peptides, reliable data are acquired only by probing
antipeptide antibodies for cross-reactivity with proteins.
Cross-reaction of antipeptide antibodies with proteins is
distinct from cross-reaction of antiprotein antibodies with
peptides [24], for which reason antibodies elicited by a
protein do not necessarily cross-react with a peptide even
if antibodies elicited by the peptide cross-react with the
protein [25, 26]; because of this phenomenological asym-
metry, benchmarking against data on antiprotein antibod-
ies inevitably leads to misclassification of computational
results that apply to antipeptide antibodies, with true-
positives misclassified as false-positives (risking calculation
of erroneously low values for both sensitivity and specificity)
and false-negatives misclassified as true-negatives (risking
calculation of erroneously high values for both sensitivity
and specificity). Methods for B-cell epitope prediction may
thus be either underrated or overrated for peptide-based
vaccine design if they are benchmarked against data on
antiprotein antibodies. Similar problems can arise with data
acquired using monoclonal antibodies: If a monoclonal
antipeptide antibody fails to cross-react with a protein, this
result by itself may not be representative of a polyclonal
antibody response in vivo [27]. Such sampling errors are
avoided by using a sufficiently large panel of different
monoclonal antibodies [27], which is virtually equivalent to
polyclonal antibody. Therefore, the fundamental criterion
for selecting empirical data is their generation through
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experiments that are adequate to detect cross-reactions of
polyclonal antipeptide antibodies with proteins; but other
criteria must also be invoked to avoid the problems of
functionally irrelevant cross-reactivity (in relation to positive
data) and apparent absence of cross-reactivity (in relation to
negative data).

Functionally relevant cross-reactivity is cross-reaction
of antipeptide antibodies with proteins that alters protein
function (e.g., inhibiting enzymes). This is implicit in
cross-protective immunogenicity, that is, the capacity of
vaccine peptides to induce antipeptide antibodies that confer
protective immunity by cross-reacting with proteins [9, 10].
In contradistinction, functionally irrelevant cross-reactivity
is cross-reaction of antipeptide antibodies with proteins
that does not alter protein function. This is conceptually
analogous to apparent cross-reaction, which stems from the
notion that cross-reaction of antipeptide antibodies with
proteins is either genuine if the proteins are in native
form or merely apparent if the proteins are denatured
[28–30]; but the focus on functional correlates irrespective
of underlying protein conformations obviates the classical
dichotomy between native and denatured proteins, which
is increasingly difficult to reconcile with the emerging
paradigm of structural and functional versatility among
proteins [31–34] that encompasses intrinsic protein disorder
[35–39] as well as coupled protein folding and binding [40–
43]. Positive data that reflect only functionally irrelevant
cross-reactivity compromise benchmarking if they lead to
misclassification of true-negatives as false-negatives and
false-positives as true-positives. This problem is avoided
if all the positive data used for benchmarking have been
validated by assays that detect antibody-mediated change
in protein function (e.g., enzyme inhibition by antibodies),
as opposed to immunoassays that merely detect antibody-
protein binding without regard to protein function (e.g.,
binding of an enzyme by antibodies without regard to its
catalytic activity) [15, 44].

Whereas the interpretation of positive data is confounded
by functionally irrelevant cross-reactivity, the interpretation
of negative data is confounded by apparent absence of
cross-reactivity, that is, failure to detect cross-reactions of
antipeptide antibodies with proteins that is due to artifactual
masking of B-cell epitopes rather than genuine lack of
capacity for binding. Apparent absence of cross-reactivity
occurs in the setting of solid-phase immunoassays for
which proteins are immobilized onto solid surfaces (e.g., by
passive adsorption) in a way that renders B-cell epitopes
physically inaccessible to paratopes. This problem accounts
for conflicting results observed among different solid-phase
immunoassays [45, 46] and between solid-phase and fluid-
phase immunoassays [46, 47]; it is avoided if all the negative
data used for benchmarking have been validated by fluid-
phase immunoassays (e.g., immunoprecipitation) for which
proteins are dispersed in the fluid phase prior to their
encounter with antibodies [46], provided that artifactual
masking of B-cell epitopes has not occurred by alterna-
tive mechanisms (e.g., through interactions with blocking
reagents that might have been used to attenuate nonspecific
antibody binding).

Taken together, the preceding considerations suggest the
following approach to the selection of data for benchmark-
ing: Admit only those data that pertain to cross-reactivity
of polyclonal antipeptide antibodies with proteins, choosing
the positive data that reflect antibody-mediated change in
protein function and the negative data that are from fluid-
phase immunoassays.

Data thus selected are suitable for benchmarking B-
cell epitope prediction in support of applications for which
peptide-based immunogens are designed to induce antipep-
tide antibodies that cross-react with native proteins; these
applications include active and passive immunization for
prophylaxis against and treatment of disease, and also the
production of antipeptide antibodies as immunoaffinity
reagents for protein purification (e.g., in the preparation
of functional recombinant gene products). The same data
must be used with caution for benchmarking B-cell epitope
prediction where antipeptide antibodies are produced as
diagnostic probes to detect proteins (e.g., of pathogens in
clinical specimens). For this purpose, use of the data is
appropriate only if the proteins are in native form when
encountered by the antibodies; otherwise, both sensitivity
and specificity are likely to be inaccurately estimated due to
protein denaturation, as may occur during the collection,
storage and processing of biological samples. This problem
arises in relation to negative data on antipeptide antibodies
that fail to bind native proteins yet bind denatured forms
of the same proteins [28]; if the envisioned diagnostic
procedure relies even partly on the detection of denatured
protein, benchmarking against these negative data risks
misclassification of positive predictions as false rather than
true and of negative predictions as true rather than false.

As for data that pertain to cross-reactivity of antiprotein
antibodies with peptides, these data are suitable for bench-
marking where the intended application is the design of
peptide-based diagnostic probes to detect antiprotein anti-
bodies (e.g., for serodiagnosis of infectious diseases). For this
application, published B-cell epitope prediction algorithms
are found wanting as they perform only marginally better
than random [12, 48, 49], although those based on three-
dimensional structure outperform those based on sequence
alone [48, 49]. As a B-cell epitope contains residues that must
simultaneously interact with a paratope for binding to occur,
the superior performance of the structure-based algorithms
is plausibly realized through bypassing inaccurate sequence-
based prediction of both spatial proximity among protein
residues and their accesibility to antibodies [50, 51]; yet the
hitherto unrealized success of these algorithms is at least
partly due to misplaced emphasis on structure. Application
of the structure-based algorithms is focused on an assumed
protein structure supposedly encountered by antiprotein
antibodies in the course of immunization; if this structure
(e.g., from protein crystallography) differs from the actual
immunogenic structure (e.g., of denatured protein in vivo),
inaccurate predictions may be inevitable [10]. Published B-
cell epitope prediction algorithms are therefore incomplete
in that they fail to explicitly model the immunogenic
structure of proteins in vivo. Attempts to address this
deficiency by structural modeling are presently impossible
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to validate given the lack of experimental data on protein
structure in vivo; while structures have been elucidated
for complexes consisting of proteins already bound by
antibodies or fragments thereof, the actual structure of
the proteins in vivo as they are encountered by antibodies
is unknown [10]. Granting that this impasse is somehow
resolved as new structural data become available, the
problem of underperformance could still persist due to
an exclusive focus on protein structure prior to binding
by antibodies considering that their binding may bring
even solvent-inaccessible antigen residues into contact with
paratope residues [19, 52]; if so, B-cell epitope prediction
might be substantially improved only through detailed
computational modeling of antibody-antigen binding itself
(e.g., by means of molecular docking analyses that allow
for mutually induced fit between antibody and antigen,
for antiprotein antibodies both reacting with proteins and
cross-reacting with peptides). By the same token, a similarly
elaborate computational approach might be required for
peptide-based vaccine design in order to accurately predict
B-cell epitopes for antipeptide antibodies both reacting with
peptides and cross-reacting with proteins.

At any rate, valid claims regarding the practical utility
of a method for B-cell epitope prediction are based on
benchmarking against data that correspond well to the
intended application; where this application is peptide-based
vaccine design, the results of benchmarking are open to
question if any of the data pertain to antiprotein rather
than antipeptide antibodies or can be explained by either
functionally irrelevant cross-reactivity or apparent absence
of cross-reactivity.

4. Partitioning of Selected Data

Data selected as described above are heterogeneous in view
of multiple factors that complicate B-cell epitope prediction
(e.g., factors that define key structural differences between
immunizing peptides and their cognate proteins). If the
data are partitioned with respect to these factors, parallel
benchmarking against the resulting subsets of data opens
the possibility of discovering context-dependent variations
in predictive performance. Knowledge of such variations
could aid in identifying and appropriately addressing the
limitations of methods to predict B-cell epitopes, thereby
improving efficiency in both utilization and refinement of
these methods.

From a purely physicochemical perspective, the data can
be partitioned with respect to factors that are correlated
with structural similarity between immunizing peptides and
their cognate proteins. Though antibodies to a peptide may
cross-react with a protein of apparently unrelated sequence,
the likelihood of cross-reaction diminishes with decreasing
sequence similarity [53]; and even where sequences are
exactly matched, cross-reaction fails to occur if conforma-
tions are sufficiently dissimilar [54]. Cross-reaction thus
tends to be disfavored by structural differences between
peptides and proteins at the levels of both sequence and
conformation.

Peptide and protein sequences are conventionally rep-
resented as strings of symbols for the twenty canonical
proteinogenic amino acids, such that a difference in sequence
is inferred from mismatched symbols in a pairwise sequence
alignment; but this approach overlooks more subtle dif-
ferences that are nonetheless relevant to the cross-reaction
of antipeptide antibodies with proteins. A case in point
is the mismatching of backbone charges between peptides
and their cognate proteins: even if a peptide and a protein
segment appear to share exactly the same sequence, they
can differ from one another in terms of electrical charge at
their N- or C-terminal ends. Ordinarily, both ends of the
peptide backbone are charged, as when the peptide is derived
from the cognate protein by hydrolysis of peptide bonds;
in contrast, the corresponding ends of the protein segment
lack backbone charges if they are at internal sequence
positions of the protein. If a charged end of the peptide
backbone corresponds to an internal sequence position of the
protein, the charge on that end is unmatched in the protein.
Unmatched charges of this nature can be eliminated by
chemically blocking the ends of the peptide backbone (e.g.,
by acetylating the N-terminal amino group and amidating
the C-terminal carboxyl group); but such blocking can itself
result in an unmatched charge if a blocked end of the
peptide backbone corresponds to an unblocked end of the
protein backbone. An unmatched charge can also result from
variability in the protonation state of the histidine sidechain
at physiologic pH; antibodies elicited by peptides bearing this
sidechain often bind the peptides only if it is unprotonated
[55], yet it is frequently protonated as part of a folded
protein [56–58]. As the placement of charges on epitopes is
critical for binding by antibodies [55, 59], the backbone and
sidechain charge mismatches just described may preclude
cross-reaction [60, 61].

Apart from charge mismatches, conventional sequence
analysis also overlooks structural differences related to
the propensity of cysteine for oxidative cross-linkage via
disulfide bond formation to yield cystine. As cysteine and
cystine are chemically nonequivalent, a paratope optimized
for binding a peptide that contains cystine in place of
cysteine might fail to cross-react with a cognate protein
that contains cysteine in place of cystine. Moreover, loops
of residues are conformationally constrained by formation
of intramolecular disulfide bonds between cysteines, with
loops of identical sequence possibly adopting different
conformations; although cyclization (i.e., formation of a
covalently closed loop) thermodynamically favors binding
by antibody through a decrease in conformational entropy
[62], a paratope optimized for binding a loop in a particular
conformation may fail to cross-react with a loop of identical
sequence in a different conformation [9].

While conformational differences between a peptide
and its cognate protein tend to disfavor cross-reaction,
elimination of such differences by itself cannot ensure cross-
reaction; even if the peptide closely resembles a segment of
the protein at the levels of both sequence and conformation,
the structural placement of the segment in the whole
protein poses steric barriers to binding by the antipeptide
antibodies if prospective interaction surfaces on the protein
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are buried or located within concavities that are inaccessible
to paratopes [63]. As these barriers are overcome through
structural adjustment to realize induced fit between antigen
and antibody, cross-reaction may actually be favored more
by conformational flexibility (i.e., dynamic disorder) of both
peptide and cognate protein rather than their similarity in
the sense of rigid conformation (e.g., expressed as root-
mean-square atomic displacements between superposed
crystallographic structures) [9, 52].

The variety of structural differences between immu-
nizing peptides and their cognate proteins is increased by
both chemical treatment of peptides and posttranslational
modification of proteins. Chemical treatment of peptides is
widely applied to elicit strong antipeptide antibody responses
[64]. This commonly involves conjugation of peptides to
carrier proteins using covalent linker reagents such as
glutaraldehyde [65]. The aldehyde groups of glutaraldehyde
react with amino groups of lysine sidechains and N-terminal
residues of immunizing peptides, potentially creating charge
mismatches between the peptides (whose amino groups
are covalently modified to uncharged derivatives) and their
cognate proteins (whose amino groups are positively charged
by virtue of protonation). A greater number of charge
mismatches may be produced by carbodiimide reagents,
such as 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide,
which covalently modify both amino and carboxyl groups
to uncharged derivatives [66]. More generally, the chemical
moieties invariably formed through conjugation can them-
selves induce antibodies that dominate the immune response
but fail to cross-react with protein [65]. Posttranslational
modification of proteins (e.g., glycosylation) poses essentially
the same problem as chemical treatment of peptides: Both
processes can give rise to structural differences between
immunizing peptides and their cognate proteins, thereby
disfavoring cross-reaction [67].

Beyond structural differences between peptides and
their cognate proteins at the level of single molecules,
cross-reaction may be disfavored by protein localization in
supramolecular assemblies such as biological membranes.
Antipeptide antibodies that cross-react with a protein in
solution may fail to cross-react with the same protein
when it is physically associated with a membrane [68].
Possible mechanisms for such context-dependent cross-
reactivity are steric shielding (e.g., along transmembrane
protein segments) and even membrane-induced confor-
mational transitions that themselves may be contingent
upon membrane composition (e.g., lipid content) [69]. As
an intact membrane is itself a mechanical barrier to the
passage of macromolecules, proteins and segments thereof
sequestered within a membrane-bound compartment are
inaccessible to antibodies from outside the compartment
unless the membrane has been adequately permeabilized
(e.g., with organic solvent or surfactant) [70–78].

A corollary to these complexities of antibody-antigen
interactions in biological systems is that various features of
functionally relevant cross-reactivity are themselves factors
for data partitioning. Functionally relevant cross-reactivity
has already been introduced herein using the example
of enzyme inhibition through binding by cross-reactive

antipeptide antibodies. The enzyme could be a soluble
single-domain protein for which B-cell epitope prediction
would be much more straightforward than if the enzyme
were membrane-bound and comprised multiple protein
subunits that each contained multiple domains; in the
latter case, separate polypeptide chains might even con-
tribute residues to form a single neotope, that is, a B-
cell epitope whose existence depends on the integrity of
protein quaternary structure. B-cell epitope prediction is
far more complicated for the neutralization of viruses and
other infectious agents, in which case functionally relevant
cross-reactivity may reflect emergent properties of the host-
pathogen system that are left unaccounted for by analyses
of the isolated pathogen or structural components thereof
[79]. Synergy among pathogen virulence factors suggests
the potential benefit of including more than one antigen
in a vaccine; but it is difficult to predict which antigen
combinations might afford protection against disease, as
the interactions between immune responses to different
antigens range from synergistic to antagonistic [80]. Much
of this problem is due to uncertainty regarding the biological
consequences of antibody-antigen binding, which tend to
be highly context-dependent in ways that defy the intu-
itive notion of neutralization capacity as a monotonically
increasing function of both antibody concentration and
affinity for antigen [81]. For instance, occupancy of pathogen
surfaces by antibodies often blocks host-pathogen surface
interactions critical for infection while facilitating immune
clearance of pathogens, yet such occupancy may itself lead
to enhancement of infection (e.g., by mediating viral entry
into host cells expressing receptors for the Fc portions of
antibodies [82]). Divergent biological effects may also result
from the binding of antigen by antibodies with similar
affinities but via different molecular mechanisms (e.g.,
irreversibly inactivating virus only when binding induces
certain conformational changes in capsid proteins [83]).
The unifying theme of such phenomena is the coevolution
of pathogens and the host responses against them that
generates diverse antibodies to impair pathogen survival
processes (e.g., disrupting various stages of viral replication
cycles [84]) while it simultaneously decreases pathogen
vulnerabilities to these antibodies (e.g., by transient assembly
of viral surface neotopes only at the time that they are
required to mediate entry into a host cell, thereby minimiz-
ing their exposure to neutralizing antibodies [85]). Taking
soluble single-domain proteins from non-pathogen sources
as a reference class of antigens for which B-cell epitope
prediction is presumably least difficult, each additional
complicating feature (e.g., quaternary structure, membrane
association, origin from a pathogen) represents a factor for
data partitioning.

From a broader biological perspective, numerous other
factors merit investigation as well (e.g., genetic background,
environmental influences, physiological status, mode of
immunization). Carried to the extreme, data selected for
benchmarking might be so extensively partitioned that each
empirical result is placed in a class of its own; while it would
not be of immediate practical value for benchmarking due
to the consequent sparseness of the data, such partitioning
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would properly emphasize the fact that each empirical result
is the product of a unique combination of circumstances.

The most compelling experimental observations in sup-
port of data partitioning as outlined above are discordant
results indicating that cross-reaction of antipeptide anti-
bodies with proteins is critically dependent on details of
immunogen chemistry other than the sequences shared by
immunizing peptides and their cognate proteins (insofar as
these sequences are conventionally represented in terms of
the twenty canonical proteinogenic amino acids). This is
exemplified by discordant results obtained for the model
hexapeptide of sequence IRGERA, which corresponds to the
C-terminal residues 130–135 of histone H3; conjugation of
this peptide to ovalbumin yields immunogen that induces
rabbit polyclonal antipeptide antibodies capable of binding
histone H3 if glutaraldehyde is used as a covalent linker
reagent, but not if carbodiimide is used instead of glutaralde-
hyde [86]. Other discordant results have been documented
among monoclonal antipeptide antibodies to polyhistidine,
which are used to detect recombinant proteins bearing His-
tags (i.e., sequences of consecutive histidine residues that
often facilitate protein purification by affinity chromatog-
raphy on metal-chelate resin columns); using different His-
tagged cognate proteins (each bearing either C-terminal
or N-terminal hexameric His-tag), the observed pattern of
cross-reaction with the proteins varies considerably among
the antibodies contrary to the expectation of uniformly
positive cross-reaction [87]. Yet another notable case of
discordant results concerns a peptide corresponding to a
covalently closed loop (residues 24–41, with N- and C-
terminal cysteines linked by a disulfide bond) in toxin alpha
of Naja nigricola; antibodies capable of neutralizing the toxin
are elicited by the peptide in a cyclic but not a linear form
[88].

Such discordant results bring to attention the problem
of discordant benchmark data, particularly where predictive
methods consider only protein sequence or structure (as is
the usual case); unless a predictive method is sophisticated
enough to properly utilize other pertinent data (e.g., on
conjugation chemistry), overtly discordant benchmark data
necessarily limit the apparent performance of the method
because the same prediction (i.e., either positive or negative)
is rendered for any two discordant results, such that the
prediction must always be deemed incorrect (i.e., either false-
positive or false-negative) for one of these two results. The
problem may persist in a latent form even after excluding
overtly discordant benchmark data if, for example, any of
the remaining data have been derived from studies wherein
conjugation chemistry produced charge mismatches between
immunizing peptides and cognate proteins, in which case
discordance may be manifest as negative results that could
otherwise have been positive had creation of the charge
mismatches been avoided [15]; if a predictive method yielded
positive predictions that were benchmarked against the
negative results, the predictions would be labeled as false-
positive even though they could just as well be labeled as
true-positive.

The problem of discordant benchmark data is addressed
by partitioning the benchmark dataset into two or more

subsets, of which the primary subset is defined by excluding
data whose interpretation is complicated by one or more
experimental conditions known to disfavor production of
antipeptide antibodies that cross-react with proteins; among
these conditions are those resulting in charge mismatches
between immunizing peptide and cognate protein (e.g.,
by virtue of peptide synthesis and postsynthetic chemical
treatment [15]). Revisiting the above-mentioned example of
the peptide IRGERA with cognate protein histone H3 [86],
the primary subset could include a positive result for the
glutaraldehyde-treated peptide (which would likely mimic
the C-terminus of histone H3 due to loss of positive charge
on isoleucine with maintenance of the negative charges
on glutamate and alanine) but not a discordant negative
result for the carbodiimide-treated peptide (which would
likely differ markedly from the C-terminus of histone H3
due to loss of the negative charges). Recalling the influence
of histidine protonation on the binding of antipeptide
antibodies [55], the variable protonation state of histidine
at physiologic pH [56–58] and the discordant results for
cross-reactivity of anti-polyhistidine antibodies with His-
tagged proteins [87], data on histidine-rich and possibly all
histidine-containing sequences might best be excluded from
the primary subset. Likewise, data on cysteine-containing
sequences might best be excluded from the primary subset
given the potential difficulty of ascertaining disulfide linkage
and loop conformation between cysteine residues in pep-
tides and proteins, notwithstanding the potential for cross-
protective immunogenicity of certain cysteine-containing
peptides [88].

By thus partitioning the benchmark data, the problem
of discordant benchmark data is mitigated within the
primary subset; and by benchmarking against the primary
subset, the complexity of the predictive task is restricted
for assessment of performance under relatively few and
simple constraints (e.g., protein structure). Compared with
benchmarking against the unpartitioned benchmark data,
this decreases the risk of underrating predictive methods.
Actual performance is expectedly poorer in the presence of
any additional constraints (e.g., charge mismatches between
immunizing peptides and their cognate proteins), but these
can often be avoided in practice (e.g., through appropriate
synthesis and postsynthetic chemical treatment of peptides);
more importantly, poorer performance in their presence
suggests the possibility of improving performance through
more accurate modeling of their effects.

5. Implications for B-Cell Epitope Prediction

The overall process just described for selecting and sub-
sequently partitioning data drastically limits the sizes of
datasets for benchmarking compared with the entire body
of available B-cell epitope data. This is evident on searching
the Immune Epitope Database (IEDB), a comprehensive
online repository of curated empirical data on epitopes
[89, 90]. Over sixty-thousand individual B-cell responses
are represented in IEDB, comprising positive and negative
subsets of comparable size. By selecting the polyclonal
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antipeptide responses associated with antibody binding
leading to change in biological activity (a surrogate qualifier
for antibody-mediated change in protein function), about a
thousand positive responses are found; by selecting the poly-
clonal antipeptide responses analyzed by either immuno-
precipitation or radioimmunoassay (which represent fluid-
phase immunoassays), about a hundred negative responses
are found. For both positive and negative responses, the
discrepancies between numbers prior to and after selection
largely reflect the exclusion of data acquired by probing
antiprotein antibodies for cross-reactivity with peptides
in high-throughput peptide-scanning experiments based
on PEPSCAN technology [91–93]; the more pronounced
discrepancy with negative responses probably also reflects
a bias towards solid-phase immunoassays due to their
greater convenience compared with fluid-phase immunoas-
says. These discrepancies highlight a relative scarcity of
selected data and the extent to which any subsequent
partitioning of these data further limits the sizes of datasets
for benchmarking.

Besides facilitating the selection of data for benchmark-
ing, IEDB also supports partitioning of the selected data
with respect to factors that are represented as customizable
input fields on the web-based user interface for searching
among B-cell responses (http://www.immuneepitope.org/
advancedQueryBcell.php). These factors include various
aspects of host biology (e.g., species, sex, age) and contextual
qualifiers for assayed antibodies (e.g., source material, heavy
chain type). As for factors relevant to structural differences
between immunizing peptides and their cognate proteins, the
partitioning of data requires supplementary information that
is accessible via links within IEDB to external databases of
the National Center for Biotechnology Information (NCBI)
[94] for the original references in published literature as
well as annotated records on cognate proteins and their
biological sources. As a general rule, primary sources from
literature must be reviewed to ascertain the structures of
both an immunizing peptide and its cognate protein before
structural differences between the two can be thoroughly
evaluated; this calls for attention to details of peptide chem-
istry (encompassing synthesis and postsynthetic covalent
modification) and protein structural biology (encompassing
posttranslational modification and molecular localization).

In principle, supplementary data on peptide chemistry
and protein structural biology could be curated and dis-
tributed within the framework of a revised IEDB; but
given the currently limited amount of selected data, a
more expedient alternative is extraction of readily available
data from IEDB (e.g., raw sequences of peptides and
proteins) combined with independent manual curation of
the supplementary data (e.g., from literature retrieved via
links within IEDB). The relative scarcity of selected data
motivates their provisional partitioning with respect to a few
physicochemically plausible factors. To a first approximation,
each factor may be qualitatively defined as the presence
or absence of a certain feature posited to complicate B-
cell epitope prediction on the basis of reasoning from
physicochemical principles. This is illustrated using the
specific example of histidine content as a factor defined

by the presence of histidine in an immunizing peptide or
the corresponding segment of the cognate protein: In the
presence of histidine, epitope prediction is complicated by
the difficulty of ascertaining the sidechain protonation state
of histidine at physiologic pH. Other factors that could
likewise be considered are cysteine content (defined by
analogy to histidine content); unmatched backbone charge
between immunizing peptide and cognate protein (due to
the manner of peptide synthesis or postsynthetic chemical
treatment); structural difference between immunizing pep-
tide and cognate protein due to posttranslational modifi-
cation (other than oxidation of cysteine to cystine); and
localization of cognate protein in a supramolecular assembly
(e.g., biological membrane or other multimeric aggregate
structure). Partitioning the data with a number n of such
factors yields a maximum of 2n non-overlapping populated
datasets. Of these datasets, the most valuable is that which is
free of all posited complicating features (e.g., histidine and
cysteine). It is logically the main reference dataset for initial
benchmarking of methods for B-cell epitope prediction to
assess their performance characteristics prior to refinement;
if parallel benchmarking of a predictive method against
the other datasets reveals poorer performance relative to
this dataset, refinement of the method can focus on those
factors found to be associated with performance deficits.
Cycles of refinement based on parallel benchmarking could
be repeated as deemed necessary to address the performance
deficits; and as the body of selected data grows with the
availability of new empirical results, the entire analysis from
initial data partitioning onward could itself be repeated
to increase its statistical power and broaden its scope to
subsume additional factors.

From a practical standpoint, factors for data partitioning
appear amenable to alternative casting as exclusion criteria
for data selection, thus obscuring the crucial distinction
between data selection and data partitioning. For instance,
the factor of unmatched backbone charge between immu-
nizing peptides and their cognate proteins appears amenable
to alternative casting as a criterion for excluding data during
data selection on the grounds that the attempt at molecular
mimicry is flawed [15]; yet the attempt may nevertheless
succeed [47, 95–100], which is not at all surprising given
the molecular mimicry of protein epitopes by peptides of
apparently unrelated sequence [101, 102]. Excluding data
is tantamount to rejecting them as meaningless, whereas
retaining them acknowledges their validity. By excluding
data that arguably could be retained instead, the conceivable
domain of B-cell epitope prediction is artificially restricted
to problems of arbitrarily limited complexity, which creates
the mistaken impression that more complex problems are
either nonexistent or intractable. For example, if posttrans-
lational modification were a criterion for excluding data on
the grounds that it complicates B-cell epitope prediction
[14, 67], posttranslationally modified sequences might be
avoided altogether in the design of peptide-based vaccines;
yet the synthesis of peptides that structurally mimic these
sequences is presently feasible [103], and the expanding
repertoire of techniques for inducing antibodies that bind
haptens [104] offers the prospect of peptide-based vaccines
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to induce protective antibody responses directed against a
diverse array of posttranslationally modified epitopes.

In retrospect, the performance of methods to predict
B-cell epitopes has yet to be rigorously evaluated for the
design of peptide-based vaccines. At the same time, the long
and unbroken history of failed attempts to develop clinically
proven and commercially viable peptide-based vaccines
[105, 106] points to the inadequacy of the underlying
design strategies. A common albeit unjustified working
assumption of these strategies is the preponderance of
protein segments whose sequences can, as isolated peptide-
based immunogens, mimic neutralization epitopes to induce
protective antibody-mediated immunity. Typical neutral-
ization epitopes are discontinuous; each comprises atoms
that are not all located on residues of a single contiguous
sequence [106]. Such an epitope may span one or more
contiguous sequences, but each of these sequences as an
isolated peptide immunogen may fail to induce neutralizing
antipeptide antibodies. This outcome is likely if binding of
cognate protein by antipeptide antibodies is impeded by
steric barriers, especially where the paratopes are structurally
optimized for binding peptide sequences in conformations
unlike those of the corresponding sequences in native
protein [54]. To induce neutralizing antipeptide antibodies,
immunization with peptides identical in sequence to cognate
protein segments is probably a reasonable approach only
in exceptional cases, as when the cognate protein seg-
ments are conformationally unconstrained N- or C-terminal
sequences entirely accessible to antibodies in biologically
relevant structural contexts (e.g., on extracellular surfaces).
In other cases, neutralizing antipeptide antibodies might
be elicited, if at all, only by mimotopes lacking obvious
sequence similarity to neutralization epitopes recognized by
antiprotein antibodies [102]. Where neutralizing antipeptide
antibodies can be elicited, protective immunity might be
possible only with the synergistic action of such antibodies
directed against multiple distinct binding sites in vivo,
in analogy to synergistic protective immunity conferred
by a combination of monoclonal antibodies to different
neutralization epitopes [106]. Clinically informative predic-
tion of peptides that induce neutralizing antibodies itself
requires a systems view to correctly evaluate potential for
both antibody-antigen binding in vivo and the possible
biological consequences thereof (e.g., neutralization of viral
infectivity versus enhancement of viral infection). If ever the
routine design of safe and efficacious peptide-based vaccines
becomes feasible, it may necessitate combining mimotopes
of various neutralization epitopes for synergistic cross-
protective immunogenicity, based on thorough knowledge
of pathophysiological mechanisms that vaccination seeks to
suppress, disrupt or otherwise circumvent.

In any event, the development of B-cell epitope pre-
diction methods to design peptide-based vaccines remains
encumbered by the problems of benchmarking discussed
herein. Presently, the most challenging of these problems is
the paucity of available benchmark data; in this regard, the
current situation is reminiscent of the period during which
the classic sequence-based methods for B-cell epitope predic-
tion were initially developed [107]. Since then, accumulation

of data gleaned from numerous studies has been the default
strategy for building benchmark datasets [11, 89]. While
this strategy could eventually yield ample positive data that
reflect functionally relevant cross-reactivity, historical trends
suggest that it would be much less effective for negative
data that reflect genuine absence of cross-reactivity, owing
to an overall bias towards generation of positive rather
than negative data. This bias follows from the prioritization
of predicted B-cell epitopes for evaluation as immunizing
peptides, in keeping with the aim of peptide-based vaccine
development; with the negative data generated as unintended
byproducts, incentive is lacking for their confirmation as
genuine using fluid-phase immunoassays.

Yet, even assuming future abundance of both positive
and negative benchmark data, their use as such is subject
to the criticism that they are for the most part defined by
dichotomization of continuous outcome variables (e.g., the
extent to which biological activity is attenuated by antibody
binding, or the fraction of antigen immunoprecipitated in a
fluid-phase immunoassay). This dichotomization is accom-
plished by applying some invariably arbitrary cut point (i.e.,
threshold value), which is often implicit and unknown (e.g.,
as determined by the limit of detection for a qualitative
assay). Dichotomization of continuous data, which permits
calculation of sensitivity and specificity, entails potentially
significant loss of both information and statistical power
[108]; this is worsened by failure to use optimal cut points
[108], which are unlikely to have been consistently used
among different studies from which benchmark data are
pooled.

To avoid dichotomization of continuous data, bench-
marking must be performed without resorting to calcu-
lation of sensitivity and specificity. Such an alternative
approach could be developed by supplanting dichotomous
benchmark data with continuous dose-response data on
antibody-mediated modulation of biological activity, thereby
redefining the predictive task as computational estimation of
biological activity as a function of antibody concentration
and other variables. For antibody-mediated attenuation of
biological activity, the dose-response data could be expressed
as the observed fraction fobs of residual activity, given by

fobs = Aobs

Amax
, (1)

where Aobs is the observed activity at some specified antibody
concentration andAmax is the maximal activity in the absence
of antibody, holding constant all variables other than anti-
body concentration; the corresponding predicted fraction
fpre of residual activity would be calculated for each antibody
concentration used to obtain fobs, and benchmarking would
be performed by evaluating the correlation between fpre and
fobs. For a perfect predictive method, plotting fpre against
fobs would yield points all falling on the diagonal line defined
by y = x, with Pearson correlation coefficient of 1.

To demonstrate how fpre might be estimated, a sim-
ple conceptual model is that of a reversible bimolecular
association reaction between a catalytically active enzyme
E and an inhibitory antigen-binding antibody fragment I
bearing a single paratope that binds a unique epitope on E
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to yield a catalytically inactive complex EI. At equilibrium,
the association constant Ka is given by the law of mass action
as

Ka = [EI]
[E][I]

, (2)

where each symbol with enclosing square brackets ([])
denotes the molar concentration of the corresponding
species. If EI is initially absent, (2) may be rewritten as

Ka = [EI]
([E]0 − [EI])([I]0 − [EI])

, (3)

where the subscript of 0 denotes initial value. If catalytic
activity is directly proportional to [E], fpre may be computed
as

fpre = 1− [EI]
[E]0

(4)

by analogy to (1). If values of [E]0, [I]0 and Ka are available,
solving (3) for [EI] allows calculation of fpre according to (4).
Both [E]0 and [I]0 may be known empirically while Ka can be
computed as

Ka = exp
(
−ΔG◦

RT

)
, (5)

where ΔG◦ is the standard free energy change for the
association of E with I to form EI, R is the gas constant and
T is the absolute temperature; if the structure of E is known,
protein structural energetics [109–111] provides a means to
estimate ΔG◦ from anticipated changes in solvent-accessible
surface area (ASA) for putative B-cell epitopes of E upon
their binding by paratopes [14, 15].

The main disadvantage of reliance on (3) is the assump-
tion of an equilibrium state that may never be reached in
practice; in particular, fpre may overestimate fobs if EI is
thermodynamically stable but formed very slowly. This error
might be avoided by using an alternative approach based on
a kinetic description of [EI], such as

d[EI]
dt

= kon([E]0 − [EI])([I]0 − [EI])− koff[EI], (6)

where t is reaction time, with kon and koff being the respective
rate constants for association and dissociation. If values
of kon and koff are also available in addition to [E]0 and
[I]0, solving (6) for [EI] at the appropriate time t (e.g., for
preincubation of E with I before assaying catalytic activity)
allows calculation of fpre using (4). Estimation of kon could
be attempted on the basis of transition state theory [112], as

kon =
(
kBT

h

)
exp

(
−ΔG‡

RT

)
, (7)

where kB is the Boltzmann constant, h is the Planck constant
and ΔG‡ is the free energy change of transition state forma-
tion; in turn, koff could be estimated using the relationship

Ka = kon

koff
(8)

in conjunction with (5) and structural-energetic methods for
calculating ΔG◦. The value of ΔG‡ can be crudely approx-
imated as an energetic penalty for structural adjustment of
E upon binding by I, as calculated for the unfolding of
a putative B-cell epitope on E [15]; better approximation
of ΔG‡ might be feasible through detailed computational
modeling of the antibody-antigen binding process, which
may occur as a multistep series of conformational changes
[113].

If benchmarking were to be redefined as evaluating the
correlation between fpre and fobs, data selection would be
redefined as the admission of continuous dose-response
data comprising biological activity data (from which fobs

could be computed) and other pertinent empirical data (e.g.,
reactant concentrations and protein structure, from which
fpre could be computed); meanwhile, data partitioning would
be applicable not only as already described for dichotomous
benchmark data (e.g., with respect to charge mismatches
between immunizing peptides and cognate proteins), but
also with respect to the manner in which fpre is computed.
More elaborate quantitative models than suggested by (6)
describe real antibody-antigen interactions [81]. Typical
antibody molecules each bear two or more paratopes while
an antigen molecule may bear two or more similar if
not identical B-cell epitopes; cooperative antibody-antigen
binding phenomena do occur, and antibody-mediated mod-
ulation of biological activity may be nonlinearly related to the
extent of antibody binding (e.g., where neutralization of viral
infectivity is enhanced by antibody-mediated aggregation of
virions, which may occur only near the equivalence point
of antibody-virion interaction [84]). Under these various
circumstances, uniformly accurate prediction is unlikely if
based on a first-approach method for computing fpre. Data
partitioning could therefore be performed according to the
computational complexity demanded by modeling of the
antibody-antigen binding process and its functional conse-
quences, such that relatively simple methods for computing
fpre are benchmarked against data on correspondingly simple
systems (e.g., a single-domain enzyme having but a single
active site); this could facilitate refinement of the methods
that possibly extends their applicability to more complex sys-
tems (e.g., an enzyme having multiple active sites, or a virion
having multiple binding sites for receptors on host cells).

At a deeper level, the underlying logic of B-cell epitope
prediction methods may itself provide additional insights
on how problems might be avoided through data selection
and partitioning. As applied to the design of peptide-based
vaccines, the impact of selecting data on excessively long
immunizing peptides is, for example, clarified by examining
the implications of a structural-energetic approach to B-
cell epitope prediction [14, 15]; this models immunodom-
inance among B-cell epitopes of immunizing peptides as a
thermodynamically determined hierarchical steric-exclusion
phenomenon, based on the premise that antibodies are
preferentially elicited by an immunodominant epitope due
to its higher affinity for antibody relative to other epitopes
with which it physically overlaps [15]. If an immunizing
peptide contains exactly one predicted immunodominant
epitope, any observed functionally relevant cross-reactivity
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can be readily attributed to the epitope; but if the pep-
tide contains more than one such epitope, a problem of
ambiguous attribution arises that can lead to erroneous
benchmarking results (e.g., if functionally relevant cross-
reactivity is incorrectly attributed to a functionally irrelevant
epitope for computation of fpre). This implies the existence
of an upper limit on the length of an immunizing peptide for
data on the peptide to be reliably informative; if immunizing
peptides are assumed to be completely unfolded such that
each hexapeptide sequence thereof is regarded as a candidate
epitope [14, 15], ambiguous attribution seems possible for
an immunizing peptide as short as 12 residues (in which case
two predicted immunodominant epitopes might occur in
tandem) and may be unavoidable for an immunizing peptide
as short as 17 residues (in which case two predicted immun-
odominant epitopes may be accommodated regardless of
how the first one is positioned), and even if an immunizing
peptide is so short that it contains only one predicted
immunodominant epitope, ambiguous attribution is still
a problem if the epitope sequence occurs in nonidentical
structural contexts as part of the cognate protein (e.g., as
sequence repeats within a single protein domain, each of
which yields a distinct value of fpre). Data selection could
avoid such problems of ambiguous attribution by admitting
data on functionally relevant cross-reactivity only where
the immunizing peptide contains exactly one predicted
immunodominant epitope sequence that does not occur
in nonidentical structural contexts as part of the cognate
protein; this would also avoid the problem of having to
experimentally define the structural boundaries of epitopes,
which is impossible to accomplish by analyzing polyclonal
antibodies through the use of immunoassays [9]. Subsequent
partitioning of the data thus selected could be performed
with respect to repetition of the predicted immunodominant
epitope sequence in the cognate protein (e.g., in a soluble
symmetric homodimer, for which the sequence occurs in
two structurally identical contexts that yield the same value
of fpre); such repetition may enable the formation of large
immune complexes through cross-linkage of antibodies by
antigen, which could complicate the computational analysis
of antibody-antigen binding (e.g., by leading to antibody-
mediated aggregation of virions).

Progress in B-cell epitope prediction might therefore be
realized through development of quantitative methods that
is guided by physicochemical principles; but in the final
analysis, success is an unrealistic expectation for peptide-
based vaccine design without a comprehensive contextual
basis for application-specific computational modeling of
immune responses and their biological consequences. Even
if a computational method were developed that could
accurately predict functionally relevant cross-reactivity in
general (e.g., as benchmarked by evaluating fpre against
fobs for a wide variety of systems), only profound context-
specific knowledge (e.g., on molecular recognition of host
cell receptors by pathogen virulence factors) would ensure
correct identification of peptide sequences that could induce
protective immunity against a particular disease (e.g., by
mimicking appropriate neutralization epitopes). This knowl-
edge would encompass aspects of host immunobiology

such as immune tolerance that result from the interplay
of numerous genetic and environmental factors in both
healthy and diseased states; immune tolerance deserves
special attention in this regard, as problems could arise
due to either immune tolerance itself (e.g., complicating
the prediction of immunogenic epitopes) or vaccine-induced
loss thereof (e.g., leading to autoimmunity or other forms of
hypersensitivity [114, 115]). Perhaps the most serious defect
of attempts to design peptide-based vaccines has been the
naive understanding of B-cell epitope prediction as a generic
procedure that requires only physicochemical knowledge of
antigens.

6. Conclusions

The development of peptide-based vaccines demands refine-
ment of methods to predict B-cell epitopes that is based on
benchmarking against judiciously selected and partitioned
empirical data. The data are meaningful for this purpose
if they pertain to cross-reactivity of polyclonal antipeptide
antibodies with proteins, with the positive data reflecting
functionally relevant cross-reactivity and the negative data
reflecting genuine absence of cross-reactivity. These data
can be partitioned with respect to multiple factors that
complicate B-cell epitope prediction, of which the most
important are those that define key structural differences
between immunizing peptides and their cognate proteins.
Parallel benchmarking against the resulting subsets of data
is a foundational strategy to discover context-dependent
variations in the performance of methods for B-cell epitope
prediction, serving to identify and address the limitations of
these methods through iterative cycles of benchmarking and
refinement. Ultimately, this could lead to the establishment
of an integrative computational platform for B-cell epitope
prediction that reliably guides the design of peptide-based
vaccines. In the meantime, B-cell epitope prediction must
transcend its de facto role of a rudimentary screening tool
whose utility is severely limited by a narrow reductionist view
of vaccine design.
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