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Structural MRI studies in first-episode psychosis (FEP) and in clinical high risk

(CHR) patients have consistently shown volumetric abnormalities in frontal,

temporal, and cingulate cortex areas. The aim of the present study was to

employ chaos analysis for the identification of brain topology differences in

people with psychosis. Structural MRI were acquired from 77 FEP, 73 CHR

and 44 healthy controls (HC). Chaos analysis of the gray matter distribution

was performed: First, the distances of each voxel from the center of mass in

the gray matter image was calculated. Next, the distances multiplied by the

voxel intensity were represented as a spatial-series, which then was analyzed

by extracting the Largest-Lyapunov-Exponent (lambda). The lambda brain

map depicts thus how the gray matter topology changes. Between-group

differences were identified by (a) comparing the lambda brain maps, which

resulted in statistically significant differences in FEP and CHR compared to HC;

and (b) matching the lambda series with the Morlet wavelet, which resulted in

statistically significant differences in the scalograms of FEP against CHR and

HC. The proposed framework using spatial-series extraction enhances the

between-group differences of FEP, CHR and HC subjects, verifies diagnosis-

relevant features and may potentially contribute to the identification of

structural biomarkers for psychosis.

KEYWORDS

first-episode psychosis, clinical high risk, brain sMRI image, biomarkers, chaos
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Introduction

Patterns of pathological alterations of the brain associated with illness emergence
and progression have been a major interest of research in psychotic disorders (1).
Abnormalities in brain gray matter (GM) topology have been consistently observed in
schizophrenia; these appear to be present already at the first-episode of psychosis (FEP)
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and even in subjects at clinical high risk (CHR) patients (2–8).
Abnormalities in cortical surface areas and cortical thickness
have been consistently observed in schizophrenia as well,
including in FEP (9, 10). Drobinin et al. (11) reported that in
youth at risk for mental illness displayed an overall trend toward
lower cortical folding across all brain regions. Results from
previous studies of cortical folding in schizophrenia showed
abnormal folding in large regions of the cerebral cortex across
several independent samples of patients with schizophrenia,
mostly affecting frontotemporal regions (12–14) and increased
structural variability of regional measures of brain morphology
(15, 16). These conceivably relate to abnormal topological
organization of structural brain networks in schizophrenia,
which has been reported in several studies (17–19), and
may affect mental skills and sensorimotor functions (20); for
example, neuroanatomical alterations in the medial prefrontal
cortex and hippocampus were associated with abnormalities
of the recognition of negative emotion at baseline in CHR
patients (21).

As the GM morphology is inherently complex, chaos and
nonlinear dynamics analyses of these spatial data are suitable
mathematical techniques for extracting their informative
statistical properties. Chaos and nonlinear dynamics have
been increasingly reported as effective computational methods
for analyzing complex data in medicine and biology (22).
Wahman et al. (23), suggested that psychiatric disorders are
better accounted for by the nonlinear dynamics of chaos
theory than by a unidirectional vector model of cause
to effect. Several mental disorders are thought to follow
instability patterns captured from chaos theory, resulting in
complicated emotional/cognitive and interpersonal interactions
and phenomenological presentations (24, 25). In patients with
schizophrenia, chaos theory has been applied at the behavioral
level to quantify higher interdependencies in the response
sequences generated by patients in a choice task compared to
healthy controls (26).

The aim of the present study was to employ chaos analysis
for the identification of brain topology changes in psychosis
based on structural MRI. We hypothesized that the nonlinear
dynamics of brain GM topology in FEP and CHR is different
from that of HC. We introduce the term of GM topology
for analysis of GM changes combining two features, voxel
distance from the center of mass and voxel intensity. We aimed
to compare GM topology including cortical surface between
FEP, CHR and HC subjects. Our ultimate goal was to analyze
the chaotic dynamic of the GM topology and its usefulness
for marking progression of the illness. To this purpose, we
investigated GM topology patterns on the group level. We
compared the complexity of the GM topology across 77 FEP, 73
CHR and 44 HC by transforming structural magnetic resonance
imaging (sMRI) GM maps into spatial-series. The term spatial-
series refers to the distribution of the weighted distance by voxel
intensity from the GM center of the mass; this approach, i.e.,

the conversion of images into sequences for application of time-
series analysis has been utilized for solving several problems in
image data mining (27), including investigation of abnormal
brain folding in Alzheimer’s disease and aging (28). In addition,
a previous study reported differences on the complexity of brain
folding in aging by transforming the sMRI scans into spatial
series and comparing the Largest-Lyapunov-Exponent values
between patients and controls (22).

We investigated the lambda to determine the chaos and
nonlinear dynamics of spatial-series data of GM topology
in psychotic disorders extracted from structural brain MRI.
Lambda expresses the divergence of the small distances over
voxel location, and thus can be used as a quantitative measure
of geometry and curvature and therefore topological complexity
of assessed brain regions. In order to quantify and compare
the complexity of GM distribution between FEP, CHR, and
HC, we used continuous wavelet transformation (CWT) to
decompose the lambda series into their frequency (“multi-
scale”) components representing the structure relief. In the
results presented below, the term “scale” refers to the inverse
frequency; scales are represented by a scalogram, in which
the x-axis corresponds to spatial points (i.e., assessed voxels,
represented as a spatial series) and the y-axis to their scale as
defined above. We show that this approach provides interesting
insights for differentiation of FEP and CHR from HC, and
FEP from CHR at the group level; beyond those provided
by standard volumetric comparisons by means of voxel-based
morphometry (VBM).

Materials and methods

Study participants

In this study, sMRI scans of 194 subjects were used,
77 FEP patients, 73 CHR subjects and 44 healthy controls
(HC). Subjects were scanned using a SIEMENS MAGNETOM
VISION 1.5T scanner (Erlangen, Germany) at the University
Hospital Basel, Switzerland. The current analyses are based
on data from patients included in the early detection of
psychosis project (FePsy) at the Department of Psychiatry of
the University of Basel (29) between November 2008 and April
2014. The Basel Screening Instrument for Psychosis (BSIP)
was used for assessment of CHR and FEP status. The BSIP
is a 46-item instrument based on variables that have been
shown to be risk factors for early symptoms of psychosis such
as DSM-III-R – “prodromal symptoms,” social decline, drug
abuse, previous psychiatric disorders, or genetic liability for
psychosis (30). CHR status was defined based on the presence of
either attenuated psychotic symptoms, brief limited intermittent
psychotic symptoms, or having a first- or second-degree relative
with a psychotic disorder plus at least 2 additional risk factors
for psychosis. FEP status was defined according to criteria for
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transition to psychosis by Yung et al. (31). The study was
approved by the local ethics committee of the University of
Basel and written informed consent is obtained from each
participant. The study was conducted in accordance with the
Declaration of Helsinki.

A three-dimensional volumetric spoiled gradient recalled
echo sequence generated 176 contiguous, 1-mm-thick sagittal
slices. Imaging parameters were time-to-echo, 4ms; time-to-
repetition, 9.7ms; flip angle, 12◦; matrix size, 200 × 256;
field of view, 25.6 cm × 25.6 cm matrix; voxel dimensions,
1.28 mm× 1 mm× 1 mm. Inclusion and exclusion criteria were
described in Borgwardt et al. (32).

Magnetic resonance imaging data
processing

After inspection for artifacts and gross abnormalities, the
T1-weighted images were segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) tissue maps
in native space with the CAT12 toolbox1, an extension of the
SPM12 software package (Wellcome Department of Cognitive
Neurology, London, England). In detail, the CAT12 toolbox
extends the unified segmentation model consisting of MRI
field intensity inhomogeneity correction, spatial normalization
and tissue segmentation in several preprocessing steps to
further improve the quality of data preprocessing. Initially,
the Optimized Blockwise Nonlocal-Means filter proposed by
Coupe at al. (33) was applied to the MRI scans using the
Rician noise adaption introduced in Wiest-Daesslé et al. (34)
to increase the signal-to-noise ratio in the data. The usual strip
artifacts in modulated images are greatly reduced by the default
internal interpolation setting "Fixed 1 mm" in CAT12 toolbox.
Subsequently, an adaptive maximum a posteriori segmentation
approach (35) extended by partial volume estimation (36) was
employed to separate the MRI scans into GM, WM, CSF
tissue. The segmentation step was finished by applying a spatial
constraint to the segmented tissue probability maps based on
a hidden Markov Random Field model (37) that removed
isolated voxels which were unlikely to be a member of a
certain tissue class and closed gaps in clusters of connected
voxels of a certain class, resulting in a higher signal-to-noise
ratio of the final tissue probability maps. The strength of the
filters is automatically determined by estimating the residual
noise in the image. The original voxels are projected into their
new location in the warped images preserving the volume
of a particular tissue within a voxel (i.e., produced by affine
transformation (global scaling) and non-linear warping (local
volume change)). All scans were reviewed by a neuroradiologist
to rule out clinically relevant abnormalities, data did not present

1 http://dbm.neuro.uni-jena.de

any artifacts. Each participant’s GM, WM, and CSF maps
were registered to stereotactic standard space. Next, for each
subject, the modulated, warped, GM image (mwp1∗) with an
isotropic voxel size of 1.5 mm, was selected for the extraction
of the spatial-series.

The function centerofMass in MATLAB 2020b was used
to get the center of the mass of the GM. This function finds
the gray-level-weighted center of mass of a N-dimensional
numerical array (3-dimensional array of size 121 × 145 × 121
in this case). In the Supplementary Table 1 the mean and
standard deviation of the center of the mass of each mwp1∗

brain image across groups for the x, y, z coordinates are
presented. T-test with 5% significance level was performed for
the group comparison. Statistically significant differences were
identified for the x coordinate between FEP and CHR groups.
To capture geometric changes in brain regions we calculated the
weighted distance of the GM center of the mass with the voxel
intensities (distance in mm × voxel intensity). The histogram
of the intensities for the warped and modulated images from
all subjects is presented in Supplementary Figure 1. Top-
weighted distances correspond to voxels that either belong
to the cortical surface or slightly close to the center of the
mass of the GM. For example, one point with intensity 1 and
distance from the GM center of the mass 3 has the same
weighted distance as one point with intensity 3 and distance
1. Though, the intensities are not restricted to [0,1] and the
distance in mm outweighs intensity. In Supplementary Figure 2
we present the distance values in (a) and weighted distance
values in (b) for one HC subject. It is observed that the highest
distances are located in the temporal and occipital lobe (red
color in a). However, high weighted distances are also located
at the middle frontal gyrus, precuneus, left parietal and left
caudate. We added some examples of the differences between
distance and weighted distance in frontal lobe and cerebellum
lobe in Supplementary Figures 2C,D) which explains how
the weighted distance is affected by the intensities and the
distances. In Supplementary Figure 2C) the upper graph
shows the distance at the middle frontal gyrus (117.119) and
the lower graph shows the weighted distance (160.431). In
Supplementary Figure 2D) the left cerebellum exterior presents
distance equal to 193.315 (upper graph) and weighted distance
equal to 122.072 (lower graph). While the cerebellum has high
distance the weighted distance of the middle frontal gyrus
is higher. Reducing the computational costs, the weighted
distances were sorted from the highest to lowest value. After
experimentation, we concluded that the highest 5,000 voxels,
expressing almost 1% of the non-zero voxels in the GM image,
may be used for the identification of brain topology differences
of FEP and CHR patients. We ran the analysis using 1,000
to 5,000 voxels with a step of 1,000 voxels; significant results
were identified selecting 5,000 voxels. We were interested in
a method able to function under computational restrictions,
which is why we chose only 1% of the voxels (5,000) for
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analysis. In Figure 1A), a presentation of the mean weighted
distance across every group for 500 voxels is shown. The
measure was calculated with the same initial condition across
subjects, starting from the same voxel and ends at the same
voxels. The sorted mean weighted distance from each group
is presented in Figures 1B,C). FEP and CHR overlay most of
the brain regions (i.e., left precentral, frontal, rolandic, insula,
olfactory, amygdala, and heschl left, cingulum, hippocampus,
temporal and occipital) which indicates that the selected voxels
based on the higher weighted distances are spatial dependent.
Next, we analyzed the complexity of the brain topology to
identify the stage of psychosis using the lambda and the wavelet
transformation.

Largest-Lyapunov-Exponent

One of the most well-known method for quantitative
measures of chaos is the Largest-Lyapunov-Exponent (lambda).
A positive lambda expresses sensitive dependence on initial
conditions for a dynamical system. A positive lambda presents
the average rate over the whole attractor, at which two nearby
trajectories become exponentially separate with time evolution
(38). A practical numerical technique for calculating lambda
is the method developed by Rosenstein et al. (39), which
works well with small datasets and is robust to changes in
the embedding dimension, reconstruction delay, and noise
level (40). In brief, let xi denote the spatial-series of the path
free sorted distances extracted from the brain sMRI. If it is
assumed that the given spatial-series provides an observation
of a dynamical system where the parameter time is replaced
by the voxel intensity and distance from the center of the
mass combined, then according to the theorem of Takens
(40), the trajectory of the attractor of the system whose states
evolves with spatial location over a state-space and predict the
interactions over location between multiple voxel intensities can
be described by a matrix X. Takens Theorem is not restricted
to time series. It is necessary that the series is determined
by a trajectory in a finite state-space. Even if this is not
exactly given, one can apply the procedure of determining
lambda and regard lambda as a feature describing structural
aspects of the cortex. Each row, Xk, of the matrix is a state
space vector:

Xk =
[
xk, xk+τ, xk+2τ, . . . , xk+(m−1)τ

]
(1)

where k = 0, 1, . . . ,M − 1, M = N − (m− 1) τ, N is length
of the spatial-series, τ and m are the embedding delay and the
embedding dimension, respectively (41, 42).

After the state space reconstruction, the lambda can be
defined using the following equation:

d (t) = d (0) eλ1t (2)

where λ1 is the lambda value, d (t) is the average divergence
at the voxel t, and d (0) is a constant that normalizes the
initial separation.

Lambda can be estimated using the matrix X of the
reconstructed state space as in (38). A spatial-dependent value
of lambda, λ1

(
k
)
, where k the target voxel and T the distance

between voxels in the state space, can be estimated as:

λ1
(
k
)
=

〈
lnd

(
k
)〉
−

〈
lnd

(
k− 1

)〉
T

, k = 1 (3)

To perform localization, we first sorting the weighted
distance of each voxel and its coordinates were stored in a
variable. Then, we selected 5,000 lambda values which mapped
back to GM images using the stored coordinates. The lambda
of voxels that were not selected as the top-weighted voxels is set
to 0. The smoothed mean lambda map using a Gaussian kernel
8 x 8 x 8 mm for FEP patients is presented in Figure 2A), for
CHR subjects in Figure 2B) and for HC subjects in Figure 2C).
The images were represented on MNI space by using a GM
template in the MRIcron toolbox. In the Supplementary Table 2
the mean values of the lambda in each group were calculated for
the selected voxels using the aal.nii template in the MRIcron.

We performed a voxel-wise two-sample t-test in SPM12
toolbox for multiple comparisons (FWE <0.05, cluster-defining
threshold of p < 0.001) to compare the lambda value maps
between (a) FEP vs. HC, (b) CHR vs. HC and (c) FEP vs. CHR
(see Supplementary Tables 3, 4). The demographic variables:
Education (years), years of Smoking (Cigarettes per Day),
alcohol, age, and sex were used separately as covariates in (a),
(b), and (c) comparisons.

Wavelet transformation

Wavelet transform (WT) employs a fully scalable modulated
window, which provides an extensively tested solution to
the windowing function selection problem in frequency-
related (scale-related) signal processing methodologies (43).
The window slides across the signal, and for every position
a spectrum is calculated. The procedure is then repeated at
a multitude of scales, providing a signal representation with
multiple spatial-scale resolutions. It does not only inform us
about which scales are present in a signal, but also at which
geometrical point these scales occur. This allows for good
point resolution for high-scale events, as well as good scale
resolution for low-scale events, which is a combination of
properties particularly well-suited for real signals. The rationale
of the WT approach is that, firstly, the signal is “viewed” at a
large scale/window and “large” features are analyzed and then
the signal is “viewed” at smaller scales, in order to analyze
“smaller” features.

In the present work continuous wavelet transform (CWT)
was used for extracting features from lambda series obtained
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FIGURE 1

(A) Weighted distance from the GM center of the mass and voxels, extracted from HC, CHR, and FEP group, (B) the sorted weighted distance
and (C) the selected voxels for CHR(red), FEP(blue), and HC(green).

FIGURE 2

Representation of the smoothed mean lambda map of the top-weighted distances in red for (A) FEP, (B) CHR, and (C) HC.

from the three types of groups that were described above. CWT
was used to decompose the lambda series into their frequency
components and the statistical features of the CWT coefficients
were computed in the spatial domain. A CWT with a complex
Morlet as mother function was used, see Figure 3. The WT
of a 1-dimensional (1D) series has two dimensions. This 2-
dimensional (2D) output of the WT provides the spatial-scale
representation of the original series in the form of a “scalogram”
plane. The two dimensions of a scalogram are the geometrical
points and the scales. Each value (wavelet coefficient) in the
scalogram plane represents the correlation of the lambda series
with the Morlet wavelet on the respective point and scale
pair.

In this study, different scales of the wavelet were examined,
ranged from 20 to 200. Scales in the range of 100 to 200
do not provide further information but for the 500 first and
last voxels, fact that complicates the representation of the
differences between groups (see Supplementary Figure 3).
Group-comparisons with corrected p-values were performed
using the scalograms from 20 to 200 scales, concluding that 100
scales reveal significant differences and a better representation
for each group. T-tests for the selected scales were conducted
with the significance level set at p < 0.05 (corrected with
FDR < 0.05), for the following group comparisons: (i) FEP vs.
HC, (ii) FEP vs. CHR, and (iii) CHR vs. HC. A surface overlay
of the mean correlation of each group with Morlet wavelet
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FIGURE 3

Morlet wavelet.

was applied to represent the statistically significant differences
in scales. Gyrification index was calculated using the CAT12
toolbox (surface-based morphometry analysis) and analyzed
by applying general linear models for group comparisons.
We calculate the gyrification index based on absolute mean
curvature (44), using a 20mm kernel as suggested in the CAT12
manual, for folding data.

The full workflow of analyses is presented in Figure 4.

Results

Sociodemographic characteristics

There were no significant differences between FEP and
HC with respect to age and alcohol consumption. For the
comparison between FEP and CHR, there were no significant
differences with respect to age, years of education, smoking,
alcohol consumption and sex. There were significant differences
between FEP and CHR with respect to BPRS total, BPRS
Negative and Positives Symptoms and SANS total and between
CHR and HC with respect to sex (see Table 1).

Localization

The smoothed mean lambda map for FEP patients is
presented in Figure 2A), for CHR subjects in Figure 2B)
and for HC subjects in Figure 2C) for better representation.
Common regions are captured in FEP and CHR subjects (e.g.,

frontal, temporal, and cingulate cortex areas, hippocampus,
cerebellum and vermis). In the Supplementary Table 2, the
mean values of the lambda in brain regions were calculated
using the aal.nii template in the MRIcron. Fact that leads the
assumption that sorted weighted distances are spatial dependent
across brain regions. In FEP vs. HC comparison, age, sex,
and smoking have an effect in temporal lobe (FEP > HC),
there is no effect of the years of education and alcohol.
Applying all the demographic variables as covariates statistically
significant differences were present in the temporal pole,
right posterior cingulate gyrus, lingual gyrus and fusiform
(FEP > HC, see Supplementary Table 3). Statistically significant
differences were present in occipital and temporal lobe for
CHR compared to HC (CHR > HC, see Supplementary
Table 4). The comparison of CHR with HC is not affected
by the demographic variables. BPRS_total, BPRS_positive,
BPRS_negative, GAF and SANS scores were used as additional
covariates in comparison c). No clusters were identified in
between-group comparison results for CHR and FEP. FWE-
corrected p-values with a threshold of 10 voxels are presented
in Figure 5.

For comparison, voxel-based morphometry (VBM) analyses
were performed in SPM12 toolbox on smwp1∗ images to
identify volumetric brain differences between groups (a) FEP vs.
HC and (b) CHR vs. HC and (c) FEP vs. CHR. Demographic
variables, Education (years), years of Smoking (Cigarettes per
Day), alcohol, age and sex were used as covariates. BPRS_total,
BPRS_positive, BPRS_negative, GAF and SANS scores were
used as additional covariates in comparison c). There were
significant differences for corrected p-values (FWE < 0.05,
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FIGURE 4

Flowchart of the processing steps.

TABLE 1 Group comparison was investigated using 1-way ANOVA for
continuous and χ2 test for categorical data.

One-Way ANOVA (Welch’s)

F P

FEP vs HC

Age 1.63 0.204

Education (Years) 19.26 <0.001

Smoking (Cigarettes per Day) 28.18 <0.001

CHR vs HC

Age 2.082 0.152

Education (Years) 10.654 0.002

Smoking (Cigarettes per Day) 8.634 0.004

FEP vs. CHR

Age 3.118 0.056

Education (Years) 0.165 0.849

Global Assessment of Functioning (GAF) 46.875 <0.001

BPRS_Positive_Symptoms 19.498 <0.001

BPRS_Negative_Symptoms 22.494 <0.001

BPRS_total 462.930 <0.001

SANS_total 128.957 <0.001

Smoking (Cigarettes per Day) 2.418 0.102

χ2 Tests

FEP vs. HC

Sex 13.6 <0.001

Alcohol 9.60 0.008

CHR vs. HC

Sex 17.7 <0.001

Alcohol 0.14 0.710

FEP vs. CHR

Sex 0.431 0.511

Alcohol 2.80 0.246

Note: BPRS, Brief Psychiatric Rating Scale; GAF, Global Assessment of Functioning;
SANS, Scale for the Assessment of Negative Symptoms.

cluster-defining threshold of p < 0.001 and extent threshold
voxels of 10) in comparison (a) (details in Supplementary
Table 5). There were no significant differences for corrected

p-values (FWE < 0.05, cluster-defining threshold of p < 0.001)
in (b) and (c) comparisons.

Multi-scale analysis

In Figure 6, representative scalograms of one CHR subject,
one FEP and one HC are presented for 100 scales. There
are positive “matches” (correlation) and negative “matches”
with the Morlet wavelet; the color blue corresponds to high
negative and the white color to high positive correlation. Such
scalograms can be used to better understand the dynamical
behavior of a system and can also be used for distinguishing
signals produced by different systems in frequency domain.
FEP and CHR patients presented a common pattern such as
the one shown in Figures 6A,B), i.e., mostly higher absolute
correlation with the Morlet wavelet in large scales between
20 and 80. HC subjects presented a common pattern such
as the one in Figure 6C), i.e., higher absolute correlation
with Morlet wavelet in large scales between 20 and 50.
See Supplementary Figure 2 for individual scalograms of
all analyzed FEP, CHR and HC. Results of the multi-
scale analysis were generated in approximately 1 hour for
all the subjects together using parallelization on a high-
performance computer (OMICS cluster by the University of
Luebeck).

The scales and voxels that showed statistically significant
differences (corrected with FDR < 0.05) are presented in
Figure 7. In Figures 7A,B), the colorbar represents the range
of the corrected p-values. For the first comparison, scale 96
across voxels significantly differentiated FEP patients from
HC. For the second comparison, scales 94 and 96 across
voxels significantly differentiated FEP from CHR patients. This
indicates that low frequencies (high scales) are more prominent
in FEP, which reflects a smoother divergence of voxels in
the spatial-series, i.e. lower structural complexity, compared
to both CHR and HC. There was no statistically significant
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difference in the third comparison. The mean correlation for
the specific scales is represented in Figures 7C–G for each
group.

In Figure 8, a surface overlay of the mean correlation of
each group with Morlet wavelet is presented for the two scales
94 and 96 using the CAT12 toolbox (for (a) FEP in scale 94,
(b) FEP in scale 96, (c) CHR in scale 94, (d) CHR in scale 96,
and (e) HC in scale 96). The selected voxels contributing to
between-group differences are located in the frontal, occipital,
temporal lobe and the cerebellum, involving the rolandic and
calcarine areas, the cuneus, the lower parietal lob, the heschl part
of cerebellum and vermis. It is observed that not only different
regions have different values of correlation but also the same
regions (i.e., black circles in Figure 8) folding in a different way
compared to the Morlet template in Figures 8A vs. 8C, 8B vs.
8D and 8B vs. 8E. Specifically, for HC subjects in scale 96 the
Morlet wavelet is positive correlated (red points in Figure 8)
with the lambda values in both hemispheres (Figure 8E). For
both scales CHR patients present positive correlation on the
right hemisphere (Figures 8C,D) in contrast to FEP that present
positive correlation only on the left hemisphere. In Figures 8A-
E, the mean correlation of the Morlet wavelet is represented
for the voxels with statistical significant differences (corrected
p-values showed in Figure 7). It is observed that in scale 96
(scale 94) the correlation with Morlet wavelet is differentiated
between FEP and combined CHR and HC (FEP vs. CHR).
However, there were no significant differences in gyrification
index between all comparisons (FWE < 0.05).

Discussion

In this study, we investigated gray matter abnormalities
in the spatial-scale domain for a large sample of patients
with first-episode psychosis (FEP), patients with clinical
high risk (CHR) and healthy controls (HC). We applied a
combination of established methodologies using lambda and
wavelet transformation to identify patients with FEP and CHR.
The main advantage of the method is that it requires only
1% of the voxels in GM images; in terms of low-complexity
analysis, 5,000 voxels close to the surface or the GM center
of the mass were sufficient for the identification of brain
topology differences between FEP and CHR against HC, and
FEP against CHR.

First outcome measure: we considered the nonlinear
dynamics of the most weighted voxels by intensity and distance.
Two outcome measures were used in this analysis: a) the lambda
value and b) the scalograms. Lambda as an outcome measure
successfully differentiated FEP and CHR patients from HC
but was not sufficient to distinguish FEP from CHR. Multiple
findings indicate similar brain abnormalities between CHR and
FEP (2, 39–41). Through localization of the top-weighted voxels
and multiple comparisons of the lambda across brain regions

and groups, statistically significant differences were revealed in
the temporal pole, right posterior cingulate gyrus and lingual
gyrus and fusiform for FEP against HC, which affected from
demographic variables. Statistically significant differences were
revealed in the occipital and temporal lobe for CHR against
HC, and could serve as biomarkers of psychotic disorders.
Many studies present the involvement of the occipital lobe in
FEP and CHR (42–44): Subjects with predominant attenuated
psychotic symptoms are characterized by a reduction of GM-
intensity values in the occipital cortex (44). In previous studies
in at-risk individuals progressive gray matter reductions in
temporal regions were reported (45–47). The high variability
in morphological measures extracted from temporal cortex
in schizophrenia was identified in a large meta-analysis (5).
Posterior cingulate cortex (45), lingual gyrus (46) and fusiform
(47) are reduced in patients with schizophrenia and FEP which
is in line with the results presented.

Second outcome measure: we considered scalograms of brain
sMRI, allowed discrimination of early-stage psychosis from
CHR. Both FEP and CHR subjects could be differentiated
from HC by simple visual inspection of the scalograms of the
lambda extracted from the top 5,000 voxels (see Supplement
Figure 4). However, we emphasized on group comparison
results. FEP scalograms were statistically significant different
from those of HC and CHR; no differences were observed
between CHR and HC. Thus, the move from the spatial domain
into the frequency domain revealed hidden patterns in the
mechanism of the progression of the disease. Two frequencies
in the spatial-series of lambda provided the ability to statistically
differentiate FEP from CHR, which was not possible using solely
the lambda value. The low frequencies presented by high scales
was interpreted as smooth changes in the brain topology of FEP
compared to CHR and HC. We observed that the nonlinear
dynamic of the weighted distances as an expression of the
structure relief of the individual brains is highly informative
for the identification of brain topology differences in FEP and
CHR subjects. These results are consistent with previous studies
that showed significant reduction in cortical folding across
multiple brain regions, especially left frontal and right temporal
regions, in patients with first-episode psychosis compared
to healthy controls (48–50). Gyrification index values were
significantly increased in the right temporal lobe of the FEP
patients compared to HC (51) that is in line with the increased
positive correlation in the right temporal lobe for HC subjects
in low frequencies, representing smoother cortical folding in
HC compared to FEP in this region. Statistically significant
differences in the gyrification index are not presented in the
SBM analysis for the examined dataset. This fact enhances
our notion that chaos analysis provides better insights for
the recognition in psychosis and progression of the illness.
Abnormal cortical topography was also observed in the occipital
lobe in clinical high risk patients in a multi-center study (52),
which is consistent with the positive correlation in the occipital
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FIGURE 5

Visualization of between-group comparison results using the mean lambda maps represented. Two sample t-test was applied with age, sex and
smoking as covariates in (A) FEP > HC, and (B) CHR > HC. The corrected p-values (FWE < 0.05) are presented.

FIGURE 6

Scalogram of one (A) FEP, (B) CHR, and (C) HC subject for 100 scales. Sampled voxels are represented in x-axis and scales in y-axis, the colors
represent the correlation with the Morlet wavelet deep red color corresponds to lower and white color to higher correlation.

lobe for CHR patients. In addition, CHR subjects presented
positive correlation in the right occipital lobe in contrast to FEP
that presented in the left occipital lobe.

The innovation of the proposed method in the field
of psychosis biomarker research is that it uses spatial-
series extracted from sMRI, which separates it from other
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FIGURE 7

Statistically significant differences, corrected with FDR < 0.05, between groups (A) FEP vs. HC and (B) FEP vs. CHR. The x-axis represents the
sampled voxels, the y-axis represents the scales and the colors represent the value of the corrected p-values. The colorbar shows the range of
the corrected p-values in this graph. The mean correlation of the Morlet wavelet with the lambda values of HC (C), FEP and CHR subjects for
scale 96 (D,G) and 94 (E,F) are presented.

approaches that investigate gray matter volume increase
or decrease, such as VBM analysis. Instead, our approach
transforms the brain sMRI into a spatial-series, calculates
the chaotic gray matter distribution using the lambda
value, and finally transforms the lambda series into a

two-dimensional (2D) scalogram by using the Wavelet
Transform (WT), in order to have a useful representation of
spatial-scale features.

The main advantage of the method is that the impact
of the initial point of reference, the GM center of mass in
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FIGURE 8

Surface overlay of the mean correlation with Morlet wavelet for (A) FEP scale 94, (B) FEP scale 96, (C) CHR scale 94, (D) CHR scale 96 and (E)
HC scale 96. The color scale represents the range of the correlation, higher (lower) correlation means smooth (sharp) cortical folding, and the
black circles indicate regions with different mean correlation between groups (A) vs. (C), (B) vs. (D), (B) vs. (E).

individual GM images that was used for the calculation of
the distance to voxels, is not reflected in the sorting of the
weighted distance and the lambda value. Lambda measures
how the distances diverge in the state-space, regarding the
distances across all voxels selected, and thus is a ‘path-
free’ measurement. As lambda expresses the way that two
neighbor voxels, in the state-space, diverge across the GM
topology with respect to all the other voxels, it depicts the
way that voxels from different regions are related to structural
changes in psychosis. As the scales represent the structure
relief, it may reflect volume increase patterns in FEP patients
compared to CHR subjects. However, our results should be
considered in view of certain limitations: The sample size was
moderate; moreover, the method contains many parameter
selections that warrant further exploration (e.g., the number
of the selected voxels). The proposed method uses the higher
weighted distance in the brain which are not distinguished
between groups and located mostly in the occipital and
temporal lobe. This fact enhances our assumption that we
do not lose spatial dependences in the spatial signal when

sorting, and thus the application of the Largest-Lyapunov-
Exponent is feasible. The drawback of the method is the
assumption underwent due to computational restrictions and
should be find ways to overcome this problem. We plan
to address these limitations in further studies investigating
the effectiveness and robustness of the method in larger
datasets with different scanning parameters, and across different
(including non-psychotic) diagnoses. Comparison to classical
approaches such as cortical thickness, cortical folding, and
gray matter density in addition to the comparison with the
gyrification index should be performed in larger datasets to
investigate the superiority of the proposed method. It is in
author’s future plans to apply explainable AI in a larger
database across different diagnoses. Additionally, chaos analysis
implementation on multiple modalities of the same sample, i.e.,
EEGs, and application of the explainable AI on multi-modal
prediction models would benefit the identification of potential
biomarkers in psychosis. The main outcome of the present study
is the identification of brain topology differences of the FEP
and CHR patients and it would be of outmost importance to be
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implemented in the patient management system to support the
doctor’s decision.
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