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Abstract

Many adaptive traits are polygenic and frequently more loci contributing to the phenotype are segregating than needed to express

the phenotypic optimum. Experimental evolution with replicated populations adapting to a new controlled environment provides a

powerful approach to study polygenic adaptation. Because genetic redundancy often results in nonparallel selection responses

amongreplicates,weproposeamodifiedevolveand resequence (E&R)design thatmaximizes the similarity amongreplicates. Rather

than starting from many founders, we only use two inbred Drosophila melanogaster strains and expose them to a very extreme, hot

temperature environment (29 �C). After 20 generations, we detect many genomic regions with a strong, highly parallel selection

response in10evolved replicates. TheXchromosomehasamorepronouncedselection response than theautosomes,whichmaybe

attributed todominanceeffects. Furthermore,wefindthat themedian selectioncoefficient forall chromosomes ishigher inour two-

genotype experiment than in classic E&R studies. Because two random genomes harbor sufficient variation for adaptive responses,

we propose that this approach is particularly well-suited for the analysis of polygenic adaptation.

Key words: experimental evolution, evolve and resequence, inbred strains, polygenic trait, parallelism, Drosophila

melanogaster.

Significance

Adaptation to temperature has a polygenic basis, which makes the molecular characterization challenging. Either the

contribution of individual loci is too small to be detected experimentally or the contributing loci are genetically

redundant, which implies that the same phenotype can be obtained by different allelic combinations. Here, we

propose an experimental framework, which uses only two founder genotypes to obtain a strong and highly parallel

selection response to a new, hot temperature regime. We suggest that such parallel selection responses in replicated

populations provide an excellent opportunity to characterize polygenic adaptation, because it avoids uncertainty about

selection signatures typically associated with genetic redundancy.
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Introduction

Many adaptive traits have a polygenic basis (Hoffmann et al.

2003; Barton and Etheridge 2018; Barghi et al. 2020), where

typically more contributing loci are segregating in a popula-

tion than needed to reach the trait optimum (Yeaman 2015).

For highly polygenic traits, the contribution of a single locus

during adaptation to a new environment, that is, a new phe-

notypic optimum, will be small, usually too small to be

detected by classic population genetic tests (Pritchard et al.

2010; Pritchard and Di Rienzo 2010). Thus, tests for polygenic

adaptation aggregate signals across multiple loci to gain sta-

tistical power (Turchin et al. 2012; Berg and Coop 2014; Sella

and Barton 2019). However, distinguishing the contributions

of demography and selection in these aggregated signals can

be challenging in natural populations because of residual pop-

ulation structure (Barton et al. 2019; Berg et al. 2019; Sohail

et al. 2019). Hence, experimental evolution has been pro-

posed as an alternative approach to study polygenic adapta-

tion (Vlachos and Kofler 2019; Barghi et al. 2020; Lou et al.

2020). Laboratory natural selection within the evolve and

resequencing (E&R) framework (Garland and Rose 2009;

Turner et al. 2011; Long et al. 2015; Schlötterer et al. 2015)

has been successfully used to study adaptation in controlled

environments, combining experimental evolution and Pool-

Sequencing (Pool-Seq) on replicated populations (Schlötterer

et al. 2014).

Simulation studies (Baldwin-Brown et al. 2014; Kofler and

Schlötterer 2014; Kessner and Novembre 2015) recommend

optimizing different design parameters to obtain a good map-

ping resolution. An established strategy is to use a large num-

ber of founder genotypes. Maximizing the number of

founders provides the advantage that contributing alleles seg-

regating at intermediate frequency will be located on multiple

haplotypes, which facilitates their identification (e.g., Kofler

and Schlötterer 2014). This experimental design is well-suited

for the selective sweep paradigm without epistasis for fit-

ness—a hallmark of polygenic adaptation. For highly poly-

genic traits, increasing the number of founders also

increases the number of available contributing alleles, which

may either trigger competition between segregating haplo-

types if they interfere with each other (Hill and Robertson

1968), or inflate genotypic redundancy making evolution

less repeatable (L�aruson et al. 2020). Additionally, increasing

the number of founders lowers the starting frequency of hap-

lotypes, which in turn increases their chance to be lost by

drift—also resulting in lower parallelism.

As a consequence, a (highly) heterogeneous response be-

tween replicates is expected for highly polymorphic founder

populations and has been seen in several E&R studies (e.g.,

Griffin et al. 2017; Hardy et al. 2018; Seabra et al. 2018;

Barghi et al. 2019; Rêgo et al. 2019)—even when the same

founder population is used. In small populations where sto-

chastic sampling effects have a strong impact on allele

frequencies, this may either increase or decrease the fre-

quency of contributing alleles during the early generations

and thus result in heterogeneous selection responses across

replicates (Bolnick et al. 2018; Nen�e et al. 2018; Langmüller

and Schlötterer 2020). Although this genetic redundancy pro-

vides convincing evidence for polygenic architecture, it is chal-

lenging to distinguish nonparallel selection responses from

genetic drift. We showed recently that a follow-up E&R study

(secondary E&R) can confirm selection signatures, which are

restricted to a single replicate (Burny et al. 2020), but the large

number of segregating haplotypes results in very complex al-

lele frequency changes (AFCs) preventing a further character-

ization of the selection target (Langmüller et al. 2021).

Given these challenges to characterize the adaptive re-

sponse with a classic E&R design based on a large number

of founder genotypes, we propose an alternative design.

Using only two different genotypes is the most dramatic re-

duction of variation segregating in natural populations, which

offers the potential to distinguish selection signatures from

stochastic changes based on highly parallel selection

responses. Given the success of bulk segregant analysis based

on Pool-Seq of individuals with extreme phenotypes—

Ehrenreich et al. (2010) identified up to 20 contributing loci

from a cross of two yeast genotypes, we reasoned that a two-

genotype E&R study may provide a powerful approach to

study the adaptive architecture. Unlike the genetic architec-

ture which also includes loci that cannot respond to selection

due to deleterious pleiotropic effects, the adaptive architec-

ture focuses on variants contributing to adaptation (Barghi

et al. 2020).

A two-genotype E&R study provides the conceptual advan-

tage that much less standing genetic variation is available to

contribute to adaptation and all contributing alleles will start

from the same frequency. The selection response should be

less complex and more parallel across replicates compared

with classic E&R studies. Similar to classic E&R studies, selec-

tion targets can be identified by a frequency increase during

experimental evolution. The major conceptual difference is,

however, that the selection targets are located only on two

homologous chromosomes, which implies that the favorable

alleles located on the same chromosome can only be detected

in two-genotype E&R when they are separated by a nonfa-

vored allele. Recombination during the experiment will un-

couple the nonfavored allele, resulting in a selection

signature that distinguishes three selection targets.

Nevertheless, the ability to distinguish these selection targets

depends on multiple factors: effect size, recombination rate,

distance between loci as well as the extent of the parallel

selection response between replicate populations. Because

the degree of parallelism is the only parameter that could

be (indirectly) modified by the experimental design, it is of

key importance to know if typically used population sizes

are resulting in a selection signature, which is sufficiently
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parallel to distinguish noise (drift and sampling of reads in

Pool-Seq) from the biological signal.

In this study, we explore the potential of two-genotype

E&R as an alternative approach to characterize the genetic

architecture of a temperature adaptation. Although a puta-

tively polygenic trait (Angilletta 2009; Barghi et al. 2019;

Dayan et al. 2019; Herrmann and Yampolsky 2021), chill

coma recovery time, a measure of adaptation to cold temper-

ature, has a very simple genetic basis in Drosophila ananassae

(Königer et al. 2019). Thus, the adaptive architecture for tem-

perature may range from a small number of loci of large effect

to a highly complex one with many loci, each with very small

effects—close to the infinitesimal model.

We studied the parallel selection response from two

founder haplotypes by creating 10 replicate populations

from two parental inbred Drosophila melanogaster strains,

Samarkand and Oregon-R, which were exposed to an ex-

treme temperature regime (constant 29 �C). Because this

temperature is only slightly below the maximum temperature

at which D. melanogaster are viable and fertile (fig. 1,

Hoffmann 2010), we maximize the chance of a parallel selec-

tion response. Eventually, all contributing alleles that start at

FIG. 1.—Strong parallel response after 20 generations of evolution at 29 �C (A) Smoothed Oregon-R (O) AF (y axis) at F20 in all replicates colored by

major chromosome in cM unit (x axis). The same color code applies to all figures (pink: X; black: 2; purple: 3). The mean O AF is computed over

nonoverlapping windows of 250 SNPs. The bold line represents the mean O AF per window over the 10 replicates and the horizontal dotted line the

starting O AF (0.3). The arrow indicates the position of a localized selection signature on chromosome 3 (see Discussion). (B) 2D MDS projection of the

pairwise q Spearman correlation matrix between empirical (colored) and neutral (gray) allele frequencies per major chromosome. The correlation coefficient

values were transformed to distances (2�(1 � q)) prior to projection.
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intermediate frequency in the founder population will be

measured after 20 generations. Using this design we asked

two questions:

1. Is temperature sufficiently polygenic to find selection sig-

natures on multiple chromosome arms?

2. Is it possible to create sufficiently parallel selection

responses, which can distinguish between selection and

stochastic forces—even for moderate selection effect?

By analyzing the genomic responses in the 10 replicate

populations maintained for 20 generations at a hot temper-

ature, we find that two founder genotypes harbor enough

natural variation to ensure a selective response. A very strong

and highly parallel selection signature is seen in all replicates,

which enabled us to recognize linked alleles of opposite

effects even when the resulting AFCs were moderate. This

demonstrates that even for temperature adaptation, which is

highly polygenic, an adequate experimental design, that is, a

reduced founder diversity and a distant trait optimum, results

in reproducible selection signals.

Materials and Methods

Experimental Setup

We used the Oregon-R and Samarkand strains inbred by

Chen et al. (2015), and maintained since then at room tem-

perature. The experiment started with 10 replicates, each

with a census size of 1,500 flies and accidentally with a start-

ing frequency of 0.3 for the Oregon-R genotype (0.7 for the

Samarkand genotype)—rather than 0.5 of each genotype.

The ten replicates were then maintained in parallel at a con-

stant 29 �C temperature in dark conditions. Every generation,

300 adults were transferred to one of five bottles for 2 days of

egg laying. After egg laying, all adults were removed and

frozen. Because the egg lay resulted in a high density of lar-

vae, a mixture of larvae and food was transferred to two fresh

food bottles. Adults were collected 8–32 h after the first flies

eclosed. Adults from all bottles were mixed to avoid popula-

tion substructure and 300 adults from each vial gave rise to

the next generation.

DNA Extraction, Library Preparation, and Sequencing

Whole-genome sequence data for the parental Oregon-R and

Samarkand strains are available from Chen et al. (2015). The

ten evolved replicates in generation F20 were sequenced us-

ing Pool-Seq: genomic DNA was prepared after pooling and

homogenizing all available individuals of a given replicate in

extraction buffer, followed by a standard high-salt extraction

protocol (Miller et al. 1988). Barcoded libraries with a targeted

insert size of 480 bp were prepared using the NEBNext Ultra II

DNA Library Prep Kit (E7645L, New England Biolabs, Ipswich,

MA) and sequenced on a HiSeq 2500 using a 2� 125-bp

paired-end protocol.

Establishment of a Parental SNPs Catalogue

After quality control with FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/; last accessed January 2021),

the raw reads were demultiplexed and trimmed using

ReadTools (G�omez-S�anchez and Schlötterer 2018; version

1.5.2; –mottQualityThreshold 18, –minReadLength 50, –

disable5pTrim true) leading to a mean insert size of 392 bp.

The processed paired-end reads were mapped using

NovoAlign (http://novocraft.com; last accessed April 2021;

version 3.09; -i 250,75 -F STDFQ -r RANDOM) on the com-

bined D. melanogaster reference genome v6.03 (Thurmond

et al. 2019), wMel (AE017196.1), wRi (CP0013391.1), and

common gut bacteria (Acetobacter pasteurianus

[AP011170.1]; Lactobacillus brevis [CP000416.1]). From the

processed BAM files, that is, without duplicates (using PICARD

MarkDuplicates; http://broadinstitute.github.io/picard/; last

accessed April 2021; version 2.21.6; REMOVE_

DUPLICATES¼true VALIDATION_STRINGENCY¼SILENT),

quality filtered (using samtools [Li et al. 2009]; version 1.10;

-b -q 20 -f 0x002 -F 0x004 -F 0x008) and reheadered. The

average coverages are 60 and 62� for Samarkand and

Oregon-R strains and 146, 129, 158, 150, 159, 142, 186,

117, 127, 140� for replicates 1 to 10, respectively.

Multisample variant calling using the two processed parental

BAM files was done with Freebayes (Garrison and Marth

2012; version 1.3.5). Biallelic SNPs in regions outside �200

bp length repeats (identified by RepeatMasker, http://www.

repeatmasker.org; last accessed October 2020) were retained

using vcftools (Danecek et al. 2011; version 0.1.16; –min-

alleles 2 –max-alleles 2) and bedtools (Quinlan and Hall

2010; version 2.27.1; intersect). The vt toolbox (Tan et al.

2015) was used to normalize and to decompose variants (ver-

sion v0.57721; normalize; decompose_blocksub; uniq). We

removed SNPs within 5 bp of an indel using bcftools (Li

2011; version 1.9; filter -g5 -i ‘TYPE¼“snp”’) (soft filters).

The filtered VCF was loaded in R using the vcfR::read.vcfR R

function (Knaus and Grünwald 2017; version 1.12.0). We

retained SNPs covered in both parents (based on the sum of

AO and RO) within the averaged 1st–99th percentile coverage

(11–68). We eventually kept SNPs with a QUAL value greater

than 413 (1st percentile of QUAL values�1), leading to a total

of 684,065 processed SNPs (hard filters). A parental SNP was

defined as a (nearly) fixed difference between parental lines

with a 0/0 (1/1) genotype in the Samarkand parent and 1/1 (0/

0) genotype in the Oregon-R parent at the marker position,

conditioning for a frequency of the alternate allele lower than

0.05 (if 0/0) or higher than 0.95 (if 1/1). We obtained a final

list of 465,070 SNPs (see supplementary table S1,

Supplementary Material online for a detailed count of markers

at each filtering step); 401,252 and 63,818 SNPs on the auto-

somes and the X chromosome, respectively, equivalent to 1

SNP every 271 bp on the autosomes and 363 bp on X. Allele

frequencies at these informative parental marker SNPs are

Burny et al. GBE

4 Genome Biol. Evol. 13(11) doi:10.1093/gbe/evab239 Advance Access publication 25 October 2021

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://novocraft.com
http://broadinstitute.github.io/picard/
http://www.repeatmasker.org
http://www.repeatmasker.org
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab239#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab239#supplementary-data


obtained after converting processed F20 BAM files from

pileup (samtools mpileup -BQ0 -d10000) to sync files using

PoPoolation2 (Kofler et al. 2011; mpileup2sync.jar). The sub-

sequent analyses have been performed with R (version 4.0.4;

R Core Team 2018) and most figures have been done with

the ggplot2 R package (Wickham 2016). For the parental

strains, we used the frequency of inversion-diagnostic SNPs

to check the inversion status of common cosmopolitan inver-

sions as inversions would impede recombination (Kapun et al.

2014). Both parental strains are homosequential (supplemen-

tary fig. S1, Supplementary Material online). We also checked

the density of heterozygous SNPs per parent prior to QUAL

filtering and obtained 2,711 and 2,698 heterozygous SNPs

(genotyped 0/1) in Samarkand and Oregon-R, respectively,

representing less than 0.6% of the total number of parental

marker SNPs.

Allele Frequency Tracking

At each SNP, we obtained counts for both parental alleles

from the F20 sync files. We polarized allele frequency (AF)

for the Oregon-R allele. The frequency of the Samarkand al-

lele is obtained as 1 minus the Oregon-R AF. The AFC of a

given marker is signed; if the Oregon-R AF at F20 is higher

(lower) than 30%, the Oregon-R (Samarkand) allele increased

in frequency and the AFC is positive (negative). The genome

was partitioned in 1,862 nonoverlapping genomic windows

of 250 parental SNPs; 1,606 on the autosomes, 256 on the X

chromosome, spanning on average 67.8 and 90.5 kb on the

autosomes and X. Note that the last windows of chromo-

somes 2, 3, and X contain 20, 160, and 68 SNPs, respectively

and are not included in the analysis. The AF per window was

summarized as the mean over 250 SNPs. A window position i

is defined by its center ((right bound� left bound)/2). Markers

along the genome are positioned in cM unit, to adjust for

heterogeneity in recombination rate along the chromosome.

The recombination map of Comeron et al. (2012) was

updated to version 6 of the reference genome using the

Flybase online Converter (https://flybase.org/convert/coordi-

nates; accessed in July 2020). Physical chromosome positions

were converted to genetic positions via interpolation (Gatti

et al. 2014; version 1.0.0; DOQTL::fill.in.snps R function) to

avoid SNPs that have the same cM value to overlap at the cM

scale (cf Marey map in supplementary fig. S2, Supplementary

Material online, Mb unit in supplementary fig. S3,

Supplementary Material online). The effective population

size, Ne, was estimated per replicate for the autosomes and

X separately using the poolSeq::estimateNe R function (Taus

et al. 2017) from 10,000 randomly picked SNPs and summa-

rized as the median over 1,000 trials, similarly as in Vlachos

et al. (2019) (supplementary table S2, Supplementary Material

online).

Quantification of the Response

For each replicate, we reported the median AF of the Oregon-

R allele over the windows. We also reported the median co-

efficient of variation (CV) per chromosome to quantify the

deviation around the average AF value per window. We ad-

ditionally computed the autocorrelation in AF between win-

dows using the acf R function. ACF at a given step k is defined

as the correlation between windows at positions i and iþ k,

where k is called the lag. We used the median distance in Mb

at which a significant decrease in ACF was noted (a¼ 5%,

below 1.96/�m, m the number of windows) as a rough proxy

for linkage disequilibrium (LD).

We performed neutral simulations mimicking our empirical

design (starting frequency of 0.3 for the Oregon-R alleles, 10

replicates, 20 generations, unbiased sex ratio, census size of

1,500 flies) using MimicrEE2 (Vlachos and Kofler 2018). From

the simulated sync files, we then drew the coverage per SNP

from a Poisson distribution (mean¼ 122 reads, estimated

from the empirical read counts) and performed binomial sam-

pling with the sample size equal to the coverage as suggested

in Taus et al. (2017), to reproduce Pool-seq sampling noise. To

contrast our empirical results with neutral expectations, we

computed the pairwise q Spearman correlation matrix be-

tween all neutral and empirical replicates (10 replicates times

2) per arm (3 major chromosomes), leading to a 10 � 2 � 3

entry matrix. The q values were converted to distances (2�(1

� q)) prior to projecting the distance matrix in two dimensions

with multidimensional scaling (MDS; Gower 1966). The sig-

nificance of the pairwise correlations was assessed with t-tests

separately for empirical and neutral replicates, where P values

were adjusted with a Benjamini–Hochberg correction. We

performed a sign test for the median AFC to test if the median

AFC per major chromosome is higher than 0, where P values

were adjusted with a Benjamini–Hochberg correction.

We validated the selection signatures visually identified on

the X chromosome by simulations with MimicrEE2 (Vlachos

and Kofler 2018), starting with the same haplotype file used

for the neutral simulations, and the D. melanogaster recom-

bination map (Comeron et al. 2012). Key to our simulations

was that we iteratively increased the number of targets (1, 2,

3, 4, 6) to improve the fit of the simulated Oregon-R frequen-

cies to the empirical frequencies. The selection targets were

defined as follows: we picked a random SNP within windows

that are local extrema of the average selection coefficients s

along the X chromosome, detected with the ggpmisc::find_-

peaks R function (Aphalo 2021; version 0.4.3). If the observed

s value at the SNP is positive (negative), the beneficial allele is

an Oregon-R (Samarkand) allele. The selection coefficient val-

ues were iteratively adjusted to improve the fit to the empirical

frequencies. The simulations started with the most strongly

selected SNP followed by the strongest responsive site of op-

posite effect—this resulted in three SNPs with positive effect

and three SNPs with negative effect. The final s values are
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indicated in supplementary fig. S4, Supplementary Material

online. The goodness of fit for each the five simulation sets (1,

2, 3, 4, 6 targets) to the average smoothed empirical allele

frequencies was measured by the sum of squared estimate

(SSE) of error. We also performed paired t-tests to compare

the average smoothed empirical allele frequencies to the sim-

ulated ones for each of the five scenarios, where P values

were adjusted with a Benjamini–Hochberg correction.

Comparisons to Other Data Sets

We qualitatively contrasted our study with two additional E&R

studies (table 1) that are similar in terms of duration and lack

inversions but start with hundreds of founder genotypes, and

thus heterogeneous starting allele frequencies. To compare

studies, we computed the absolute selection coefficient per

SNP in all available replicates; ten replicates in this study, three

replicates from Kelly and Hughes (2019) (between F0 and

F15) and ten replicates from Barghi et al. (2019) (between

F0 and F20) using the same number of SNPs (10,000) for

each study and for each chromosome X, 2, and 3. To avoid

problems with SNPs fixed in one or more populations, we first

generated pseudocounts by subtracting (adding) a pseudo-

count of 1 to fixed (lost) SNPs, as described in Vlachos et al.

(2019). Ne was estimated as described above. We then esti-

mated the selection coefficient s of each biallelic marker SNP,

assuming independence of selection targets (no linkage and

independent effects on fitness) and codominance (h¼ 0.5),

using the poolSeq::estimateSH R function (Taus et al. 2017) by

fitting a linear model with least square regression adjusted for

bias on the logit-transformed Oregon-R allele frequencies; ln

AFðtÞ
1�AFðtÞ

� �
¼ ln AFðt0Þ

1�AFðt0Þ

� �
þ t s

2 with t time in generations. We

determined the 95% t-based confidence interval of s for each

replicate and major chromosome by jackknifing using the

bootstrap::jackknife R function (Efron and Tibshirani 1994;

Leisch et al. 2019; version 2019.6).

Results

Parallel Response after 20 Generations of Evolution at High

Temperature

Using two genotypes to set up the founder population pro-

vides the advantage that all parental alleles start from the

same frequency across the entire genome. A simple

genome-wide FC plot along the genome provides an intuitive

visualization of the selection targets (fig. 1A): the pronounced

FC increase of the putatively selected alleles, either Oregon-R

(AF> 30%) or Samarkand (AF< 30%), generates a “hill-val-

ley-like” landscape. Because recombination rate a priori deter-

mines the width of the genomic region affected by a selected

site (Felsenstein 1974; Barton 1995; Otto and Lenormand

2002; Roze and Barton 2006), we scaled the chromosomes

in cM unit (for a base-pair scaling, see supplementary fig. S3,

Supplementary Material online). Throughout the entire ge-

nome, we observe a fast and strong response after 20 gen-

erations (fig. 1A) where in all replicates, large, linked genomic

regions experience very similar changes in frequency.

The high level of parallelism among the empirical replicates

is reflected in highly correlated allele frequencies between

replicates, higher than 0.8 (t-test on pairwise Spearman cor-

relation coefficient q per arm; mean q2 ¼ 0.89 [t(44) ¼ 191,

adjusted (adj.) P< 1.1 � 10�65], mean q3 ¼ 0.80 [t(44) ¼
106, adj. P< 1.2� 10�54], mean qX¼ 0.92 [t(44)¼ 210, adj.

P< 6.3 � 10�67]). Such high correlations are not observed

among replicate populations in neutral simulations (t-test on

pairwise q per arm; mean q2 ¼ �0.03 [t(44) ¼ �0.8, adj.

P> 0.93], mean q3 ¼ 0 [t(44) ¼ 0.2, adj. P> 0.93], mean qX

¼ 0 [t(44) ¼ �0.08, adj. P> 0.93]). We visualized the

Table 1.

E&R Data Sets Information

Number of Founder

Genotypes

Census Size Pressure Species Generation Used Sequencing

Information

Publication

2 1,500 LNS constant 29 �C D. melanogaster 20 non-

overlapping

Pool-Seq of 1,500

mixed males and

females

This study

�800 1,000 LNS fluctuating

temperature

(28 �C/18 �C,

mean 23 �C)

D. simulans 20 non-

overlapping

Pool-Seq of 1,000

mixed males and

females

Barghi et al. (2019)

�1,000 Mean ¼ 1,277;

Range ¼ 832–1,635

Mean ¼ 849;

Range ¼672–1,147

Mean ¼ 1,187;

Range ¼ 963–1,620;

for replicates A, B, C

LNS constant

temperature

(25 �C)

D. simulans 15 overlapping Pool-Seq of 500

males and

females

Kelly and Hughes

(2019)
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difference between the empirical and simulated replicates by

projecting the pairwise correlation matrix in a two-

dimensional MDS plot (fig. 1B), which highlights the similarity

between the empirical replicates for each major chromosome,

whereas in the neutral simulations no clustering of replicates

was apparent.

Although it is difficult to provide a statistically sound esti-

mate of the number of selection targets, a closer inspection of

the distribution of AFCs along the chromosomes indicates

that each chromosome harbors multiple selection targets.

Based on a single replicate, it is not possible to distinguish

whether the ruggedness of the AFCs along the chromosomes

is the result of stochastic (recombination and drift) or deter-

ministic forces. Because many of the hills and valleys are well-

supported by the replicates, our data indicate that each chro-

mosome arm harbors several distinct loci contributing to tem-

perature adaptation, some of them with opposite effects

responsible for “hill-valley-like” pattern. We demonstrated

the presence of multiple selection targets on a single chromo-

some arm for the X chromosome. Computer simulations of a

single selection target nicely matched the frequency increase

in the target region, but the AFCs for the rest of the chromo-

some did not fit. We successively added selected alleles with

opposite effect (either Samarkand or Oregon-R was favored).

This increased the fit between simulated and empirical trajec-

tories for up to six selection targets (supplementary fig. S4,

Supplementary Material online) as measured by squared esti-

mate of error (SSE). Additionally, only for the six-target sce-

nario, we did not detect a significant difference between the

smoothed empirical and simulated allele frequencies (P values

in supplementary fig. S4, Supplementary Material online).

Independently of the actual number of selected loci, it is

apparent that reducing the genetic variation to two genotypes

still leaves a considerable reservoir of favorably selected alleles.

This strong selection response is also reflected in effective pop-

ulation size (Ne) estimates based on AFCs. For the X chromo-

some, Ne barely reaches 25 with a median of 21 and is also

rather small on the autosomes (median of 57, supplementary

table S2, Supplementary Material online), given a census size of

1,500 flies in each replicate. The effective population size on the

X chromosome is much lower than the expected 3/4 reduction

relative to the autosomes (Charlesworth 2009). This implies that

the efficacy of selection differed between the autosomes and X

and that selection was considerably stronger on the X chromo-

some (see Discussion for possible explanations).

The experiment started from two genotypes and in 20

generations the number of recombination events that can

uncouple contiguous blocks of Oregon-R/Samarkand alleles

which experience a strong frequency increase is limited (in

particular as D. melanogaster males do not recombine). In

the absence of haplotype data from the evolved flies, we

used the loss of autocorrelation in AF as a proxy for the decay

of LD to quantify the association between genomic sites

(fig. 2A). The correlation between increasingly distant

windows decayed faster on the autosomes (with a median

of 4.5 and 3.6 Mb over the 10 replicates for chromosomes 2

and 3) compared with the X chromosome (median of 6.1 Mb)

(fig. 2B), implying less LD on the autosomes. We attribute the

independence of neighboring windows at a lower distance on

the autosomes (correlation outside 95% confidence interval)

to differences in selection intensities: stronger selection

reduces the effective population sizes beyond the 3/4

expected from the ratio of X chromosomes to autosomes,

which results in less opportunity for recombination on the X

chromosome. Note that the absence of recombination in

males makes further strengthens our conclusion as the X-

chromosome has more opportunity for recombination than

autosomes.

At 29 �C, the two separated parental lines suffered simi-

larly from the high temperature regime and produced low

numbers of offspring. When the two strains were combined

in the experimental evolution cage, the Oregon-R alleles

clearly outcompeted the Samarkand genotypes (figs. 1A

and 2C): the median Oregon-R AFC was significantly higher

than 0 (0.15, 0.15, 0.29 for chromosomes 2, 3, and X; adj.

P< 3.0� 10�98, adj. P< 2.0� 10�120, adj. P< 3.0� 10�19

on each sign test; fig. 2C). Although some heterogeneity can

be observed along the chromosome arms (fig. 1A; median CV

is 0.10, 0.11, 0.18 for chromosomes 2, 3, and X), the median

Oregon-R AF increased on each chromosome, ranging from

40% to 65%, which suggests a genome-wide rather than an

isolated footprint of selection.

Exceptionally Strong, Genome-Wide Selection Signatures

With all alleles occurring at similar frequency throughout the

entire genome, the comparison of AFCs provides a direct

readout of the selective force operating on each SNP—either

directly or through linkage to selection targets. To compare

the selection experienced in this two-genotype experiment to

two other short-term Drosophila E&R studies (table 1) that

differ in the number of founder genotypes (>800) and con-

sequently in the distribution of starting allele frequencies, we

transformed the AFCs into selection coefficients, s, which

allows the comparison of alleles with different starting fre-

quencies. The pronounced differences in median absolute s

between the X chromosome and autosomes were specific to

the two-genotype experiment (fig. 3). Across all chromo-

somes, the median absolute s was significantly higher for

this study compared with the two other studies (fig. 3).

This clearly indicates that the two E&R studies with many

founder genotypes experienced less selection, not only on

the X chromosome, but genome-wide. The differences in

selection intensity between the two-genotype experiment

and E&R studies with many founder genotypes are also

reflected in effective population size (Ne) estimates. With

Ne estimates not higher than 61 and 25 for the autosomes

and X in all replicates (supplementary table S2,
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Supplementary Material online), Ne of this study was consid-

erably lower than for the two other E&R studies (see fig. 3

legend), suggesting that a much larger fraction of the ge-

nome experienced drastic AFCs. The stronger selection ob-

served in our study may reflect the higher temperature (29
�C rather than average 23 �C in Barghi et al. 2019 and

constant 25 �C in Kelly and Hughes 2019). Another expla-

nation for the different selection intensities is that selection is

more efficient with two rather than many founder genotypes

and leads to more pronounced AFCs. For a highly polygenic

trait, an increasing number of founder genotypes will result

in more contributing loci, resulting in smaller fitness differ-

ences between genotypes.

Discussion

The idea to start an experimental evolution study with only

two genotypes is radically different from current E&R designs,

but has already been used before in experimental evolution

FIG. 2.—Quantification of the evolutionary response at F20 (A) and (B) Loss of correlation at the major chromosomes. (A) Example of a scatterplot of q
Spearman correlation against the median distance between two windows measured in Mb. The blue dotted lines represent 61.96/�m, with m number of

windows. (B) Jittered boxplots of physical distance in Mb where linkage equilibrium (LE) is reached at a 5% threshold (vertical black line in A). (C) Boxplots

overlaid with violin plots of AFC. A positive (negative) allele frequency change (AFC) indicates that the O genotype increases (decreases) in the window

relative to the starting frequency of 0.3. The horizontal dark red dashed line indicates no change in frequency after 20 generations.

FIG. 3.—Median absolute selection coefficients (s) per SNP across empirical E&R studies for chromosomes 2, 3, and X The jackknife estimates of the

median absolute s (dot) are represented along with their 95% confidence intervals (segments). Averaged across the replicates, the effective population size

estimates of the autosomes (X) were 55 (20), 228 (203), and 379 (391) for the three studies (this study, Barghi et al. [2019], and Kelly and Hughes [2019],

respectively).
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(e.g., Barnes 1968; Kearsey and Barnes 1970; Nuzhdin et al.

1998). Although strong phenotypic responses were observed

in these studies, the small population sizes used, for example

in the mouse selection experiments, can result in considerable

genetic heterogeneity among replicates which limits the

power to detect loci with small/moderate effects. An interest-

ing modification of the two genotype design has been used in

fruit flies. From a polymorphic population, two haplotype clas-

ses were identified with moderate number of linked allozyme

markers, but each haplotype class harbored considerable var-

iation which was not surveyed (Clegg et al. 1976). Evolving

populations founded by these two haplotype classes showed

very strong selection signatures, but the genomic response

between the replicates was heterogeneous, which was attrib-

uted to genetic heterogeneity at the unmonitored part of the

haplotype classes (Clegg et al. 1976). Overall, previous two-

genotype experimental evolution studies were primarily

designed to study the phenotypic response, but not to obtain

highly parallel genomic selection signatures among replicate

populations.

In contrast, this study obtained a highly parallel selection

signature which can be attributed to the use of two high

frequency genotypes in the founder populations in combina-

tion with large census sizes (1,500 individuals). Such a highly

parallel selection response provides an excellent tool to study

adaptation because selection responses can be reliably dis-

tinguished from stochastic patterns—even with a small num-

ber of replicates. Consistent with our data, computer

simulations showed that two-haplotype E&R studies can be

used to experimentally confirm candidate alleles that were

previously identified (Langmüller et al. 2021)—similar to a

previous secondary E&R experiment (Burny et al. 2020).

One further advantage of the highly parallel selection signa-

ture seen in this two-haplotype E&R study is that it offers the

opportunity to explore epistatic interactions when only a

small number of loci are selected. Crossing one inbred strain

to at least two other inbred strains (in separate pairwise

crosses) provides an excellent system to study epistasis by

contrasting the selection response of a candidate locus in

different genomic backgrounds. The highly parallel response

provides sufficient power to detect even small differences,

that is, changes in frequency of the same selection target,

due to the genetic background.

Despite the moderate number of generations, the highly

parallel selection signature across replicates provides solid sup-

port for multiple distinct selection targets on each chromo-

some arm. First, the rugged AFCs along the chromosomes are

concordant across replicates, ruling out major contributions

from stochastic forces in the observed topography. Second,

consecutive windows of similar AFCs cluster in hills and valleys

of variable widths. We showed that computer simulations

with six selection targets on the X chromosome provided a

better match to the empirical AF patterns than simulations

with fewer loci (supplementary fig. S4, Supplementary

Material online). Apart from this characterization of selection

targets, our data suggest that the number of selection targets

may be even larger. We find that hills/valleys of similar abso-

lute AFCs (i.e., similar net selection) are having a different

shape (the broadness differs) even when adjusted for spatially

variable recombination rates. For example, the selection sig-

nature at position 50.7 Mb on chromosome 3 (marked by an

arrow in fig. 1A; supplementary fig. S3, Supplementary

Material online) is much more peaked than other regions.

This suggests that despite a moderate number of recombina-

tion events during 20 generations, it is possible to obtain a

more localized selection signature at this position than at

other parts of the genome. This raises the question why other

genomic regions are not showing a similar level of resolution

as this genomic region. Although it may be possible that re-

combination rates were not well estimated, we consider this

an unlikely explanation given the high quality of recombina-

tion map in D. melanogaster (Comeron et al. 2012).

Alternatively, it may be possible that broad selection signa-

tures are caused by more than one selection target in this

region on one of the founder genotypes: If recombination

uncouples selection targets (with effects in the same direc-

tion), recombined haplotypes are disfavored. We propose that

the broad peaks seen in our study are not only the result of

limited recombination opportunity, but can be caused by

neighboring loci, which are selected in the same direction.

This implies that the two genotypes harbor more selection

targets than apparent from the selection landscape of hills

and valleys (fig. 1).

For a highly polygenic architecture, the selection response

of a two-haplotype E&R reflects the net effect of multiple

contributing alleles, possibly of different sign, within a se-

lected haplotype block. A similar scenario has been modeled

where an admixed genotype is broken up into haplotype

blocks, which introgressed when the net effect of all loci

within the haplotype block was positive (Sachdeva and

Barton 2018). If our two-genotype experiment is extended

for more generations, the high parallelism of this setup can

be used to study the breaking of the haplotype blocks con-

taining multiple selection targets, by stochastic recombina-

tion. This has been done in a recent E&R study in budding

yeast, which also started from two inbred founder genotypes,

but with a much larger population size and for 960 genera-

tions (Kosheleva and Desai 2018). Consistent with a highly

polygenic architecture, the fitness of sexual populations con-

tinuously increased throughout the entire experiment, possi-

bly by the creation of favorable allelic combinations during the

experiment (Hickey and Golding 2018). More generations are

needed for this Drosophila experiment to determine whether

fitness continues to increase as in the yeast study or plateaus

when the trait optimum is reached (Franssen et al. 2017;

Höllinger et al. 2019).

The classic E&R design maximizing the number of founder

genotypes is an excellent approach to identify causative
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variants for traits with a simple genetic basis (such as C-virus

resistance [Martins et al. 2014]), which contributing loci seg-

regate at intermediate frequency in the founder population.

Causative variants with a low starting frequency occurring on

rare haplotypes are difficult to map because they will result in

the increase of a large genomic region (Franssen et al. 2017;

Barghi et al. 2019). Computer simulations suggested that a

secondary E&R based on multiple replicates of two genotypes

can identify causative SNPs when performed for 60 genera-

tions at large population sizes (Langmüller et al. 2021).

Although large-scale QTL crosses of two genotypes are an-

other powerful approach to identify causative variants, we

raise caution that this does not only involve a substantial phe-

notyping load, but also requires a priori information about the

selected phenotype. Although fitness components can also be

used for QTL mapping, it is well-understood that different

fitness components can provide inconsistent results (e.g.,

Flatt 2020). E&R, in contrast, does not require information

about the selected phenotype and total fitness is measured.

Furthermore, phenotyping of outbred flies is restricted to a

single measurement for each genotype, which implies that

experimental noise reduces the power of QTL crosses. In lab-

oratory natural selection E&R studies, fitness of individuals is

not being measured, but it is evaluated across multiple gen-

erations as integral part of the experimental design, which

provides more reliable results. Consistent with these consid-

erations for simple traits, a simulation study showed that E&R

is more powerful than GWAS to identify contributing alleles

of a polygenic trait (Vlachos and Kofler 2019). Nevertheless,

we are still lacking empirical studies comparing the power of

QTL crosses with E&R.

Strong selection responses in populations derived from two

founder genotypes imply that one allele provides an advan-

tage relative to the other. Although it is tempting to speculate

that the fitness advantage is related to the temperature stress

imposed during the experiment, we cannot rule out that the

selection response is caused by deleterious alleles that were

acquired during the long-term maintenance, since

Samarkand and Oregon-R isofemale lines have been collected

more than 90 years ago (Lindsley and Grell 1968). Isofemale

lines are typically maintained at small population sizes, which

renders most mutations effectively neutral (Ohta 1973;

Kimura 1983) and could lead to the accumulation of delete-

rious alleles that are fixed in the parental strains. Consistent

with the presence of deleterious alleles, we noticed that het-

erozygous F1 flies produced a larger number of eggs at 29 �C

than the inbred strains which had difficulties to sustain the

next generation. If deleterious alleles are the primary driver of

the observed AFCs, the predominant increase of Oregon-R

alleles would suggest that Samarkand has accumulated

more deleterious alleles than Oregon-R. This conclusion is

not supported by obvious fitness differences of the two pa-

rental genotypes at 29 �C. Alternatively, the lack of clear fit-

ness differences in the parental lines could be explained by

overdominance, but the reason for the predominant fre-

quency increase of Oregon-R allele frequencies remains

unclear. Additional generations at 29 �C would help to dis-

tinguish between both explanations. Deleterious alleles would

be ultimately purged while overdominance would result in a

stable equilibrium frequency. A third interpretation of the

data is based on epistatic interactions between Samarkand

and Oregon-R alleles. If a few Samarkand alleles interact

with many Oregon-R alleles, this could account for the advan-

tage of heterozygotes and the predominance of Oregon-R

alleles among the selectively favored ones. Epistatic interac-

tions could be further tested when the Oregon-R genotype is

competed with other (inbred) genotypes in separate pairwise

competition experiments.

A particularly interesting result was the different selection

signature on the X chromosome compared with the auto-

somes. More pronounced AFCs, and hence higher selection

coefficients, were found on the X chromosome translating in

lower Ne estimate than expected, that is, lower than 3=4 of the

Ne on the autosomes. We propose two not mutually exclusive

explanations for this observation: 1) the selected loci may be

(partially) recessive which allows for a more efficient selection

on the X chromosome (Charlesworth et al. 1987; Mank et al.

2010; Meisel and Connallon 2013); 2) the X chromosome has

either more contributing loci or they may have larger effects.

Although it is hard to hypothesize about the distribution

(number and location) of the selection targets after only 20

generations, we favor the dominance explanation because it

is not apparent why the number of selection targets or their

effect sizes should be different between the X chromosome

and the autosomes.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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