
materials

Article

Johnson–Cook Parameter Identification for Commercially Pure
Titanium at Room Temperature under Quasi-Static Strain Rates

Alice Siegel 1,2, Sébastien Laporte 2 and Fabien Sauter-Starace 1,*

����������
�������

Citation: Siegel, A.; Laporte, S.;

Sauter-Starace, F. Johnson–Cook

Parameter Identification for

Commercially Pure Titanium at Room

Temperature under Quasi-Static

Strain Rates. Materials 2021, 14, 3887.

https://doi.org/10.3390/ma14143887

Academic Editors: Yulin Hao and

Daniela Kovacheva

Received: 1 April 2021

Accepted: 22 June 2021

Published: 12 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Clinatec, CEA, LETI, Université Grenoble Alpes, F-38000 Grenoble, France; alice.siegel@outlook.com
2 Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology,

F-75013 Paris, France; sebastien.laporte@ensam.eu
* Correspondence: fabien.sauter@cea.fr; Tel.: +33-(0)4-3878-0621

Abstract: Background: To simulate mechanical shocks on an intracranial implant called WIMAGINE®,
Clinatec chose a Johnson–Cook model to account for the viscoplastic behavior of grade 2 titanium in
a dynamic study using Radioss©. Methods: Thirty tensile specimens were subjected to tensile tests at
room temperature, and the influence of the strain rate (8 × 10−3 and 8 × 10−2 s−1) and sandblasting
was analyzed. Relaxations were included in the tests to analyze viscosity phenomena. Results: A
whole set of parameters was identified for the elastic and plastic parts. Strain rate influence on
stress was negligible at these strain rates. As expected, the sandblasting hardened the material
during the tests by decreasing the hardening parameters, while local necking occurred at an earlier
strain. Conclusions: This article provides the parameters of a Johnson–Cook model to simulate the
elastoplastic behavior of pure titanium (T40, grade 2) in Finite Element Model (FEM) software.

Keywords: grade 2; commercially pure titanium; Johnson–Cook; plasticity; tensile test; microstructure

1. Introduction

Titanium and its alloys are widely used in the biomedical field, mainly for their
corrosion resistance, biocompatibility, and high specific strength. Implants and, more
recently, active implant housings are made of titanium and its alloys. Although Ti-6Al-4V
is still the most used titanium alloy in this field, commercially pure titanium (CP-Ti) is
sometimes preferred for long-term applications due to cytotoxicity and genotoxicity of
aluminum and vanadium release [1–4]. CP-Ti is comprised of over 99% of titanium, and
four grades are available, varying in carbon, iron, and oxygen amounts and acting on the
corrosion resistance, formability, and ductility.

At CEA Clinatec, the intracranial wireless ECoG implant WIMAGINE® was developed
in a Brain–Computer Interface project [5,6]. Little mechanical load is generally applied to
implants, and Hooke’s law is usually sufficient to model elastic deformations. Young’s mod-
ulus values for CP-Ti grade 2 are reported between 105 and 118 GPa in the literature [7–10].
Grain boundary sliding is reported during deformation thanks to microscopic analysis,
though its impact on the overall mechanical strain is negligible [11].

To prevent excessive deformation or mechanical failure in impact situations due to
falls or blows, the engineer has to model the plastic behavior of CP-Ti. Complex analysis of
CP-Ti plasticity implies the modelling of twinning and texture evolution, which explains
the anisotropic hardening behavior [12]. In the finite element analysis with Radioss© for
an intracranial implant subjected to impact, the constitutive model is simplified to an
engineer’s tool, such as the isotropic Johnson–Cook (JC) model [13]. Cheng et al. [14]
published the identified parameters of this model for Ti-6Al-4V. Hereafter, JC parameters
were identified on samples made of commercially pure titanium (CP-Ti), and the influence
of sandblasting and quasi-static strain rate variation were analyzed.
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The aim of this study is therefore to propose a robust methodology to evaluate the
JC mechanical parameters of commercially pure titanium and to identify the influence of
sandblasting and strain rate variation on these parameters.

2. Materials and Methods

All following stresses and strains are true stresses and strains.

2.1. Experimental Setup
2.1.1. Tensile Specimens

Thirty CP-Ti tensile specimens (Micro Tolerie Dallard, Saulce sur Rhone, France) were
designed following ISO 6892-1:2016 [15] (Figure 1) and cut in a 0.5 mm thick hot rolled and
annealed sheet.

Figure 1. (Left) Specimen design following ISO 6892-1:2016; dimensions in mm. (Right) Set-up for
tensile test.

2.1.2. Tensile Tests

Uniaxial tensile tests were performed at room temperature on a tensile machine model
5566 (INSTRON, Norwood, MA, USA) with a 10 kN load sensor. Specimens were sprayed
with white and matt black paint to obtain a random grayscale pattern. A camera (Fastcam
SA3, PHOTRON Inc., San Diego, CA, USA) recorded the tests at 50 fps to perform digital
image correlation (DIC) [16]. All specimens were tested until failure.

The specimens were split into three groups (G1, G2, and G3). Taking into account the
tensile machine limitations, two different velocities (0.5 and 5 mm/s, corresponding to
8 × 10−3 and 8 × 10−2 s−1 strain rates) were tested to investigate the strain rate sensitivity
in the material between G1 and G2. In addition, the influence of sandblasting was analyzed
between G1 and G3. Ten specimens were tested for each condition (Table 1).

Table 1. Test conditions for each specimen group.

Specimen Group Strain Rate (s−1) Sandblasting Relaxations

G1 8 × 10−3 - X
G2 8 × 10−2 - -
G3 8 × 10−3 X X

Three stress relaxations were included in the plastic hardening part for G1 and G3 at
3.3, 6.4, and 9.4% of true strain (obtained from preliminary tests) to track viscoplasticity
phenomena. The constant strain was held during the 30 s to observe short-term relaxation
phenomena. Relaxations could not be performed on G2 specimens due to machine limits
on velocity.

2.2. Stress–Strain Curves

A free Matlab® code (MathWorks Inc., Natick, MA, USA) [17] enabled the tracking of
the grayscale pattern motion up to failure using a 75 × 17 tracking grid (Figure 2a). Grid
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marker positions were extracted at each time step and used to compute logarithmic true
strains ε.

Figure 2. (a) Image analysis of the tensile test specimens. (b) Strain–stress curve of the grade 2 titanium.

Longitudinal strains (on the y-axis) were computed using the five upper and five
lower ranges of grid points. Transverse strains were computed using the two right and
two left columns of grid markers in the necking region.

The material behavior was assumed isotropic, and Poisson’s ratio could be considered
homogeneous throughout the material. This enabled the computation of the cross-sectional
area A using the transverse strain data obtained from DIC and the Poisson’s ratio definition.
Load data f were recorded directly from the INSTRON machine, and true stresses σ were
computed following Equation (1):

σ =
f
A

(1)

where f is the recorded load data, A and A0 are the current and initial cross-sectional areas,
respectively, and lxx and lzz are the current transverse lengths. lxx0 and lzz0 are the initial
transverse lengths.

The transversal stretch λT is defined by:

lxx = λT × lxx0 (2)

Assuming isotropic deformations in A, the cross section of the samples, we can express
A as a function of A0, lxx, and lxx0 as follows:

A = lxx × lzz = λT × lxx0 × λT × lzz0 = λ2
T × A0 (3)

Combining Equations (2) and (3), A =
(

lxx
lxx0

)2
× A0

Hence, the true stress can be computed as a function of f , A0, lxx, and lxx0:

σ =
f(

lxx
lxx0

)2
A0

(4)
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Grid marker positions were extracted at each time step and used to compute logarith-
mic true strains ε following Equation (5):

ε = ln
(

lyy

lyy0

)
(5)

where lyy and lyy0 are the lengths at the current and initial state, respectively.
A local strain analysis was also performed by computing the Green–Lagrange strain

tensor at each grid point in the longitudinal direction (Eyy), the transverse direction (Exx),
and the shear direction (Exy) at each time step, as indicated in Equation (6):

E =

[
Exx Exy
Exy Eyy

]
=

1
2

(
FTF − I

)
(6)

where F is the Green–Lagrange strain tensor and I is the identity tensor.
The Von–Mises effective strain EVM was also computed according to Equation (7):

EVM =
2
3

√
Exx2 + Eyy2 − ExxEyy + 3Exy2 (7)

2.3. Mechanical Parameters Identification
2.3.1. Data Processing Methodology

Concerning further model fitting procedures, for each specimen group, the data were
processed on the whole dataset at once. All parameters were identified using a robust
nonlinear least squares optimization algorithm developed in Matlab®. The evaluation
errors on each identified parameter due to experimental noise were identified using a
bootstrap method [18].

2.3.2. Ultimate and Failure Stresses and Strains

The ultimate stress and corresponding strain (σu and εu) were computed as the stress
and strain at maximal load. Failure stresses and strains (σf and ε f ) were not extracted for
each specimen (Figure 2b) because post-necking the assumption of uniform deformation
was no longer valid.

2.3.3. Stress–Strain Model Fitting

Two separate models were used for the elastic and plastic hardening parts to fit the
experimental curves. The elastic part was described by a 1D Hooke’s law, which is given in
Equation (8):

σ = E × εe (8)

where E is Young’s modulus to be identified and σ and εe are the true stress and elastic true
strain, respectively.

The JC constitutive model was chosen to describe the plastic hardening part. Re-
laxation data were removed from G1 and G3 raw data for this analysis. Necking is not
permitted by the JC law; consequently, data after (εu, σu) were not considered for identifica-
tion. The JC model follows Equation (9) [13]:

σ =
(
σy + Bεp

n)(1 + C ln
( .

ε
.
ε0

))(
1 −

(
T − Troom

Tmelt − Troom

)m)
(9)

where σy, B, C, and n are the material constants to be identified, σ is the true stress, εp
is the plastic true strain (εp = ε − σ

E ), Troom is the room temperature, Tmelt is the melting
temperature, and

.
ε and

.
ε0 are the actual and reference strain rates, respectively.

It can be noticed that the two models meet at the yield stress σy. The yield strain εy
was also computed.
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The JC model was identified on each test group separately to account for behavior
differences in hardening. As the strain rate is constant and the experiments were performed
at room temperature, the JC model leads to Equation (10), also known as the Ludwik’s
model [19]:

σ = σy + Bεp
n (10)

Parameter C was identified using G2 data and previously identified G1 elastic and
hardening parameters. The reference strain rate was

.
εG1.

2.3.4. Relaxation Model Fitting

Stress relaxation data were analyzed using a generalized Maxwell model for the elastic
modulus Equation (11) [20]:

E(t) = E∞ +
N

∑
k=1

Eke−
t

τk (11)

where Ek and τk are the k−th modulus and relaxation time, respectively, to be identified.
Two elements were chosen for the Maxwell model to account for short-term and long-

term relaxation phenomena. The true stress during relaxation is given by Equation (12):

σ(t) = E(t)× εR (12)

where εR is the relaxation strain and t is the time.
The parameters computed for each specimen group are summarized in Table 2.

Table 2. Computed parameters for each specimen group.

Specimen Group
(
εy,σy

)
(εu,σu) E, B, n C (Ek, τk)

G1 X X X - X
G2 X X X X -
G3 X X X - X

2.4. Microstructural Analysis

X-ray diffraction (XRD, Empyrean PANalytical instrument, Almelo, The Netherlands)
and X-ray profile line analysis (XPLA) (X’pert HighScore Plus software, version 3.0, PANa-
lytical, Almelo, The Netherlands) were performed at the Nano-Characterization Platform
(PFNC) (MINATEC, Grenoble, France) to correlate the macro-results with micro-structural
phenomena. The correction of the instrumental profile was performed first.

The used X-ray source was a Cu Kα radiation, with a wavelength λ = 1.54 Å. For these
measurements, two identical post-failure G1 specimens were analyzed (referred to as TS1
and TS2). Microstrains were extracted from X-ray diffraction at distance to the rupture
point (from 0 to 55 mm).

Phase analysis was performed to confirm that the sheet was only comprised of alpha-
titanium (HCP—hexagonal close-packed). A texture analysis looked at the peak intensities
to investigate possible privileged crystal direction.

Residual stress measurements were eventually performed using the sin2ψmethod [21],
based on the variation of stress concerning the tilting angle ψ.

3. Results

Due to recording issues during the tests, one specimen was excluded from G2 and
two from G3. Each of the three groups showed low dispersion before necking and low
variability between groups (Figure 3). It can be noticed that G1 specimens had a yield
plateau, unlike G2 and G3, for which the elastoplastic transition was more continuous.
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Figure 3. Strain–stress curves of tensile tests with relaxation for the G1, G2, and G3 groups.

3.1. Mechanical Parameters Identification
Ultimate and Failure Stresses and Strains

Experimental ultimate stresses and strains are summarized in Table 3. Ultimate
stresses were highest for G1 and lowest for G3. Corresponding mean strains were found to
be similar between G1 and G2 data, but a substantial difference can be observed between
G1 and G3.

Table 3. Experimental ultimate stresses and strains (mean and standard deviation (SD)).

σu (MPa) εu (%)

Group G1 G2 G3 G1 G2 G3
Mean 631 619 604 12.4 11.9 9.9

SD 3 6 9 0.2 0.2 0.2

3.2. Stress–Strain Model Fitting

The algorithm successfully captured the elastic and plastic phenomena (Figure 4). For
G1 specimens, the fit did not recreate the yield plateau during the transition from elastic to
plastic behavior, which JC’s constitutive law cannot model.

The mechanical parameters obtained through the robust algorithm are presented in
Table 4, and the mean values comparing the three groups are shown in Figure 5. The
identified Young’s moduli, yield stresses, and yield strains were similar between groups.
Standard deviations were low for G1 and highest for G2. The value of parameter C was in
the range of 10−13.

Concerning the hardening parameter B, it was highest for G1 data, with a mean value
of 753 MPa. Both G2 and G3 results showed a significant difference with G1, with mean
values of 707 and 649 MPa, respectively. It can be noted that the G3 data had a more
important difference. Eventually, no difference could be noticed for n between G1 and G2,
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while there was a substantial difference between them for G1 and G3, with mean values of
0.42 and 0.31, respectively.

The rate parameter C (~10−13) indicated no influence of the strain rates on such a
small range.

3.2.1. Local Strains

Local strains were analyzed step by step for each tensile specimen, and a screenshot
of the analysis is given in Figure 6. After little motion during the elastic part, longitudinal
Eyy strains started to grow. The localized necking is pictured by Exx and Exy increases
and localization of the four strain maps. Relaxation data were also investigated for new
organizations of the lattice, which was not observed in the dislocation analysis and seemed
to confirm that viscoplastic phenomenon is not based on dislocations glide or increase.

Figure 4. Comparison of experimental data and model fit for strain–stress curves of tensile tests limited to elastic and
uniform hardening regions for G1, G2, G3 groups.

Figure 5. Identified parameters for the three groups. (a) E the Young’s modulus, (b) σy the yield stress, (c) B the hardening
parameter, (d) n the hardening coefficient.
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Table 4. Identified elastic and plastic hardening parameters.

Mechanical
Parameters E (GPa) σy (MPa)

Group G1 G2 G3 G1 G2 G3
Mean 115 112 112 330 322 292

SD 1 3 1 7 15 12

Mechanical
Parameters εy (%)

Group - G1 G2 G3
Mean - 0.29 0.29 0.26

SD - 0.7 × 10−2 2.0 × 10−2 1.2 × 10−2

Mechanical
Parameters B (MPa) n

Group G1 G2 G3 G1 G2 G3
Mean 753 707 649 0.42 0.39 0.31

SD 10 9 5 0.02 0.02 0.02

1 
 

 

 
6 
 

 
 
9 
 

Figure 6. Strain representation ((a) Eyy, (b) Exx, (c) Exy, (d) EVM) on a specimen, (e) grid representation of sample after
plastic deformation. (f) Strain–stress curve showing elastoplastic behavior.

3.2.2. Stress–Time Model Fitting

The relaxation moduli and times were identified for all three relaxations on G1 and G3
data. R2 values of 0.95 and 0.78 were found for G1 and G3 fits, respectively; the difference
in fit quality was mainly due to a higher data variability in G3. The experimental data and
fitted curves are shown in Figure 7, and identified parameters can be found in Table 5. No
difference could be found for any of the parameters between groups G1 and G3. Relaxation
moduli decreased over the relaxation strains, whereas relaxation times τ1 and τ2 stayed
constant one by one over the three relaxations (see Figure 8).
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Figure 7. Time–stress curves related to relaxation tests for groups 1 and 3.

Table 5. Identified Maxwell parameters for relaxation phenomena.

εR = 3.3%

E1 (MPa) τ1 (s) E2 (MPa) τ2 (s)

G1 G3 G1 G3 G1 G3 G1 G3
Mean 1180 1179 0.47 0.49 1064 1094 9.8 8.8

SD 23 52 0.02 0.55 5 21 0.2 0.7

εR = 6.4%

E1 (MPa) τ1 (s) E2 (MPa) τ2 (s)

G1 G3 G1 G3 G1 G3 G1 G3
Mean 662 660 0.46 0.44 570 566 9.2 8.7

SD 14 24 0.02 0.5 4 9 0.2 0.4

Figure 8. For groups 1 and 3 (Left) Strain–relaxation modulus. (Right): Strain–relaxation time.
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3.3. Microstructural Analysis

The phase analysis of the samples confirmed that all of them exhibited only the
titanium HCP alpha phase. The texture analysis revealed no preferred direction.

Residual stresses in the tensile direction in both TS1 and TS2 specimens are depicted
in Figure 9c. The clamped regions depicted the highest compressive stresses, while the
failure points showed the lowest residual stresses and the highest microstrains.

1 
 

 

 
6 
 

 
 
9 
 

Figure 9. (a) Location of the characterization area on the tensile specimen after failure; (b) estimations
of microstrains; (c) residual stress as a function of the distance to the failure line. TS1 is in blue and
TS2 is in orange.

4. Discussion

As previous authors have already identified the JC model parameters for commer-
cially pure titanium (CP-Ti) [10] or Ta6V [14], this paper does not claim originality. The
present study aimed to provide a complete set of mechanical parameters for the elastic
and plastic behavior of the CP-Ti and to evaluate the influence of quasi-static strain rates
and sandblasting. In Figure 10, the model parameters identified in our three groups are
compared to the literature.
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2 

 

Figure 10. Comparison to the literature of the identified parameters (a) E the Young’s modulus, (b) σy

the yield stress, (c) B the hardening parameter, (d) n the hardening coefficient.

Young’s modulus and yield stress are in the range of the previously identified values
[7,8,10,22–25]. In this work, 292 < B < 330 MPa, meaning B is lower than previously
published values. The choice of identification method may justify this, since parameters
E, A, B, and n are identified through a robust fitting algorithm from the joint Hooke and
JC models at once. This limits the fitting errors of the plastic fit depending on the elastic
one and improves the overall model fit compared to the 0.2% offset method, which is
the convention usually applied, such as by Johnson and Cook when first describing their
method in 1983.

Literature values [7,26–28] on B and n hardening parameters are very variable (Figure 10c,d,
respectively). However, such variability for the strain hardening parameters influences the
outcome of plastic strains and stresses in modeling plastic deformations highly.

The effect of sandblasting was found on B and n parameters by decreasing their values
concerning G1 parameters. A decrease in n stands for a strengthened strain hardening,
while a decrease in B leads to the maximal load being reached earlier on. This was the case
here, as the ultimate stresses were reached at 12.4% strain for G1 and 9.9% for G3. Therefore,
the surface treatment of sandblasting strengthens the material in the strain hardening part,
though limiting its deformation capacity.

In this work, the strain rate range is too small to identify correctly parameter C. The
use of Split Hopkinson Pressure Bar tests allows the reaching of strain rates between
10−3 s−1 and 6000 s−1 for which two studies found C = 0.06 at high strain rates [26,27].
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Anisotropy of titanium related to rolling was not considered, though it is reported in
the literature to have a significant influence in the parameter values [7,8]. Yet, the present
XRD analyses reveal no texture and stress annealing, meaning the material is without
preferred direction.

The XPLA confirmed an increase of plastic microstrains in the failure area by the
local strain analyses. HCP metals, in general, depict more complex plasticity mechanisms
than FCC (face-centered cubic) or BCC (body-centered cubic) crystals. Salem et al. [29]
also indicated that high-purity titanium deforms plastically at room temperature by twin-
ning and slip through three distinct mechanisms: dislocations slip, Hall–Petch grain size
strengthening, and texture softening.

The extraction of the dislocation densities was not consistent using the Williamson
Hall’s model [30] or the Gay’s model [31]. Hence, the evolution of dislocation den-
sities should be confirmed by complementary analysis like Transmission Electron Mi-
croscopy (TEM).

The relaxation moduli decreased for increasing relaxation strains, while relaxation
times stayed constant. No reference to this phenomenon has been found in the literature,
and future investigations could give insight into the mechanisms involved. It indicates that
during the strain hardening phenomenon, the relaxation capacity of the material decreases.

5. Conclusions

Thanks to a new experimental campaign on commercially pure titanium grade 2 for
quasi-static strain rates and room temperature with a dedicated and modern identifica-
tion strategy, we have identified a set of strain hardening parameters for a Johnson–Cook
model for grade 2 titanium. This model can be implemented into a finite element soft-
ware, such as Radioss®. Relaxation data are given for modeling short and medium-term
viscosity phenomena.
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