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Simple Summary: Animals provide food and other critical resources to much of the global popula-
tion. Transboundary animal diseases are highly contagious or transmissible, epidemic diseases, with
the potential to spread rapidly. They have the potential to cause negative socioeconomic and public
health consequences. A greater understanding of the factors contributing to disease pathogenesis and
spread is needed. Further work is also needed to improve the efficacy and cost of diagnostics and pre-
vention measures for these diseases. This review aims to give a broad overview of 17 transboundary
diseases, providing researchers and veterinarians with a current, succinct resource of salient details
regarding these significant diseases. For each disease, we provide a synopsis of the disease and its
status, species and geographic areas affected, a summary of research models, and when available,
information regarding prevention or treatment.

Abstract: Animals provide food and other critical resources to most of the global population. As
such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity
or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic
diseases, with the potential to spread rapidly across the globe and the potential to cause substantial
socioeconomic and public health consequences. Transboundary animal diseases can threaten the
global food supply, reduce the availability of non-food animal products, or cause the loss of human
productivity or life. Further, TADs result in socioeconomic consequences from costs of control or
preventative measures, and from trade restrictions. A greater understanding of the transmission,
spread, and pathogenesis of these diseases is required. Further work is also needed to improve the
efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of
17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details
regarding these significant diseases. For each disease, we provide a synopsis of the disease and its
status, species and geographic areas affected, a summary of in vitro or in vivo research models, and
when available, information regarding prevention or treatment.

Keywords: transboundary animal diseases; emerging and re-emerging infections; animal models

1. Introduction

Animals provide food and other critical resources such as hides and transportation
to the majority of the global population. As such, diseases of animals can cause dire
consequences, especially disease with high rates of morbidity or worse, mortality. The Food
and Agriculture Organization of the United Nations (FAO) and the World Organisation
for Animal Health (OIE; formerly the Office International des Epizooties) maintain a list
of transboundary animal diseases (TADs). These are highly contagious or transmissible,
epidemic diseases, that have the potential to: spread rapidly across the globe, cause
substantial socioeconomic losses, and result in negative public health outcomes [1,2].

Transboundary animal diseases are capable of threatening the global food supply
through the direct loss of animal protein and products such as milk, or through production
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deficits from the loss of animal power; reducing the availability of other animal prod-
ucts such as hides or fibers; or diminishing the supply of food or other animal products
through loss of human productivity in the case of zoonoses. There are also significant
socioeconomic consequences from the cost of control or prevention measures, and from
trade restrictions that can result from outbreaks and countries with differing disease status.
Thus, there is a high likelihood that these diseases can increase poverty and food insecurity,
especially in developing nations that depend heavily on livestock. Unfortunately, TADs are
predominantly in low-income areas, thus increasing the significance of the consequences
and the difficulty in obtaining funding for control or prevention measures [3,4]. In addition,
TADs have the potential for severe public health consequences when humans are also
susceptible to the disease; in some cases, these diseases can have high morbidity and
mortality in human populations. Finally, the pain and suffering of afflicted animals cannot
be discounted.

A greater understanding of transmission, spread, and pathogenesis of these diseases
is required to provide better control and mitigate negative outcomes. This will necessitate
the development of better characterized in vitro and animal models. Further work is also
needed to improve the efficacy and cost of both diagnostics and vaccines. The control
and prevention of these diseases rely on rapid diagnostics and/or effective vaccination
strategies [5].

This review aims to give a broad overview of transboundary diseases, providing
researchers and veterinarians with a current, succinct resource of salient details regarding
these significant diseases. For each disease, we provide a synopsis of the disease and
current status, species and geographic areas affected, a summary of in vitro or in vivo
research models, and when available, information regarding prevention or treatment.
Table 1 presents a brief overview of each disease, including the causative agent, species
generally affected, and common symptoms. Figure 1 displays a general and broad ge-
ographic distribution of each disease, including where the disease has historically been
found versus where it is currently thought to be present. Due to the potential for these
diseases to easily cross borders, the geographic distribution is divided into broad regions
rather than being country specific. The following diseases are included, based on the
consultation of both FAO and OIE lists: African horse sickness, African swine fever, avian
influenza, bluetongue, classical swine fever, contagious bovine pleuropneumonia, foot
and mouth disease, hemorrhagic septicemia, lumpy skin disease, Middle East respiratory
syndrome, Newcastle disease, peste des petits ruminants, Rift Valley fever, rinderpest,
sheeppox/goatpox, swine vesicular disease, and vesicular stomatitis.

Table 1. Transboundary animal diseases overview.

Disease Causative Agent Species Affected Symptoms Other

African horse sickness African horse sickness
virus (Orbivirus) Equids; primarily horses

Horses—acute (pulmonary) and
chronic (cardiac) with high morbidity

and mortality, mules and
donkeys—mild disease,

zebras—usually asymptomatic

African swine fever African swine fever virus
(Asfivirus) Domestic and wild suids

Sudden death, shock, hemorrhagic
fever, pulmonary edema, depression,

anorexia, thrombocytopenia,
lymphopenia

Avian influenza Avian influenza virus
(Influenza A)

Domestic poultry; birds
and mammals

Highly pathogenic avian influenza (H5
and H7) causes high rates of mortality,
respiratory symptoms, sinus or head

swelling, depression, anorexia,
cyanosis, incoordination, neurologic

symptoms, diarrhea

Zoonotic

Bluetongue Bluetongue virus
(Orbivirus)

Domestic and wild
ruminants;

primarily sheep

Fever, swelling, vascular injury and
hemorrhage, ulceration, pulmonary

edema, muscle necrosis; or
asymptomatic
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Table 1. Cont.

Disease Causative Agent Species Affected Symptoms Other

Classical swine fever Classical swine fever virus
(Pestivirus) Domestic and wild suids

Acute, chronic, and prenatal
presentations; sudden death,

hemorrhagic fever, stillbirth, abortion,
mummification, malformations,

persistent infection, congenital tremor

Contagious bovine
pleuropneumonia

Mycoplasma mycoides
subsp. Mycoides

Domestic and wild large
ruminants;

primarily cattle

Fever, inappetence, depression, labored
breathing, coughing, nasal discharge,

salivation (may vary from sudden
death to chronic subclinical carrier)

Foot and mouth disease Foot and mouth disease
virus (Aphthovirus) Cloven-hooved animals

Fever, vesicles on the feet, tongue,
snout, muzzle, mammary glands,

genital mucosa, or other mucosal sites,
inappetence, lameness

Hemorrhagic septicemia Pasteurella multocida Cattle and buffalo

Fever, submandibular and brisket
edema, respiratory distress and
mucopurulent or bloody nasal

discharge (may vary from sudden
death to chronic subclinical carrier)

Lumpy skin disease Lumpy skin disease virus
(Capripoxvirus) Cattle and buffalo

Lacrimation, nasal discharge,
inappetence, lymphadenopathy, fever,

drop in milk production, lameness,
nodular skin lesions, sometimes death

Middle East respiratory
syndrome

Middle East respiratory
syndrome coronavirus

(Betacoronavirus)
Camels Mild upper respiratory disease Zoonotic

Newcastle disease Newcastle disease virus
(Avulavirus)

Primarily domestic
chickens; reptiles, birds,
and mammals possible

Five pathotypes (viscerotropic
velogenic, neurotropic velogenic,

mesogenic, lentogenic, and
asymptomatic enteric); neurologic and

respiratory disease; asymptomatic

Zoonotic

Peste des petits ruminants Peste des petits ruminants
virus (Morbillivirus)

Domestic and wild
ruminants; primarily

goats and sheep

Inappetence, emaciation, depression,
fever, diarrhea, nasal and ocular

discharge, pneumonia and erosive and
necrotic stomatitis, death

Targeted for
eradication

by 2030

Rift Valley fever Rift Valley fever virus
(Phlebovirus) Ruminants

Abortion, fever, lymphadenopathy and
inappetence; weakness, nasal

discharge, and bloody diarrhea (sheep);
hypersalivation, diarrhea, and

decreased milk production (cattle)

Zoonotic

Rinderpest Rinderpest virus
(Morbillivirus)

Domestic and wild
ungulates

Fever, erosive mouth lesions, nasal and
ocular discharge, bloody diarrhea,

dehydration, weakness, death

Eradicated,
2011

Sheeppox and goatpox
Sheeppox virus and Goatpox

virus
(Capripoxvirus)

Sheep and goats

Fever, labored breathing, depression,
inappetence and lymphadenopathy,

progressive skin lesions: macular,
popular, vesicular, pustular and

scabbing; sometimes death

Swine vesicular disease Swine vesicular disease
virus (Enterovirus) Suids Infrequent and mild; influenza-like

Vesicular stomatitis Vesicular stomatitis virus
(Vesiculovirus)

Horses, cattle and suids;
rarely sheep and goats

Vesicular lesions on feet, snout, lips,
and tongue
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Figure 1. Broad continental distribution of 17 transboundary diseases. This figure displays a general and broad continental
distribution of each disease. Due to the potential for these diseases to easily cross borders, the geographic distribution is
divided into broad regions rather than being country specific. Abbreviations: African horse sickness (AHS), African swine
fever (ASF), avian influenza (HPAI), bluetongue (BT), classical swine fever (CSF), contagious bovine pleuropneumonia
(CBPP), foot and mouth disease (FMD), hemorrhagic septicemia (HS), lumpy skin disease (LSD), Middle East respiratory
syndrome (MERS), Newcastle disease (VND), peste des petits ruminants (PPR), Rift Valley fever (RVF), rinderpest (RP),
sheeppox and goatpox (SP/GP), swine vesicular disease (SVD), vesicular stomatitis (VS).

2. Methods

Literature searches were performed using both PubMed and Google Scholar, with no
initial restriction on date range. The following search terms were used, for each disease:
Disease, Disease + review, Disease + models. The results were sorted by relevance and the
first ten results were selected from each search. Additional results that appeared potentially
relevant to the goals of the review were then selected. After the initial search, another
search was performed with a date range of 2015 to 2021 to find further, recent results.
An additional search was also performed on both PubMed and Google Scholar using the
search terms Disease + treatment. Additional references were reviewed as needed, from
the reference list of literature found during the initial search. Searches were conducted
between December 2020 and May 2021. Articles relevant to the goals of this review, which
include providing a synopsis of the disease, sharing information regarding prevention or
treatment and summarizing available research models, were selected and cited from the
compiled searches for each disease.

3. Review
3.1. African Horse Sickness

African horse sickness virus (AHSV) causes African horse sickness (AHS) and is a
non-enveloped, double stranded RNA arbovirus that belongs to the genus Orbivirus, in the
family Reoviridae [6]. AHSV is divided into nine serotypes (AHSV1-9) [7,8]. The virus is
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closely related to epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV),
the type species of the genus Orbivirus [8,9]. The viral genome has 10 segments, numbered
1–10, encoding seven structural proteins (VP1-7), and five non-structural proteins (NS1-3,
N3A, and NS4) [10–13]. These structural proteins are similar to those of bluetongue
virus [12], and VP2, encoded by segment 2, is the most important in serotyping and
eliciting a neutralizing antibody response [10,12], while VP1, VP4, and VP6 make up
the viral transcription complex [10]. Segments encoding the proteins NS1 and NS2 are
highly conserved across the nine serotypes. More variable regions between the serotypes
encode the proteins NS3, NS3A, NS4, as well as the outer capsid proteins [8,10–12]. NS4
has recently been shown to be an important virulence factor, by disrupting JAK-STAT
signaling in the innate immune and antiviral response of the host animal [11]. Genome
reassortment and recombination is seen in AHSV and plays an important role in the
evolution of orbiviruses [12,14].

AHSV can cause a highly lethal disease in horses, and the virus can infect all equine
species, with AHSV-9 being less dependent on the zebra reservoir than others [15–17].
Other hosts include goats, elephants, camels, dogs, ferrets, and wild carnivores have also
shown exposure through antibody responses, but it is unknown what, if any, role they play
in the enzootic cycle of the virus [9,15]. The non-equid species surveyed are likely dead-end
hosts, or have nonspecific antibody reactions, while dogs may be exposed most often by
ingestion of contaminated meat [17–19]. Horses appear to be the most susceptible to severe
disease, while donkeys and mules tend to have a milder disease but longer viremia [12].
Zebras generally are asymptomatically infected and are presumed to be the reservoir
host in parts of Africa [12,17–21]. The disease is non-contagious and is transmitted by at
least two species of biting midges, Culicoides imicola throughout the range in Africa and
C. bolitinos also playing a role in South Africa [6,15,16]. These midges can cause spread
over local distances of a few kilometers; however, spread over long distances is primarily
due to movement of infected mammalian host species, with asymptomatic animals playing
a large role in the spread of disease [15,20]. The disease is enzootic in sub-Saharan Africa,
and possibly in Yemen and the Arabian Peninsula as well [17]. There have been epizootics
of disease in India, Pakistan, Spain, Portugal, and most recently in Thailand [17,22–27].
Global warming and the resulting spread of Culicoides imicola outside of Africa, has the
potential to further spread the enzootic range of this disease [17,27–29]. Other Culicoides
species pose a threat to transmission of the disease in non-enzootic areas [19].

The disease has been known for centuries in Africa [7]. Disease presentation can
be peracute, subacute, mixed, or a milder form of the disease known as horse sickness
fever [7,16,19,30,31]. The peracute form of the disease is characterized by pulmonary illness,
while the subacute form has a cardiac presentation [16]. The disease is largely fatal, with
recovery seen primarily in the milder, horse sickness fever, form [7]. The virus infects
endothelial cells and monocytes, with viremia that may last as long as 21 days. The clinical
form of the disease depends on the infecting strain, with a mixed form of the disease often
being seen in horses, while zebras, being the reservoir host, most often present with the
milder fever form [15].

There are a variety of methods for the diagnosis of AHS. The gold standard for
detecting the specific serotype is by viral neutralization assay [15]. Other ways of detecting
the AHSV include molecular methods that include antigen-antibody binding, such as
enzyme-linked immunosorbent assay (ELISA), complement fixation, serum neutralization,
or polymerase chain reaction (PCR) [12,15,30]. Newer methods, such as real-time PCR
(RT-PCR) and gene expression or sequencing to detect specific RNA sequences have been
developed to differentiate between the differing serotypes [12,15,31].

The control of the disease is similar to other vector-borne diseases and varies according
to location. The OIE can officially recognize countries as being AHS-free upon request
after meeting specific criteria, including no cases of infection in the previous two years, no
routine vaccination during the past year, and restrictions on imported equids [19,32,33].
Alternatively, a Member Country can apply for recognition as being historically free of the



Animals 2021, 11, 2039 6 of 58

virus [32]. AHS is the only equine disease for which countries can obtain this status [19,33].
In order to prevent spread from areas where the disease is enzootic or epizootic, quarantine
of equines moving from these areas should be practiced [6]. Additional measures that
can be taken on the host species include vaccination in both enzootic and epizootic areas
and stabling overnight in mosquito-proof stalls [6]. Many vaccines are multivalent, as
there is limited cross-protection between the nine serotypes and this will elicit a broader
immune response [16,34]. The standard method of vaccination is based on live attenuated
vaccines (LAV). These vaccines have an inherent risk of reverting to virulence [10,35],
they may not prevent infection and African horse sickness fever [36], and they do not
allow for differentiating infected from vaccinated animals (DIVA) [10]. This inability to
differentiate infected from vaccinated animals results in difficulties in maintaining an
AHS-free zone [37]. As a result, there has been recent progress on the development of
recombinant and inactivated vaccines, protein, and virus-like particles [10,38–42]. Reverse
genetics systems and recombinant techniques are being used to develop new vaccines to
target specific antigens of the AHSV, including several viral and nonstructural proteins of
the virus, including the capsid proteins VP2 and VP5, as well as NS1, which may elicit an
interferon gamma host antiviral response [10–12,16,43]. These newer technologies aim to
create a DIVA vaccine, which will greatly improve the control and detection of the virus.
Finally, exclusion measures in certain AHS-free countries may include culling of positive
animals to prevent an epizootic or establishment in the new area [19].

In addition to host-specific mitigation and prevention techniques, strategies to target
the vector can also be implemented. These include spaying of insecticides [19], but care
must be taken when used near food producing animals [15]. Local strategies, such as the
elimination of breeding habitat for the Culicoides midges, should also be practiced. This
includes the removal of dung and the elimination of mud or pooled water [15].

The socioeconomic impact of AHS in enzootic areas is great. This ranges from low-
income communities, where working animals are affected by disease, to racing, sport,
and leisure activities where either disease or impediments to movement across regions is
affected [33]. The impact on low-income areas is largely due to morbidity and mortality,
and affects food security, as well as having ripple effects on poverty alleviation and gender
equality. The exact impact is difficult to discern, as diagnosis and reporting is rarely
done [6,33]. The greatest potential for financial impact relates to horse racing. The total for
this industry amounts to several hundred billion dollars annually [6].

Most vaccine development studies have been done in horses, and most of what
is known about the disease is from naturally infected animals. There has been some
standardization towards a mouse model of disease. Early work was done in BALB/c mice,
by several challenge routes, to compare attenuated vaccine strains of AHSV to wildtype [44].
Recent work has focused on studying AHSV4 in the IFNAR −/−mouse [45–47]. These
mice lack the type-I interferon receptor, which increases susceptibility to viral infection.
Studies have focused on vaccine evaluation and a further characterization of the model.
Additional work has been done to characterize a guinea pig model for the evaluation of
AHSV vaccines [39,48].

3.2. African Swine Fever

African swine fever virus (ASFV) causes African swine fever (ASF) and is a large,
enveloped, double-stranded DNA virus and is the only member of the family Asfarviri-
dae [49–52]. The virion consists of a core with a linear genome, internal lipid membrane, an
icosahedral capsid, and lipid envelope [49–51,53–55]. ASFV can be transmitted by direct or
indirect contact with infected pigs, as well as by soft ticks of the genus Ornithodoros. This
includes Ornithodoros moubata in Africa, and O. erraticus in Europe, which serve to transmit
the virus to wild and feral suids, as well as serve as a reservoir of the virus [50,51,56,57].
Due to differences in vector species and natural host reservoirs, the epidemiology of the
virus varies on regional scales [52,56]. ASF has been reported in at least 60 countries to
date [56,58–61].
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African swine fever was first described in Kenya in 1921 [51,62]. It causes a hemor-
rhagic fever with mortality rates nearing 100% in domestic pigs and Eurasian wild boar.
Mortality can differ in domestic and wild suids according to virus strain [50,53,62,63]. The
virus remained limited to Africa prior to the mid-twentieth century, when it spread to
Europe, South America, and the Caribbean. A second expansion out of Africa spread
to the Republic of Georgia, the Russian Federation, and again into Europe, where it had
previously been eradicated, with the exception of Sardinia [51]. It remains enzootic in sub-
Saharan Africa, but the recent expansion out of Africa has now spread to Asia, including
China in 2018, where half of the world’s pig production occurs [53,64].

ASFV is highly contagious, and transmission can be through direct contact with in-
fected pigs, ingestion of infected meat, exposure to contaminated feces, blood, or urine,
or by the tick vector. There are commercially available diagnostic kits based on ELISA or
PCR, but use of such tests may be regulated in certain countries [63]. Confirmation can be
performed though virus isolation in porcine leukocyte or bone marrow cells, followed by
hemadsorption assays [65]. ASFV can be transmitted by fomites and is highly stable in the
environment, especially in protein-rich matrices, such as infected wild boar and their car-
casses and the meat from infected domestic pigs [64,66,67]. After exposure, the virus infects
monocytes and macrophages, and later, endothelial cells. This leads to the classic presen-
tation of death from shock secondary to disseminated vascular coagulation (DIC) [54,68].
Disease presentation can vary from peracute death to persistent infection and depends
on virus strain. Clinical signs include pulmonary edema, depression, fever, anorexia,
petechiae, cyanosis, thrombocytopenia, lymphopenia, and hemorrhagic lesions [69]. In
contrast to domestic and feral pigs, African wild pigs (warthogs and bushpigs) tend to
be asymptomatic and likely serve as the reservoir in areas of Africa where the virus is
enzootic through a sylvatic cycle with the tick vector [69–71]. However, spread of the virus
is primarily due to human activities and the movement of infected pigs [64,66].

The ASFV genome encodes between 151 and 167 open reading frames (ORFs), rep-
resenting more than 160 proteins [54,55,64,72,73]. The virus contains genes for enzymes
related to DNA replication and repair, protein modification, and virus–host interactions.
ASF viral transcription is independent of host RNA polymerase II, and the virus may
replicate in the macrophage cytoplasm [69,72]. The virus is immunomodulatory for both
innate and adaptive immune systems through numerous mechanisms [53,69,72,73]. The
viral genome encodes proteins that directly inhibit macrophage intracellular signaling as
well as intercellular signaling of immune cells. This includes the inhibition of Toll-like
receptor 3 signaling (which is the pathway that recognizes infection with dsDNA viruses),
and inhibition of the Type I interferon response (also involved in innate immunity against
viral infection) [72–75]. One viral protein, EP402R or CD2v, is structurally similar to host
CD2 in that it has two immunoglobulin-like domains, Ref. [53] which inhibits lympho-
cyte proliferation [72]. The viral protein is responsible for hemadsorption to the infected
macrophage [53,72]. Viral protein EP153R resembles NK cell receptors (e.g., CD69), inhibit-
ing up-regulation of MHC Class I expression, Ref. [72] which is the cellular mechanism of
presenting foreign antigen to immune cells. ASFV also encodes several genes which inhibit
cellular apoptosis through multiple signaling pathways, thus preventing the infected cell
from undergoing apoptosis [73].

In spite of the difficulties the virus poses to the development of an effective vaccine,
this is currently a very active area of research [64,69,71,76–80]. It is known that pigs
surviving acute infection develop long-term resistance to infection by homologous strains
of the virus [76,80]. The development of inactivated vaccines produced by numerous
methods have all been unsuccessful, and it appears that an efficacious killed vaccine will
not be possible [77,79,80]. Attempts at developing a live attenuated vaccine (LAV) have
been made through serial passage in bone marrow culture cells, or through using naturally
attenuated strains have led to chronic lesions and late disease [79,80]. Serial passage in
cell lines, such as Vero cells or COS-7 cells, has led to decreased protection, or inability to
replicate in domestic pigs [76]. Attenuated strains may also be developed by the deletion
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of certain viral genes. A recent vaccine made by deletion of a virulence factor (Pret4∆9GL
virus) was found to be safe in pigs and imparted partial protection from a homologous
strain of ASFV as early as 21–28 days [81]. LAVs provide the advantage of being more
simple to develop compared to subunit vaccines [78], and they can elicit a host immune
response to all antigens present, as opposed to recombinant vaccines with a limited number
of antigens [79]. Also, there can be a small window of safety, with virulence at times only
depending on the dose of the virus used [80], and attenuated strains will not likely allow
for differentiating infected from vaccinated animals [76]. Important factors in developing
an acceptable vaccine include, safety, DIVA, regulated and reliable production, and cross-
protection, as well as developing formulations that may be used in wildlife, such as bait
vaccine formulations [78].

Subunit vaccine technology has been investigated using antigen, DNA, and virus
vector based vaccines [71]. One advantage of antigen and DNA-based vaccines is a more
favorable safety profile than LAVs [71]. The development of subunit vaccines depend on
identifying neutralizing antibodies to viral antigens. Three ASFV proteins appear to be
promising in achieving this; p30, p54, and p72, however, attempts at using a recombinant
vaccine targeting these antigens provided high titers but was not protective in challenge
studies [82]. Other proteins may also provide immunity but attempts to produce a vaccine
have resulted in similar results [71,77,79,80]. Vaccines targeting the CD2v protein have
been shown to reduce hemadsorption and the virus’ ability to infect monocytes, providing
partial protection [79]. Single cycle and replication deficient viruses have promise to
provide safe vaccines [77]. Virus vectored vaccines have been based on vaccinia virus
Ankara, baculovirus, and alphavirus replicon particles. A combination approach using
heterologous prime-boost strategy has also been investigated. By using two vaccine
platforms, there is a hope of providing more robust innate and cellular immunity [71].

Due to the lack of an approved vaccine against ASFV, traditional methods of con-
taining and eradicating an outbreak are followed, including movement restrictions and
culling [64,81,83]. The early detection and eradication in ASF-free zones is vital. The
current outbreak in China is believed to have spread rapidly after pigs from an affected
farm were sold to several nearby farms. Given the widespread, decentralized nature of pig
farming in China, the long-distance transportation of pigs aided in the dispersion [64,84,85].
Basic biosecurity measures include restrictions on movement and trade of live pigs and
raw or treated meat products, as these can remain infective, prohibiting exposure to wild
boar, and culling animals in the face of an outbreak. Additional measures include cessa-
tion of swill feeding of pigs and wild boar, safe disposal of contaminated products, and
restricted zones of at least 3 km and surveillance zones of at least 10 km for pigs and pork
products [83,86]. Effective biosecurity is important, as illustrated by outbreaks in Sardinia,
Eastern Europe, and the Russian Federation, where backyard farms and small-scale pro-
ducers that may lack adequate biosecurity measures led to spread of ASFV and long-term
outbreaks [67,87,88]. Outbreaks in large commercial farms can have a devastating impact.
It was estimated that approximately 800,000 pigs died or were destroyed in Eastern Europe
and the Russian Federation between 2014 and 2017, and exports from Poland, Lithuania,
Latvia, and Estonia were reduced by US $961 million as a result of outbreaks in 2014 and
2015 [67]. Spain provides a successful model for eradication of the virus. From 1985–1995;
Spain instituted a program with several components, including: mobile field teams for
control and diagnosis, serological testing of animals, facilities improvements, including
barriers and the safe disposal of manure, elimination of all outbreaks and a test and cull
strategy to identify carriers, and controlled movement with individual identification of
animals. If an outbreak is detected, all pigs within the 3 km protective zone are immediately
serologically tested immediately, movement is stopped within the 10 km surveillance zone
for 30 days, and animals within this zone are tested no sooner than 30 days after the initial
cleaning and disinfection of the affected areas. Once serological data indicate the area is
free of ASFV, movement within the zones could recommence, but no movement of live
pigs is allowed outside of this zone [86].
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Given the complexity and cost of biocontainment studies in large animals and the
gaps in understanding the immunology related to ASFV vaccinology, a small animal
model could provide benefit in the development of new vaccines and help describe the
complex interaction of the virus in host leading to disease. A mouse model showed that
a recombinant Newcastle disease virus vaccine expressing the ASFV p72 gene was safe
and effective, but previous studies showed a lack of translation when studied in pigs [71].
The development of a small animal model of ASFV that recapitulates the disease and
immunology of pigs would likely shorten the time to the development of a safe and
effective ASFV vaccine to be used in the control of this important disease.

3.3. Avian Influenza

Avian influenza (AI) refers to a group of single-stranded, negative-sense, enveloped
RNA viruses of the family Orthomyxoviridae in the genus Influenzavirus A [89,90]. In-
fluezna viruses are classified based on two surface glycoproteins, hemagglutanin (HA) and
neuraminidase (NA). There are eighteen different hemagglutinin subtypes (H1-18) and
eleven different neuraminidase subtypes (N1-11). These viruses can be further classified
as low pathogenicity (LPAI) or high pathogenicity (HPAI), by the disease they cause in
the domestic chicken (Gallus gallus domesticus) [89,91]. HPAI viruses fall into groups with
H5 and H7 hemagglutinin subtypes and may result in 100% mortality. However, not all
H5 and H7 viruses cause HPAI, Ref. [91] and the molecular difference between LPAI and
HPAI may only be one amino acid [89].

All type A influenza viruses were derived from wild birds, mainly waterfowl (Order
Anseriformes) and shorebirds (Order Charadriiformes), with the exception of H17N11 and
H18N12, which have only been isolated in bats [92,93]. Waterfowl and shorebirds are the
accepted reservoir, but typically circulate virus that is LPAI in domestic poultry. These LPAI
viruses have been isolated from more than 100 species across more than 25 families [92].
HPAI has evolved from LPAI in domestic poultry, first noted in Italian chickens in 1878,
and from that time was known as “fowl plague” [89,91,92]. HPAI had remained a disease
of domestic poultry until an H5N1 strain of HPAI was found in domestic geese in China
(A/goose/Guangdong/1/1996 lineage H5Nx viruses) and has since caused morbidity and
mortality in wild birds as well [92,94]. LPAI viruses have been identified in a wide range of
other birds and mammals, including felines, canines, suids, equines, and mustelids [95–97].
The local spread and evolution of LPAI viruses can lead to continental-scale distribution [98].
One LPAI currently circulating worldwide is H9N2, which poses a great risk to small scale
and family farms, where it may have great socioeconomic effects [94,99–101]. While H9N2
viruses were first isolated in Wisconsin, United States, in 1966, the currently circulating
virus has developed into many clades that are now enzootic in Asia, the Middle East, and
parts of Africa. Since H9 viruses are not reportable, as H5 or H7 are, further spread will be
difficult to curtail [94].

Most HPAI outbreaks have been limited in their temporal and geographic impact.
Between 1959 and 2019, 15 H5 and 27 H7 (total of 42) conversions to HPAI have oc-
curred worldwide [92]. Of these, all but three were limited in scope. The exceptions in-
clude A/goose/Guangdong/1/1996 (H5Nx), Mexican H7N3, and Chinese H7N9 [93,102].
Deaths in wild birds, poultry, and humans have been linked to the Guangdong goose
lineage (Gs/Gd). The geographic extent encompasses over 80 countries in Asia, Europe,
Africa, and North America [92]. These strains have been detected in migratory birds in
China, Mongolia, South Korea, and Japan by 2011. By comparing outbreak records with
the satellite tracking of wild birds, and comparisons of whole-genome sequencing of viral
samples, it was shown that spread occurred along migratory bird routes [103]. Viruses of
this lineage are now enzootic in wild waterfowl and have spilled over into domestic poultry
and have evolved into at least 8 different genotypes [104]. At the time of this writing, there
are 410 outbreaks of H5Nx HPAI in poultry and 233 in non-poultry, reported to OIE’s early
warning system by Member countries. This includes 215 new outbreaks in poultry in Asia,
Europe, and Africa, and 79 non-poultry outbreaks in Asia and Europe [105].
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The expansion of HPAI beyond a local outbreak depends largely on migratory birds.
There are at least nine different types of H5 viruses circulating in wild bird populations
that present a risk of developing into HPAI or causing human disease. These are H5N1,
H5N2, H5N3, H5N4, H5N5, H5N6, H5N7, H5N8, and H5N9 [104]. This followed the 1996
emergence of the Gs/Gd lineage. Prior to that time, HPAI evolved in domestic poultry and
could be eradicated through local means, including the depopulation of affected flocks,
preventative culling, vaccination, and controlled marketing [93,106]. In 2009, the H5 gene
of the Gs/Gd lineage was found to have integrated into at least six different H5Nx subtypes.
These viruses have now been seen to spill over into domestic poultry and “spill back” into
wild birds in Asia, the Middle East, Africa, Europe, and North America [106]. Surveillance
programs for HPAI have now, more than ever, relied on the detection of potentially HPAI
viruses in both domestic and wild bird species.

The surveillance of domestic and wild birds can be done through either live virus
isolation or next generation sequencing (NGS) of samples or swabs. The advantage of live
virus isolation, which includes inoculation of specific pathogen free (SPF) embryonated
chicken eggs, is that it shows that live virus is present in the sample. One disadvantage is
that it selects for viruses that grow well in eggs. The advantage of NGS is that it is rapid
and sensitive to all virus types, however, it does not provide information on whether the
virus is live or replication competent [102]. Sampling of live birds often includes tracheal
or choanal swabs along with cloacal swabs. These swabs may then be tested by real-
time polymerase chain reaction (RT-PCR), along with NGS, to identify notifiable strains.
Isolated virus can be identified through agar gel immunodiffusion (AGID), enzyme-linked
immunosorbent assays (ELISA) for antigen, or other immunoassays, or by a molecular
test such as RT-PCR [95,107]. HPAI can be confirmed with the intravenous pathogenicity
index [108]. An additional method involves serological subtyping of the hemagglutinin
and neuraminidase subtypes using antibody inhibition [109].

The regional means of mitigation during an outbreak also includes market closure.
This is especially important in China, where poultry farming is done at high densities,
with >50% of duck and >80% of goose worldwide production occurs, and billions of birds
are sold annually in live bird markets (LBMs), Ref. [110] with the local density of LBMs
being one of the greatest predictors of risk [111]. Given this scenario, these locations are
important in the surveillance of new outbreaks of disease, which is also true for LBMs
across differing economies, such as the marketing of upland birds for private hunting in
the US [112].

In addition to surveillance and reporting of outbreaks, the best means of protecting
domestic bird farming is through prevention. Transmission occurs through direct or
indirect contact with infected birds, though movement, equipment, fomites, and vehicles.
Airborne transmission is fairly limited [113]. Biosecurity is the basis of protection at
the local level [95,113,114]. Influenza A viruses can be disinfected through the use of
bleach, quaternary ammonia, alcohols, aldehydes, acids, and iodine solutions, as well as
temperatures greater than 56–60 ◦C (133–140 ◦F) [95]. Adequate isolation of the farm along
with good biosecurity measures, provides good protection. An additional preventative
measure is prophylactic vaccination of the flock. When HPAI was less wide-spread,
vaccination was not considered best practice, as eradication by depopulation in these
infrequent outbreaks was preferred [113]. Vaccination must be used in conjunction with OIE
oversight, including the limited use of vaccines using OIE quality standards in situations
where culling is not practical. Vaccination strategies must be used in combination with
an exit strategy based on certain criteria to be met [115]. Vaccination is often prohibited
in countries where HPAI is not enzootic, and where vaccination strategies have been
ineffective or led to antigenic drift in cases of failure [116,117].

Since vaccination using inactivated vaccines does not provide full protection and does
not allow for DIVA, non-vaccinated sentinel animals may be used to detect outbreaks. In
addition, a vaccine with homologous hemagglutinin to the circulating strain, but differing
neuraminidase, allows identification of infection based on serology for NA [118]. Addi-
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tional methods include serology for anti-NS1 (nonstructural protein-1) or anti-M2e (matrix
2 ectodomain) antibodies. NS1 is only produced in active viral replication and is rarely
present in inactivated vaccine. M2e is a viral transmembrane protein that allows for entry
into the host cell [113,118,119]. HPAI vaccines which are attenuated Newcastle disease
virus (NDV)-vectored for H5 or H7 and are protective against both Newcastle disease and
HPAI are being developed. NDV-vectored H5 vaccines are currently approved for use in
China and Mexico [120].

There are several animal models of avian influenza A viruses, as they relate to human
disease [94,121–128]. However, most animal experimentation on avian influenza, as it
relates to birds, is conducted in the host species, with most of the testing being done to
evaluate pathogenicity of new strains or vaccine development [129,130]. Other work has
shown the pathogenicity of goose-origin HPAI in chickens [131]. Guidance on the perfor-
mance of studies in avian species, including virus selection and preparation, host selection
and monitoring, study design, sampling, and analysis, was recently published [132].

3.4. Bluetongue

Bluetongue virus (BTV) causes bluetongue and is a nonenveloped, double stranded
RNA virus that belongs to the genus Orbivirus, in the family Reoviridae [133–135]. Trans-
mission is vector borne, via biting midges (Culicoides) and the disease is noncontagious.
Domestic and wild ruminants are susceptible and, as such, the disease can have a large
impact on trade and socioeconomics [133,134,136,137]. The virus has spread over time
to be present over a large geographical range, with different serotypes being present in
distinct regions [138] with global spread increasing [139]. There are almost 30 distinct
serotypes globally (28 officially recognized), with new serotypes identified almost on an
annual basis [140–143]; at least 9 serotypes have spread across Europe in the past few
decades [138,144].

Sheep are the primary, significant host, as clinical disease is most frequently seen
in sheep [137,145,146]. Cattle are also important hosts, but they usually exhibit asymp-
tomatic infections [146]. However, cattle have been shown to exhibit clinical disease in
European BTV-8 epidemics [147]. The role and significance of cattle involvement is com-
plex and changing over time (reviewed in [138]). A wide variety of other wild ruminants
are also susceptible, including various species of deer and antelope, and camels [148].
Deer belonging to the Cervinae subfamily are less susceptible to disease (red deer may
serve as reservoirs), while white tail deer (members of Capreolinae subfamily) are more
highly susceptible [149,150]. In India, seroprevalence studies have suggested that the
following animals are susceptible (listed in order of percent found seropositive, though
seroprevalence was found to vary by geographic region): goats (43%), sheep (39%), cattle
(38%, though prevalence was 66% when looking specifically at Bos frontalis, known as
Mithun), buffaloes (34%), and camels (16%), with prevalence varying based on specific
region (reviewed in [144]). Furthermore, BTV has been reported in canines [151] and a
variety of African carnivores, though the overall significance of this finding requires further
investigation [152].

The disease symptoms are broad and depend on many factors, including animal
species, virus serotype, and route of infection. Disease symptoms often include lameness,
painful hooves, and ulcerations or sores; animals may also develop a swollen tongue,
which leads to decreased blood flow and thus a blue coloration of the tongue, giving the
disease its name (bluetongue) [145,146]. In sheep, BTV can cause serious disease with
overt symptoms such as fever, hypersalivation, swelling, vascular injury and hemorrhage,
ulceration, pulmonary edema, muscle necrosis, and possible death. Other animals may
present with no symptoms at all [134,145].

Bluetongue disease is a re-emerging disease with major, global economic implica-
tions [153]. Economic loss can result from losses in productivity, animal death, cost of
control measures, or trade restrictions [154,155]. Surveillance and vaccination programs
also increase the financial burden [156]. Many vaccines have been developed over the years
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(including modified live virus, attenuated BTV, and inactivated vaccines), as vaccination
is more feasible than vector control strategies. However, vaccines are not available for all
serotypes but new vaccines are being developed (reviewed in [157]).

Animal models are crucial to study the pathogenesis and evaluate vaccination, treat-
ment, and preventative measures. As sheep are the primary host impacted by clinical
disease, they serve as a good large animal model and are commonly used to evaluate the
immune response and vaccine efficacy (reviewed in [158,159]. The difference in virulence
between different strains has also been evaluated in sheep [158]. The characteristics of
natural infection in sheep can be recapitulated via intravenous inoculation with infected
blood, which causes severe disease that includes symptoms seen naturally [146,160]. In
models utilizing subcutaneous inoculation, fever is usually the first clinical sign, followed
by viral spread from the lymph nodes, tonsils, and spleen leading to viremia a few days
after fever, followed by lesions. In these models, the virus seems to first enter the lymph
nodes near where the virus is introduced, and spreads from there to the majority of tissues,
via lymphatics or bloodstream. Persistence is not thought to be relevant [146,161–163]. A
related model has been developed for cattle, using BTV-8. Intravenous or subcutaneous
administration of the virus stock results in clinical signs including fever, eye involvement,
ulcers, and swelling. Symptoms were more severe and prevalent than traditionally seen
with natural infections using other serotypes [164]. The virus is first observed in peripheral
blood mononuclear cells (PBMCs) with subsequent spread to the spleen and then most
other tissues; spread is temporally similar to what has been observed in experimentally
infected sheep. Viral replication also appears to begin in the lymph nodes near the site of
infection. Experimentally, adult cattle (not calves) have previously been shown to have
a more persistent viremia [165] but this finding has been challenged and is generally no
longer accepted [146,162,163].

There are many challenges to large animal models, such as sheep and cattle. Thus,
small animal models have also been an important area of research. These models have
been especially useful for studying virus replication, characterization, virus evolution,
and markers of attenuation [166,167]. As with many viral infections, suckling mice are
susceptible to BTV, generally using the common intracranial route [166,167]. Pathogenic-
ity was shown along with infection of various parts of the brain, along with pathology
including encephalitis and lesions, similar to what is seen in sheep or cattle fetuses. Very
young mice were most susceptible, with animals as young as two weeks being much less
susceptible [168]. In addition, interferon α/β receptor knockout mice (IFNAR−/−) can be
used to model lethal bluetongue for some serotypes, using intravenous or subcutaneous
exposure routes. This model exhibits pathogenesis similar to what is seen in natural hosts
and can be used for evaluation of vaccines and the immune response [169,170]. However,
murine models that lack an interferon response do not fully recapitulate what occurs in
natural hosts, such as cattle [169].

As a large variety of animal species are susceptible, a number of other diverse models
also exist. These include: antelope (sub clinical infection, with viremia), deer (severe or fatal
disease or subclinical disease, depending on deer species and virus serotype), pronghorn
and bighorn (clinical disease), bison (low viremia and few symptoms), and camels (low
viremia and few symptoms); reviewed in [158].

Numerous models have been developed over the years, but historical studies have
been performed with a variety of different virus stocks, administered via different routes.
As with other viruses, intramuscular injection has been commonly used but it is unclear
how well this exposure route recapitulates natural infection [171]; symptom development
may be artificially impacted by unnatural administration routes [172]. Results can also vary
based on serotype, animal species, and differences within species (e.g., age) [158]. These
issues can complicate results and emphasizes the need for well characterized virus stocks
and well characterized models.
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3.5. Classical Swine Fever

Classical swine fever virus (CSFV) causes classical swine fever (CSF) and is a small
enveloped single stranded positive-sense RNA virus that belongs to the genus Pestivirus
in the family Flaviviridae [83,173–176]. It is closely related to bovine viral diarrhea virus-1
and -2 (BVDV-1 and -2) of large ruminants and border disease virus (BDV) [175]. The
viral genome is a single linear strand with one open reading frame (ORF) that codes for
four structural and seven nonstructural viral proteins [83,173]. Virus replication occurs
in the cytoplasm, where the viral genome is enclosed in the capsid. The virions acquire
a round viral envelope during budding by exocytosis. Naturally occurring strains are
non-cytopathic in cell culture [173,175,177]. Important factors in transmission and viru-
lence include attachment to host cells, viral replication, immunomodulatory effects, and
inhibition of cell apoptosis [178–184]. There are three distinct genotypes with three or
four sub-genotypes [83,173,175]. These genotypes are serologically related and can be
cross-protective [83,175].

The historic origin of CSFV is not entirely clear, but it was first reported in the United
States in 1833, where the disease became known as “hog cholera.” When it was first recog-
nized in Europe during the latter 1800′s, it was termed “swine fever,” and later, “European
swine fever,” to differentiate it from the unrelated African swine fever (ASF). ASF was first
described in Kenya in 1921 but may have been misdiagnosed as classical swine fever prior
to that time since the diseases may be similar [51,62,83,176,185]. Today, CSF remains an
important disease of pigs worldwide [175,176,186]. There are three recognized presenta-
tions of CSF: acute, chronic, and prenatal [83,175]. The virus remains stable, even under
transpacific shipping conditions, which poses a risk of transboundary spread from enzootic
countries [187]. Diagnosis is made by clinical signs, gross pathology, indirect (serological),
and direct (virus isolation, antigen, and nucleic acid) detection of the virus [188–192]. Diag-
nosis should be made using methods and protocols which are validated according to OIE
standards [193], and surveillance is imperative in maintaining a CSF-free zone [188,194].
Inactivation protocols have been described to prevent accidental transmission of the virus
by diagnostic samples [195].

Much like BVDV, but unlike ASFV, CSFV can cross the placenta and infect the developing
fetus, leading to persistent infection particularly during mid-gestation [83,175,185,196,197].
Experimental data indicate that early postnatal infection with low or moderately virulent
strains may lead to persistent infection, immunosuppression, and the inability to detect
infection based on serological assays [197]. The disease presentation can be affected by
many factors, including the virus strain, route of infection, infective dose, and host immune
system [83]. The acute form can vary from fever, lethargy, anorexia, conjunctivitis, enteric
lymphadenopathy, respiratory and gastrointestinal disease, and possibly neurologic signs,
hemorrhagic fever, and death [83,175,198]. Hemorrhage and thrombocytopenia are seen,
including hemorrhagic lymph nodes and kidneys. This may lead to characteristic pale kidneys
with multifocal hemorrhage, or “turkey egg” kidneys [199]. Piglets are more profoundly
affected, and adult pigs may survive and develop lasting immunity [83,175,198]. The efficiency
of the virus to cross the placental barrier is dependent on the virulence of the strain, with
medium and highly virulent viruses passing more readily. Piglets become persistently infected,
despite immune recognition as indicated by increased CD8+ T-cells and IFN-alpha activation
in viremic animals [196]. It is important that persistently infected piglets be recognized to
avoid these animals being inadvertently vaccinated, rather than identified and culled from
the herd [200]. The chronic form is nonspecific and occurs when animals are not able to
mount an effective immune response. It is initially similar to the acute disease but is caused
by less virulent strains and progresses to chronic wasting, enteritis, reduced fertility, recurring
fever, and invariably fatal while not being hemorrhagic. Animals that are chronically infected
will continue to shed the virus until death [83,175,198]. The presentation of the prenatal
form is dependent on the gestational age at infection and virulence of the virus strain. The
presentation in the sow may be subclinical, but if infection occurs early in gestation, it may
result in stillbirth, abortion, mummification, and malformations. During mid-gestation,
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about 50–70 days, the piglet may be immunotolerant, persistently infected, and survive for
several months while shedding large amounts of virus. They then develop the late onset
form of CSF, exhibiting poor growth, occasionally showing congenital tremor, and ultimately
death [83,175,197,198,201].

CSFV is divided into three genotypes (groups 1–3), each with three to four subgeno-
types [173,175,186,202–204]. These genotypes are not serologically distinct and provide
cross-protection [202]. Traditionally, phylogeny was established based on short fragments
of the 5′-nontranslated region (5′NTR) and E2 coding region [173,202]. Recent advance-
ments in sequencing capabilities have led to recommendations of using the entire E2 coding
region for more detailed phylogenetic determination [173,202]. There is a geographical
pattern of genotype distribution with some overlap, mainly in Asia. Circulating genotypes
in the Western Hemisphere are of group 1, group 2 strains predominate in Europe, and
group 3 strains are apparently solely in Asia. Group 2 strains are the most prevalent
genotypes worldwide and are seen in Europe and Asia [173,205,206].

Immunity most effectively targets the structural proteins Erns and E2, which are
involved in virus entry into the host cell [186,205]. There are LAV strains in use worldwide,
and these vaccines should be produced in accordance with OIE direction [186,205,207].
Attenuation may be based on mutations in the viral genomic regions encoding the E2 and
Erns proteins [208–210]. CSFV LAVs are often made by serial passage in either rabbits or cell
culture [211]. LAVs include the Chinese C-strain, or Chinese hog cholera lapinized virus
(HCLV), the Lapinized Philippines Coronel (LPC) strain, Russian LK-VNIVViM strain,
the low-temperature adapted Japanese guinea pig exaltation-negative (GPE-) strain, the
French Thiverval strain, and the Mexican PAV strain, among many others [211–213]. The
C-strain vaccine has been shown to protect against highly virulent CSFV strains within
days after vaccination [214]. However, antibodies to natural strains of CSFV in enzootic
areas may interfere with this efficacy [215]. In some areas, use of LAVs is cost-prohibitive
for local farmers, leading to continuation of outbreaks [216]. Since LAVs elicit a multivalent
immune response without the ability to DIVA, there are trade restrictions on animals from
areas practicing vaccination with these strains [189,190,192,211,217]. Vaccination with the
C-strain has led to selection pressure on the antigenic E2 protein, and possible escape
mutants [186,205]. However, this claim is still under investigation [211]. Unintentional use
of the LOM (Flc-LOM-BErns) vaccine in a combined CSF/erysipelas LAV in South Korea in
2014 has led to a reemergence of CSF on Jeju Island, which had been a CSF-free zone with
a non-vaccination policy for the preceding decade [211,218,219].

Recently, work has focused on developing new DIVA vaccines [212,214,217,220]. One
approach is the deletion of the E2 protein in the vaccine strain (C-DIVA strain), which
provides a means of differentiation [214]. Another approach is development of recombinant
vaccines, which include two licensed products: CP7_E2alf (Suvaxyn®CSF Marker, Zoetis,
Louvain-la-Neuve, Belgium) in Europe, and Flc-LOM-BErns, in South Korea [212,221]. The
deletion of glycosylation sites has shown promise for the development of attenuated vac-
cine strains [181]. One further approach has been production of a fusion protein, combining
the E2 protein to the extracellular segment of the host CD154 molecule, which is licensed
as Povac® in Cuba [222,223]. Another fusion protein vaccine combines the E2 protein
with the host Fc region of IgG. This vaccine may protect against vertical transmission
following a two-dose protocol [223]. Recombinant vaccines have been made, including a
pseudorabies vaccine expressing CSFV E2 protein, which has shown protection against
both pseudorabies and CSFV challenge [224], and a recombinant Newcastle disease-based
vaccine expressing E2 and Erns proteins [225].

As with African swine fever, following strict biosecurity practices is imperative. Con-
trol of movement, adequate surveillance, and prophylactic and emergency vaccination are
potentially useful in successful eradication and control programs [194,226–229]. Also, as in
African swine fever, additional consideration must be given to the presence of infected wild
boar [230–235]. Wild boars have played a role in transmission of the disease in both Europe
and Asia in recent years. Exposure can be through direct contact, through fomites, or by
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feeding contaminated food products [233,235]. This exposure can complicate eradication
programs and lead to persistence and spread of the disease [231]. Biosecurity measures
include fencing of the facility, disinfection of people and equipment, hygiene, baiting wild
boar with oral vaccines, and capturing or hunting of the wild boar [231,233–235].

Animal experimentation of CSFV is often conducted in pigs [236]. An in vitro model
using a 3D collagen matrix was validated to study inactivation of CSFV in natural casings
for use in sausage making, which are traded globally and may be a source of transmission.
Previously, intestines from experimentally infected pigs had been used to assess inactivation
protocols [237]. Cell culture methods have been developed to eliminate the need for using
pigs to produce virus for challenge stocks [238]. BALB/c mice have been used to study
vaccines against CSFV [239]. However, a well characterized model with established viral
concentration, strain, and model species has not been developed. The development of a
standard model of CSF could help better define some of the current shortcomings in CSF
understanding, including certain aspects of pathogenesis, correlates of protection, and the
induction of immunotolerance [177].

3.6. Contagious Bovine Pleuropneumonia

Contagious bovine pleuropneumonia (CBPP), also known as “lungsickness,” is caused
by Mycoplasma mycoides subsp. mycoides (Mmm), a self-replicating, pleomorphic bac-
terium [240,241]. Mycoplasma mycoides subsp. mycoides is one of 5 pathogenic mycoplasmas,
known as the “mycoides cluster” [240]. Previously referred to as the small colony (SC) type
of Mmm, this designation was dropped after Mmm large colony (LC) was reclassified as
Mycoplasma mycoides subsp. capri [240]. First described by Gallo in the 16th century, CBPP
reached almost worldwide distribution in the 19th century [241,242]. Previously second
only to rinderpest as the disease of prime concern in cattle, CBPP remains a significant
concern and threat to the livestock industry [243,244]. Following drastic stamping out
efforts, CBPP was eradicated in the 20th century from most of the world but continues to
plague Sub-Saharan Africa [245–252].

Contagious bovine pleuropneumonia is an acute, subacute or chronic disease that
primarily affects cattle (Bos taurus, B. indicus) and sometimes water buffalo (Bubalus
bubalis) [241,253]. Hyperacute forms, characterized by sudden death, may be seen at
the beginning of outbreaks [240,254]. Serofibrinous pleuropneumonia and severe pleural
effusion are seen in the typical acute to subacute form of disease [240,241,253,254]. In
chronic cases, subclinical carriers may be seen [240,241,253]. Transmission occurs through
the inhalation of aerosolized infected droplets [240]. The role of subclinical carriers in
transmission is uncertain [255,256]. Mycoplasma mycoides subsp. mycoides survives a short
time in the environment and is susceptible to most common disinfectants [240]. After an in-
cubation period of generally 3–6 weeks and sometimes up to 6 months, fever, inappetence,
depression and labored breathing may be seen followed by coughing, nasal discharge and
salivation [240,241,257]. Mortality can reach 75–90% in epidemic outbreak but is usually
less than 10% in enzootic regions [240,241]. Recovering animals are weak and emaciated
and may develop pulmonary sequestra [241]. Calves may develop carpal and tarsal le-
sions [240,241]. Differential diagnoses include pasteurellosis (Pasteurella multocida), east
coast fever (Theileria parva), bovine tuberculosis (Mycobacterium bovis), Mycoplasma bovis,
actinobacillosis (Actinobacillus spp.), traumatic pericarditis, and hyatid cysts (Echinococ-
cus granulosus) [240,241]. Rapid, presumptive diagnosis can be made based on clinical
signs and gross lesions seen post mortem [240]. The currently available confirmatory
diagnostics include PCR, real-time PCR, complement fixation testing and competitive
ELISA [240,243,258]. Immunohistochemistry may be useful in chronic cases [240].

Use of antimicrobials is banned during official eradication programs, but they are
commonly used to treat CBPP in Sub-Saharan Africa [240]. There is concern for increasing
antimicrobial resistance and potentially increasing the number of animals with pulmonary
sequestra, but targeted antimicrobial treatment could play an important role in the control
alongside vaccination [240,247]. Lacking a cell wall, Mmm is naturally resistant to beta-
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lactam antibiotics [240]. Antimicrobial susceptibility testing and therapeutic studies have
found efficacy of tetracyclines, macrolides, and fluoroquinolones, and shown resistance
to tylosin [240,259]. Administration of the fluoroquinolone Danofloxacin did not result in
clinical improvement of diseased animals, but in contact animals showed fewer lesions and
less mortality [260]. A case report described clinically effective treatment of acute CBPP in
a cow using tetracycline, dexamethasone and vitamin B complex [261].

Vaccination is critical for the control of CBPP in enzootic areas [262]. The currently
used vaccines are live attenuated vaccines developed decades ago, that show limited effi-
cacy and occasional severe side effects [263,264]. As additional studies allow for a better
understanding of the immune responses, virulence factors and molecular characteristics
of Mmm and improved vaccine candidates can be developed [263,265–267]. Jores et al.
describe research priorities for the development of improved vaccines [243]. In addition
to the inadequacies of the current vaccines, vaccination campaigns have been inconsis-
tent [241,268]. Before the causal agent of CBPP was identified by Nocard and Roux in
1898, it had been eradicated from several countries with a variety of strategies including
strict control of movement, slaughtering, and vaccination, showing the importance of
control efforts beyond vaccination alone [269–271]. Additional research is also needed
to develop simpler and faster field tests [271]. Particularly while improved vaccines are
still under development, a comprehensive control strategy will depend on clear policies,
government and public commitment, adequate veterinary services, movement restrictions,
robust surveillance, good vaccine manufacturing practices and maintaining high diagnostic
laboratory standards [272–278].

Mathematical models have been developed to evaluate economic impact, transmis-
sion dynamics, and the potential impact of various control strategies [256,274,279–283].
In vitro models utilizing bovine lung epithelial cells and a variety of assays have been
described [240,284,285]. Bovine respiratory explants from trachea, bronchi and lungs of
slaughtered cattle are a promising ex vivo tool for further investigation of CBPP infec-
tion [286]. Rodent and rabbit models have been used for some vaccine and virulence
studies [285,287]. Mice develop mycoplasmaemia following infection, but they are not a
good model of the pathology seen in CBPP [285,288]. Cattle models are costly and can
present difficulties reproducing disease, but several challenge techniques have been devel-
oped [240,241,288–291]. Contact infection studies resemble natural infection but require
an extra group of diseased animals and result in an unpredictable rate and timing of
transmission, making it difficult to compare disease outcomes [290,291]. Endobronchial
inoculation of three different strains of Mmm in steers showed two strains (Ondangwa
and Shawawa) may be useful for study of subacute and chronic infections, while the
third (Gladysdale) more closely mimics the peracute form of disease [289]. Nkando et al.
presented nasotracheal inoculation of cattle with the aid of a bronchoscope as an alternative
to an endobronchial intubation approach where tube insertion requires sedation of the
animal [290]. Repeated aerosol nasal infection of cattle has been reported to closely mirror
natural epidemiology in which only a fraction of animals develops acute disease [291].
This approach avoids “overchallenge” that could be seen with direct tracheal or bronchial
instillation [291].

3.7. Foot and Mouth Disease

Foot and mouth disease virus (FMDV) causes foot and mouth disease (FMD) and
is a nonenveloped, single stranded, positive sense, RNA virus that belongs to the genus
Aphthovirus, in the family Picornaviridae [292,293]. FMDV was the first described viral
infectious animal disease, based on the findings of Loeffler and Frosch during the late 19th
century [292,293]. The virus infects cloven-hooved animals, via a variety of routes, and is
highly contagious in susceptible animals. As with other RNA viruses, FMDV has a high
mutation rate and exhibits high genetic diversity; there are currently seven recognized
FMDV serotypes (i.e., O, A, C, Asia-1, South African Territories (SAT) 1 through 3), each
containing distinct genetic lineages [292,294,295].
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Prior to the 20th century, FMDV was globally distributed. Extensive eradication
efforts over the last century have resulted in a diminished distribution of FMDV and
the virus is not currently known to exist naturally in North America, Australia, New
Zealand, or the majority of Europe. However, FMDV remains an enzootic problem in
South America, the Middle East, and the majority of Africa and Asia. At the end of
the 20th century and beginning of the 21st century, regions of Europe and East Asia
experienced re-emergences [293,296–298]. Extensive epidemiological modeling studies
have been performed, but these studies must continue so models can be applied in the
event that outbreaks occur in regions previously free of FMDV [299].

While FMDV can infect all cloven-hooved animals, natural infections are most preva-
lent and significant in domestic livestock such as cattle, pigs, sheep, and goats. Some
species of deer (roe and muntjac deer (more severe disease), sika deer (milder disease),
and fallow and red deer (subclinical disease) [300,301]) and camelids can also contribute
to transmission of the virus and may be significant in instances where they are in close
contact with domestic livestock [294,296]. Generally, FMDV infections in wildlife are not
significant but African buffaloes (Syncerus caffer) appear to be maintenance hosts, which
complicates eradication efforts in areas where infected buffaloes are present, as virus elim-
ination and control efforts would likely need to extend beyond domestic livestock [297].
A better understanding of the role of wildlife (for example, African buffalo) is needed
to understand the risk of transmission posed by these possible reservoirs [299]. Other
animals, and humans, can pose a transmission risk if they become contaminated with the
virus (e.g., from aerosolization, fomites, clothing, etc.) and then have contact with livestock.
Instances of human infections are rare, often disputed, and difficult to confirm. Thus, direct
impact to human health from infection does not appear to be a significant cause for concern
(reviewed in [296]).

Transmission is via direct or indirect contact, through several different routes [293,296].
The virus is transmitted most commonly and efficiently via airborne or aerosol spread,
especially when animals are in close contact [302]. Spread via aerosol across great distances
is possible, though it is rare and dependent on the serotype or isolate involved [303].
Animals can also become infected via breaks in the skin or mucosa. Skin and mucosal
infection are less efficient and likely require a higher dose of virus than respiratory infection,
though information about infectious dose and route are generally from experimental
laboratory studies and natural events are difficult to fully understand [293,296,300,302].
In addition, contact with fomites poses a transmission risk, and a variety of bodily fluids
(including semen, urine, and feces) can harbor the virus. Furthermore, milk or other animal
products can transmit the virus, which has severe implications for trade; international
trade bans can result in economic hardship for countries where the virus is enzootic [302].
Pigs can also become infected from eating food contaminated with the virus, though it is
unclear if infection is a direct result of ingestion or from breaks in the mucosa [293,296].

In animals that exhibit clinical illness, fever is generally one of the first symptoms. Fol-
lowed by vesicle development, on the feet and tongue [292–294,296,297]. Vesicles can also
appear around the mouth (e.g., snout, muzzle), mammary glands, genital mucosa, or other
mucosal or skin sites. Lack of appetite or lameness also occur frequently [292–294,296,297].
Viremia is common in animals showing clinical signs. Symptoms can vary based on
serotype or strain, and are more severe in pigs and cattle, in comparison to sheep and
goats [293,296]. In situations where clinical signs are not as obvious or predominant, diag-
nosis can be complicated. Furthermore, other viral diseases (such as vesicular stomatitis
virus [discussed in Section 3.17] and swine vesicular disease [discussed in Section 3.16] can
cause similar vesicles. Thus, laboratory confirmation is often required to differentiate FMD
from other possible causes of disease [296].

Mortality from FMD is low [293,296]. Rather, the significant impacts are both direct,
from loss of productivity and trade restrictions, and indirect, from control and prevention
costs. These losses account for billions of dollars annually. Production losses are most
noteworthy in developing areas and cause further issues with poverty and food insecurity.
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Communities that are especially dependent on livestock are particularly vulnerable [304].
Control programs are also quite costly, but the alternative can be even more detrimen-
tal, as evidenced by the re-emergence that occurred after vaccination efforts stopped in
Europe [304,305].

For example, an outbreak of FMD occurred in the UK in the early 21st century, resulting
in the culling of millions of animals. It is believed that the epidemic originated in sheep that
were not showing obvious clinical signs (e.g., small number of lesions, which is common
in sheep), thus delaying identification of the problem and allowing it to spread to other
animals. FMD afflicted pigs were eventually identified at a slaughterhouse [305]. This
epidemic and similar occurrences have further spurred research into effective vaccines
against FMD [292].

Currently, there are numerous different vaccines available (reviewed in [295,306]). The
first vaccine utilized inactivated virus and was used during the middle of the 20th century,
mainly to vaccinate cattle in various parts of northern and western Europe [295,306]. The
source of the virus used in the vaccine has changed over time (e.g., animal derived, cell
culture derived from different cell types) and the inactivation procedure has been refined.
Vaccination efforts using inactivated virus resulted in high success and FMDV eradication
in Europe, such that vaccination was stopped in the last 20th century [292,295].

However, if vaccinated animals are only partially protected, they may be able to
support viral replication, thus posing a risk of infection to other animals [307]. As such,
certain inactivated vaccines also rely on removal of nonstructural proteins to maintain
only antigenic portions [306]. Another challenge is related to the genetic diversity of the
virus; antigenic variation is one of the main barriers to widespread and efficient control
via vaccination. It is generally accepted that infection or vaccination against one serotype
does not confer protection to other serotypes, so many vaccines are now targeted at more
than one serotype. Unfortunately, even within one serotype, vaccination does not always
confer protection against all strains within the serotype [306]. Further work is also needed
to determine the best targets for vaccines, along with efficacy testing to determine the
feasibility of using vaccine control in enzootic countries [299]. Vaccination efforts can
be further complicated by various cultural and socioeconomic factors. Due to extensive
costs associated with vaccination and lack of confidence in efficacy, it can be difficult
to gain acceptance to control programs in some areas. Understanding the cultural and
socioeconomic aspects of FMD control and maximizing local community involvement in
control programs is essential [299].

A wide variety of cell culture models exist for studying the basic biology of FMDV as
well as more complex topics such as persistence. Primary bovine thyroid (BTY) cell cultures
were historically used for the isolation and cultivation of FMDV, but immortalized cells lines
are more commonly used due to the challenges of working with primary cell lines [308].
Baby hamster kidney fibroblasts (BHK-21) and pig kidney (IB-RS-2) cells are commonly
used immortalized cell lines [308], though genetic variability is, unsurprisingly, common
after virus passage in cell culture [309]. More recently, fetal goat tongue cells (ZZ-R 127) and
fetal porcine kidney cells (LFBK-αVβ6) have also been evaluated for use in isolating and
cultivating FMDV, particularly porcine derived strains [310]. Numerous in vitro models
have also been evaluated for studying FMDV persistence, including Madin-Darby bovine
kidney (MDBK) [311], primary bovine pharynx tissue (PBPT) derived cells [312], the
aforementioned BHK-21 or IBRS-2 cells [313], and more recently, multilayer cells from the
bovine dorsal soft palate (DSP) that avoid some of the challenges associated with other
primary cells lines [314].

Large animal models present multiple challenges in general, but especially when
working with high containment pathogens such as FMDV. Further challenges are presented
by incomplete knowledge about large animal host immune systems and a lack of appro-
priate reagents required for immunological studies. The guinea pig and suckling mouse
model have been widely used historically, and the guinea pig model remains an essential
small animal model for studying FMD. The guinea pig recapitulates many of the clinical
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symptoms seen during natural infection, exhibits a measurable antibody response, and
mortality rates are low. As such, guinea pigs are used to study basic biology of the virus
and pathogenesis, along with production of antiserum, and for countermeasure efficacy
studies [315]. Natural hosts such as cattle and pigs are used when feasible and have been
useful in informing on many aspects of FMD, including transmissibility, infectious dose,
pathogenesis, and immune response [296,315].

3.8. Hemorrhagic Septicemia

Pasteurella multocida (PM), a gram-negative, non-endospore forming coccobacillus is
the causative agent of hemorrhagic septicemia (HS), an acute, fatal and septicemic disease
of cattle and buffalo [316,317]. Like other members of the family Pasteurellaceae, Pasteurella
spp. are prevalent in vertebrate animals and frequently found as commensal organisms
in the oral, nasopharyngeal and upper respiratory tract [318,319]. Many are opportunistic
pathogens [318,319]. Pasteurella spp. can be passed from animals to humans through bites
or nasal secretion, with PM being the most common zoonosis [316,319]. Bacteremia and
life-threatening sequelae may be seen in humans with underlying disease or immunosu-
pression [316,320]. With growing concern regarding emerging or re-emerging infections
of zoonotic origin, Pasteurella spp. have major implications for both human and animal
health [319,321–323]. Pasteurella multocida, first shown to be the causative agent of fowl
cholera by Louis Pasteur in 1881 also contributes to swine atrophic rhinitis [318,324,325].
Pasteurella multocida is divided into 5 capsular serogroups A, B, D, E, and F with 16 serotypes
based on LPS antigens [325,326]. Isolates of PM that cause HS fall into 2 groups, Asian and
North American origin (serogroup B) and African origin (serogroup E) [327].

Although seen most commonly in cattle and buffalo, other species may potentially be
affected including deer, swine, elephants, rhinoceros, and antelope [328–332]. Outbreaks
may be associated with wet, humid weather [328]. Clinical signs include fever, edematous
submandibular and brisket swelling, respiratory distress and profuse mucopurulent or
bloody nasal discharge [328]. Acute disease, characterized by sudden death within 24 h
of onset may be the first indication of an outbreak [317,328]. Subacute forms of disease
are often associated with edema and longer, chronic courses may involve rapid, painful
breathing and nasal discharge [317]. Nervous system involvement is rare, but has been
reported2 [333]. Carrier states are also possible [317]. In enzootic areas, most deaths are
in older calves and young adults [317]. Transmission occurs through inhalation of nasal
secretions or exhaled droplets from infected animals [334]. Hemorrhagic septicemia has the
potential to cause mass mortality events with up to 100% mortality [317,331,335,336]. In
2015, in Kazakhstan, over 200,000 Saiga antelope, representing over 60% of the global pop-
ulation of a critically endangered species, died from HS over a period of three weeks [331].
Unusual high humidity and temperature in the days preceding the event illustrate the
potential contribution of environmental changes to extreme disease events [331,335,336].

The differential diagnoses for sudden death caused by HS include lightning, snakebites,
blackleg and anthrax [317]. Post-mortem findings associated with HS include subcutaneous
edema, fibrinous pneumonia, pericarditis, sub-serosal hemorrhage throughout the body,
and blood-tinged fluid in the abdomen and thorax [317,337]. Laboratory confirmation can
be made by the identification of gram-negative, bipolar, pleomorphic bacteria in blood
smears [317]. While generally easy to isolate pure culture from fatal cases, it can be difficult
to isolate in field screening for carriers [338]. Polymerase chain reaction is a rapid and
sensitive tool for species and type identification [338]. Loop-mediated isothermal amplifica-
tion has been shown to be feasible for rapid DNA and RNA detection [339]. Recombinase
polymerase amplification (RPA) with lateral flow dipstick (LFD) has the potential to be
an effective and practical onsite diagnostic [340]. Due to the ease of obtaining a definitive
diagnosis through isolation and identification and the development of rapid molecular di-
agnostics, sero-diagnosis is not usually needed [317]. Use of an indirect ELISA with higher
specificity and sensitivity than indirect hemagglutination assay has been reported [325].
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Antimicrobial has limitations including cost, low efficacy once clinical signs appear,
and a possibility of failure due to resistance [317,341–343]. Ceftiofur, enrofloxacin, or gen-
tamicin may be effective emergency treatment options until susceptibility is known [342].
In enzootic areas, vaccination is the only practical prevention method [317]. The first
prophylactic HS vaccine was killed (0.25% Lysol inactivated-broth) and offered 6 weeks
of immunity [344]. Subsequent live attenuated vaccines were developed and novel acel-
lular (subunit, recombinant and DNA) vaccines are under development [343]. There are
several commercially available vaccine formulations, but broader protection and longer
lasting immunity are needed [317]. The optimization of conditions for in vitro PM growth
is important for maximizing vaccine production and quality [345,346]. Availability of
multiple PM genome sequences will help better understand PM pathogenesis and host
immunity, contributing to the development of new vaccine strategies [321–323]. In addition
to the need for a highly effective, affordable vaccine, control depends on public awareness,
good husbandry practices, legislation to control animal movement and responsible use of
chemotherapeutic agents [317].

Mathematical models to evaluate outbreak data and potential intervention strategies
have been described [347]. In vitro assays have been performed using macrophages and
aortic endothelial cells [348–351]. Mouse models can play an important role in investigation
of pathogenesis and vaccine development [317,351–363]. Rats with or without immunosup-
pression have also been used to explore pathogenesis and novel vaccines [349–351,364–366].
Rabbits are occasionally used for vaccine evaluation and, along with mice, were recently
used to evaluate a novel phage lysate marker vaccine along with a DIVA ELISA [358].
Goat challenge models have been described [353,354]. Experimental challenge and vaccine
assessment has also been established in dairy cattle and buffalo [367–371].

3.9. Lumpy Skin Disease

Lumpy skin disease (LSD) virus is a double standed DNA virus of the genus Capripoxvirus,
family Poxviridae, which causes acute or subacute disease in cattle (Bos indicus and Bos taurus)
and water buffalo (Bubalus bubalis) [372]. Goats and sheep may be experimentally infected [372].
Several wildlife species have been shown to be susceptible or seropositive, but the role of
wildlife in LSD epidemiology is not well understood [372]. Diagnosed for the first time in
Zambia in 1929, by 1944, LSD had spread to South Africa [373]. Enzootic in most African
countries and some countries in the Middle East, LSD has also expanded into eastern Europe,
Russia, and China [372,374,375]. Lumpy skin disease threatens international trade and could be
used as an economic bioterrorism agent [372]. Incubation in experimentally infected animals is
between four and seven days, but may be up to five weeks in naturally infected animals [376].
Clinical signs include lacrimation, nasal discharge, inappetence, enlarged lymph nodes, fever,
drop in milk production, lameness, nodular skin lesions, and sometimes death [372,376,377].
Skin lesions are firm, slightly raised, circumscribed nodules usually on the neck, legs, tail,
and back [372]. Skin lesions cause permanent damage to the hides [378]. Ulcerative corneal
lesions and subcutaneous infections may develop [376]. Common secondary complications
include pneumonia, mastitis, and orchitis [372,376]. Morbidity is usually approximately 10%
and morbidity between 1–3% in enzootic regions [377]. An outbreak in a large Holstein cattle
herd saw 12% mortality in adult animals and clinical signs were much more severe in Holstein
cattle than indigenous breeds [379,380]. Stress associated with milk production and higher than
normal ambient temperatures may have contributed to disease severity [380].

Lumpy skin disease virus may be viable for long periods in the environment [377].
Transmission is primarily vector borne and is most likely mechanical [372,381]. Most
likely vectors include blood sucking arthropods such as stable flies (Stomoxys calcitrans),
mosquitoes (Aedes aegypti), horseflies (Haematopota spp.) and hard ticks (Rhipicephalus
and Amblyomma spp.), but further studies are needed to better understand vector trans-
mission of LSDV [381–387]. Most oubreaks occur in summer when arthropods are most
active [372,377]. Direct transmission has been rarely reported [372,388]. Prolonged detec-
tion in semen and testes raises a concern for possible spread by recovered or subclinically
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infected bulls [389–391]. Introduction of new animals and communal grazing and watering
are associated with higher risk of LSD occurrence [392].

Differential diagnoses include pseudo-LSD, malignant catarrhal fever, bovine papu-
lar stomatitis, pseudo-cowpox, vaccinia, cowpox, foot and mouth disease, bovine viral
diarrhea, dermatophilosis, insect or tick bites, nesnoitiosis, rinderpest, demodicosis, hy-
poderma bovis infection, photosensitization, urticaria, cutaneous tuberculosis, and on-
chocercosis [372,393]. Post mortem findings include nodules throughout the lungs and
gastrointestinal tract and lung edema and congestion [372]. Pathognomonic histopatho-
logic findings include eosinophilic intracytoplasmic inclusion bodies in keratinocytes and
ballooning degeneration of spinosum cells [372,377]. Vasculitis and necrosis may be seen in
deeper tissue layers [377]. Diagnosis is primarily clinical with PCR confirmation. Various
PCRs have been developed for different aims such as detecting all capripoxviruses, genus-
specific detection, and differentiating virulent and vaccine strains [372,394]. As described
in an overview of LSD diagnostic techniques, electron microscopy, virus isolation, virus
neutralization and serological techniques have also been utilized [372].

Treatment is symptomatic and targeted at preventing secondary bacterial complica-
tions [377]. Vaccination along with movement restrictions is the only effective method
to control the disease in enzootic areas [372]. Commercially available vaccines are live
attenuated [372]. Both homologous (Neethling LSDV strain) and heterologous (Sheeppox
virus and Goatpox virus) vaccines can be used, but heterologous vaccines may not provide
complete immunity [372]. A newly developed inactivated vaccine has demonstrated safety
and efficacy in the field [395,396]. Calves from infected or immunized dams should not
be vaccinated under 6 months old to prevent maternal antibody interferences [393]. In-
vestigations of reported vaccine breakdowns or failures have identified various causes
including vaccination of animals already incubating disease, confusion with pseudo-LSD,
and infrequent or improper use of the vaccine [373]. Capripoxvirus distribution seems to
be expanding, largely due to the economic effects of the Covid-19 pandemic, sanctions
in enzootic regions, increased illegal trade and global climate change [372]. Elimination
of the disease is likely to be difficult because of arthropod vectors, but controlling the
spread may be achieved by accurate and timely diagnosis in enzootic areas, homologous
strain vaccination, vector control, animal movement restriction and testing of bulls used
for breeding [372].

Several epidemiologic and mathematical models have been described to help under-
stand outbreaks, transmission risks and design surveillance and control programs [397–406].
In vitro growth for assessment and comparison of viral strain characteristics may be
achieved on lamb kidney/testis cells and goat ovarian cells [407]. There have been several
recent descriptions of experimental LSD infection in cattle and use of mice for immuno-
genicity studies [390,407–410].

3.10. Middle East Respiratory Syndrome

Middle East respiratory syndrome coronavirus (MERS-CoV) is an enveloped, single
stranded, positive sense RNA virus that belongs to the genus Betacoronavirus (lineage C), in
the family Coronaviridae [411]. This novel coronavirus was reported in 2012 in Saudi Arabi;
the initial patient presented with severe respiratory disease including pneumonia and
later developed renal failure [412]. Subsequent research shows the virus to be enzootic in
camels in the Arabian Peninsula and East Africa, and it is likely bats served as the original
reservoirs [413,414]. The virus has since spread to a number of countries and exhibits
high mortality rates [413]. Human cases arise from contact with infected camels [415,416].
Human to human transmission is infrequent, but still a cause for concern leading to a
need for quarantine in instances of human infections [414]. Limiting zoonotic spread from
camels to humans is a crucial step in control. Some have suggested camel vaccination
as the best course of action for control, and suitable vaccines are being developed [417].
Experimentally, other animals such as alpacas, pigs, sheep, goats and horses can become
infected, though viral shedding is limited in the majority of laboratory infected animals
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(reviewed in [414]). Animal models have been generally limited, and mainly focused on
the macaque [418–420].

Ten years before the identification of MERS, in 2002–2003, severe acute respiratory
syndrome coronavirus (SARS-CoV) was responsible for a large outbreak that began in Asia
and spread to North America, South America, and Europe. Research into these viruses and
their zoonotic potential has been ongoing since their identification. However, beginning in
2019, a novel coronavirus (SARS-CoV-2) sparked a global pandemic [421]. Research into
SARS-CoV-2, and the related SARS-CoV and MERS-CoV, has grown exponentially since
the start of the pandemic. Thus, further in-depth details are better covered outside the
scope of this review. Recent reviews provide more in-depth information and discussion of
MERS-CoV in the context of the SARS-CoV-2 pandemic [413,422–424].

3.11. Newcastle Disease

Newcastle disease virus (NDV) is an enveloped, negative sense, single stranded, non-
segmented RNA virus with helical capsid symmetry. There are nine serotypes present in the
family Paramyxoviridae and the genus Avulavirus. The virus is the causative agent of New-
castle disease (ND) [425–430]. Nomenclature for isolates follows the convention adopted
for Influenza A viruses, in that the isolate is named by serotype, species from which it
was isolated, geographical location, reference number or name, and year of isolation [429].
Disease presentation depends on a number of factors, including the strain of virus and
the species, age, and immune status of the host [425]. NDVs have been classified into five
pathotypes related to the disease presentation that typically occurs in domestic poultry:
viscerotropic velogenic, neurotropic velogenic, mesogenic, lentogenic, and asymptomatic
enteric [425]. Viscerotropic velogenic viruses cause sudden death with intestinal hemor-
rhage. Neurotropic velogenic viruses cause high mortality following acute respiratory and
neurological disease, but usually lack intestinal pathology. Mesogenic viruses cause respi-
ratory and neurologic disease, but low mortality. Lentogenic viruses cause mild respiratory
infections, and have been used as vaccine strains [425]. Asymptomatic enteric viruses
cause infections, where virus replication appears to be primarily in the gastrointestinal
system. There can be overlap in disease presentation in a single monotypic outbreak [425].
The classification of pathotype is often done by either mean death time (MDT) in 9–10 day
old embryonated chicken eggs, or by the intracerebral pathogenicity index (ICPI) in 1 day
old chicks [428]. The molecular means of determining pathotype include identifying the
amino acid sequence of the fusion (F) protein cleavage site [428,429,431,432]. Viral entry
into the host cell occurs through attachment by hemagglutinin-neuraminidase (HN) and
virus and cell membrane fusion by the F protein [427,430,433], and both HN and F are
viral membrane proteins [430]. A virulence (V) protein has been shown to antagonize
type-1 interferon (IFN-1) response and may also play a role in host specificity [431]. Certain
comorbidities, such as coinfections or environmental factors, can lead a milder strain to
present as a more virulent disease [425]. A disease outbreak is usually accompanied by
depression, diarrhea, prostration, head and wattle edema, neurologic symptoms including
paralysis and torticollis, and respiratory symptoms [425].

Newcastle disease gets its name from Newcastle-upon-Tyne, England, where in 1926,
there was an outbreak that was concurrently described on the island of Java, now in In-
donesia [427]. In contrast to highly pathogenic avian influenza (HPAI), ND is enzootic in
some areas of the world, where disease can have a major impact on poultry production
and small community or family flocks [426]. Assessment of the immune response is often
evaluated by the hemagglutination inhibition (HI) test, utilizing a panel of antigens and
controls [425,431]. While all viruses causing ND are of one serotype, avian paramyxovirus
type 1 (APMV-1), there are 19 genotypes known [428]. Genotypes are based on the F gene
sequence [428]. Viruses are divided into class I and class II, with class I viruses represent-
ing one genotype with three subtypes [428,432]. Class I viruses are largely isolated from
wild birds worldwide [428,432]. Class II viruses are comprised of the other 18 genotypes,
I–XVIII [428,432]. Genotypes III, IV, V, and VI are typically considered pathogenic to chick-
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ens [428]. There have been four historic panzootics of NDV, and the current panzootic is
due to genotype VII viruses [428]. Recent work in Bangledesh has identified the circulating
NDV in that country as class II genotype XIII, with a possible new variant evolving away
from that genotype [434].

Given the importance of family and community flocks in providing global food se-
curity, the elimination of Newcastle disease could greatly increase production efficiency
in the areas in which it is enzootic [425,426]. One report from 1992 estimated that 90%
of community chickens in Nepal die each year from Newcastle disease [426]. Recently,
45% of 1374 chickens sampled, and 96% of 70 villages, were found to be seropositive
for NDV in rural farms across three provinces of Northern Iran [435]. Another study
found that 57.1% of sampled flocks in Oman, with a total of 33.8% of all chickens sam-
pled, were seropositive for NDV [436]. Vaccination strategies could help in resource-poor
rural communities, but the vaccine should be part of a sponsored program to be worth
the risk for farmers that tend to adopt new strategies only when they are low risk and
there is an obvious return for investment of time and money [437]. Vaccine programs are
often decided at the national level, in accordance with OIE guidance [431]. The success of
these programs increases when working with farmers to deliver the vaccine in a preferred
form [438]. When epizootics of ND lead to high mortality in free-range flocks, there is
currently little incentive to put resources into the care of the chickens. When programs can
show reduced mortality and improved food security, they are more likely to be adopted
by local communities [438,439]. Contributing factors to the incidence of ND include flock
size, isolated and confined housing, multi-aged flock mixture, screening of birds, access
to ND vaccination, ND awareness, distance to service providers, and access to training
and extension services [440,441]. There are reports of vaccine failure, with vaccinated birds
showing disease and mortality after exposure to virulent NDV in natural settings [442,443],
but this could not be reproduced experimentally following daily challenge for ten days,
with no morbidity or mortality seen at 14 days post-challenge [443]. It may be that current
vaccines do not appear to be thermostable in the range of 51◦ to 61 ◦C, a consideration
when planning vaccine strategies in rural areas [444]. Development of thermostable vac-
cines is a current area of study [442,445,446]. Inactivated, or killed, vaccines have been
developed, and these may be given in ovo. This has been shown to provide protection
from morbidity and mortality in challenge studies [447]. One disadvantage of many killed
vaccines is the potential for a weak cellular response, thus requiring priming with live
or other vaccine types [448]. Certain nonpathogenic lentogenic natural strains have been
considered for use as vaccines since there is cross protection against all pathotypes of NDV.
These can be delivered by a number of routes, including directly, such as oculonasally
or by nebulization [449]. Live attenuated vaccines are traditionally produced by serial
passage in specific pathogen free (SPF) embryonated chicken eggs, which requires special-
ized facilities and is resource intensive [431,450]. An alternative means of production is
through cell culture [450]. Recent work has been done to produce newer vaccines based on
modern molecular techniques [431,448,451]. These recombinant vaccines often use either
nonpathogenic or replication deficient virus as the delivery vehicle for an antigen against
the disease of choice [120,452]. An example of the former approach is to use NDV as a
vaccine platform for HPAI by insertion of the H5 or H7 gene. These vaccines have the
potential to protect against infection from both important viruses of domestic poultry [120].
This approach has also been used to develop a vaccine against low pathogenicity avian
influenza by incorporating the H9 antigen [445]. An example of a replication deficient
virus being developed as a platform for a NDV vaccine is the use of an adenovirus delivery
of NDV F protein (adeno-F) [452].

NDV infects a wide range of animals, from reptiles to mammals [425]. It is also
known to be zoonotic, usually causing a self-limiting conjunctivitis with no long-lasting
effects [425,429]. As many as 241 species of birds have been shown to be susceptible to
infection, but the viruses seen in wild birds are mostly of the asymptomatic lentogenic
enteric pathotype when infecting chickens [425]. NDV has been isolated in caged pet and
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zoo birds, as well as wild birds, including double-crested cormorants (Phalacrocorax auritus),
all types of domestic poultry, racing and show pigeons, pheasants, ostriches, and captive
falcons [425,429,432,453–457]. NDV has also been isolated from domestic mink, where it
caused encephalitis, hemorrhagic pneumonia, and death [458]. Risk of introduction in
areas free of virulent NDV could be associated with legal or illegal movement of birds and
animal products and feed, as well as spillover from wild species and transformation to
virulence [457,459,460]. Once in a new area, spread has been linked to movement of live
birds and poultry products, people and equipment, contaminated food and water, and
contact with other animals [429].

Much of the current literature on NDV focuses on the use of the virus as a vaccine
platform or gene delivery system for humans and other animals [461–463]. This is due to
its broad range of species which the virus can infect. Many RNA viruses have been used
in this way, including retroviruses, lentiviruses, alphaviruses, flaviviruses, rhabdoviruses,
measles viruses, and picornaviruses [462]. NDV is able to infect a broad range of species,
but are very safe due to the limited ability to cause disease in these species, while still
eliciting a strong immune response [464]. Through various techniques, including reverse
genetics and recombinant nucleic acid techniques, NDV-vectored vaccines have now been
made for a variety of human and animal pathogens, including HPAI and LPAI, African
swine fever virus, vesicular stomatitis virus, West Nile virus, bovine herpesvirus-1, canine
distemper virus, rabies virus, simian immunodeficiency virus (a model of HIV), enterovirus
71, Rift Valley fever virus, Nipah virus, Ebolavirus, severe acute respiratory syndrome
coronavirus (SARS-CoV-1), and more recently SARS-CoV-2 [120,445,461–463,465–471].

Gene therapy uses of NDV have been directed towards various types of cancer and
hereditary diseases [462]. This field began in the 1990s and had early setbacks, including the
death of a young patient being treated for a nonfatal genetic disease and the development
of leukemia in severe combined immunodeficiency (SCID) patients [462]. In addition to
providing a platform for gene delivery, NDV has the ability to replicate in tumor cells [462]
and can replicate up to 104 times faster in human cancer cells than in nonneoplastic human
cells [472]. This ability to replicate in tumor cells has been coupled to tumor suppressor
and immunomodulatory genes, such as tumor necrosis factor (TNF), tumor necrosis factor-
related apoptosis inducing ligand (TRAIL), interferon-alpha (IFN-α), interferon-gamma
(IFN-γ), and interleukin-2 and interleukin-15 (IL-2 and IL-15) [462,473]. Many of these
recombinant viruses take advantage of NDV’s natural oncolytic activity, which is based
on apoptosis, necrosis, or autophagy [472]. A proinflammatory response is triggered by
NDV-HN, which drives IFN-1 simulation of TRAIL and activates natural killer (NK) cells,
monocytes, macrophages, dendritic cells, and primes antigen-specific T cells and CD8+
T-cell proliferation [472,474,475]. NDV-vectored therapies are in human clinical trials for
prostatic carcinoma, hepatocellular carcinoma, gastric carcinoma, colorectal carcinoma,
and melanoma [462,475]. Research into other cancer types has been done in cell culture or
in mouse models using immortal cell lines [151,476,477].

Most of the research into NDV is done as viral challenge models in chickens or
in ovo using SPF embryonated chicken eggs, but the strain of chicken and the precise
definition of SPF are not often disclosed [444,478–483]. The most commonly reported
strain of chicken used is the White Leghorn, along with others such as White Rock and Isa
Brown layers [120,447,484–486]. It is known that differences in the innate immune response
in differing breeds of chicken can have drastic effects on the response to infection [487],
making this important in describing the model. Some sources that define SPF describe
subjects as being serologically or RT-PCR negative for NDV [478,480]. The virus strain and
challenge dose of NDV is usually given and is often the experimental variable, but there is
not a standard strain and dose that is used as a model of ND [478,485]. A common vaccine
strain used in studies is the LaSota strain [430,450,452,480,483,488,489]. Other host species
are also used, including Japanese quail (Coturnix coturnix japonica) and pigeons (Columba
livia) [480,485].
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3.12. Peste des Petits Ruminants

Peste des petits ruminants (PPR), is a highly contagious, devastating viral disease of
domestic and wild ruminants, primarily affecting goats and sheep [490,491]. Peste des
petits ruminants virus (PPRV) is a negative sense single stranded-RNA morbillivirus, of
the family Paramyxoviridae, that is closely related to other members of the genus such as
rinderpest, measles, and canine distemper [492]. Although only recognized as a completely
distinct disease for approximately 40 years, phylogenetic morbillivirus data suggests PPRV
has been in circulation as long as rinderpest virus [493]. In naïve populations of sheep and
goats, morbidity and mortality can be greater than 90% [494]. In enzootic areas, morbidity
and mortality vary between 10–100% [495]. First identified in Cote D’Ivoire in the 1940s,
PPR has since been seen in North and Central Africa, the Middle East, and parts of East
Africa, Asia, and Europe [492]. The affected countries are home to 68% of the world’s
small ruminant population [490]. An investigation of prevalence of PPR in sheep and
goats from 1968 to 2018, showed 40.99% prevalence in Africa and 38.43% prevalence in
Asia [496]. Cattle, camelids and a wide range of wild animals and unusual hosts such as
pigs, are considered susceptible with varying reports of morbidity and mortality [497].
Experimental infection has shown cattle are susceptible and can display clinical signs [497].
Large ruminants may have a role in transmission or, if dead-end hosts, may be of value for
surveillance [497–500].

Peste des petits ruminants virus is easily transmitted by direct contact with secre-
tions and excretions from infected animals or contact with fomites [492]. The main entry
route is respiratory [501]. Peste des petits ruminants virus is a lymphotropic and epithe-
liotropic virus [502]. Stages of disease include incubation, prodromal, mucosal, diarrheal
and recovery if non-fatal [503]. The incubation period is generally 3–9 days [493]. Clini-
cal signs include inappetence, emaciation, depression, fever, diarrhea, nasal and ocular
discharge, pneumonia and erosive and necrotic stomatitis [492,504]. Fatal cases usu-
ally die between 5–12 days after disease onset [493]. Pregnant animals may abort and
transient immunosuppression can make animals susceptible to an activation of latent or
new infections [493]. Goats may be more susceptible to severe disease than sheep [492].
Pathognomonic histopathologic findings include multinucleated giant cells and cytoplas-
mic and/or nuclear eosinophilic inclusion bodies [502]. Differential diagnoses include
rinderpest, goatpox, bluetongue, contagious pustular stomatitis, contagious caprine pleu-
ropneumonia, pasteurellosis, FMD, heartwater, coccidiosis, poisoning, and Nairobi sheep
disease [501,502]. Co-infections of PPR and goatpox have been reported [505,506]. The
integration of tests and improved molecular tools may help with the rapid and accurate
identification of enzootic and outbreak PPR [507–509]. Pen-side tests and non-invasive
sample techniques may improve diagnosis in remote settings and wildlife [492,507,510,511].

There is no specific treatment available, but drugs that control bacterial and parasitic
complications may decrease mortality [512]. Experimental work has been performed
with antiviral treatment and herbal medicines are widely used in field treatment [513].
Despite the availability of an efficacious and cheap live-attenuated vaccine, the virus has
continued to spread [514]. The development of a vaccine allowing DIVA would reduce
the time and cost of serological surveillance [515]. Recombinant vaccines may overcome
the thermolabile and lack of DIVA limitations of current live attenuated vaccines [516].
Genetically engineered live vector vaccines are also promising candidates that can be
developed to be multivalent and activate both cellular and humoral immunity [517].

Peste des petits ruminants is currently targeted for global eradication by 2030 by
the PPR Global Eradication Programme [490,518]. Factors that favored the eradication of
Rinderpest such as one serotype, availability of a safe vaccine that confers long immunity,
simple diagnostics, short infectious period, close contact required for transmission, no
known significant wildlife reservoir or carrier state, and short virus survival in the en-
vironment, also apply for PPR [490,501]. Constraints to eradication include widespread
distribution, high population turnover in small ruminants, low value of individual animals,
and clinical disease that varies by species and breed [519]. Understanding farmer’s KAP
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(knowledge, attitude and practice) towards infectious diseases and consideration of gender
issues are important to efforts for limiting impact and spread of disease [520,521]. Research
is needed to characterize the effective reproductive number, develop thermostable and
DIVA vaccines, refine targets for molecular epidemiology, increase field diagnostics, and
determine the role of atypical hosts [514].

Mathematical modelling has been performed to estimate economic impact, identify
risks for transmission, and evaluate possible control techniques [522–526]. An in-silico
approach to protein analysis may help with development of vaccines and therapeutics [527].
Experimental infections of goats and sheep have been described and are suitable for
comparative studies and vaccine evaluation [528–530]. Mice, rabbits, and horses have also
played a role in diagnosis, treatment, and vaccine development [531–533].

3.13. Rift Valley Fever

Rift Valley fever virus (RVFV) causes Rift Valley fever (RVF) and is an enveloped,
single stranded, negative sense (with ambisense regions), RNA virus that belongs to the
Phlebovirus genus, in the family Phenuiviridae [534] (formerly of the genus Phlebovirus,
family Bunyaviridae [535]). There is significant RVFV diversity with at least 33 different
viruses and 15 lineages identified thus far [536]. The disease was first discovered in
Kenya and is enzootic in the southern and eastern parts of Africa; it has spread across
the African continent (e.g., Egypt and Sudan) and into the Arabian Peninsula (e.g., Saudi
Arabia) [535,537]. Outbreaks frequently result in the death of thousands of livestock
animals, with a substantial number of human infections and human deaths during some
outbreaks [537].

The disease primarily impact ruminants and a main route of transmission is via
mosquitoes, mainly from the Aedes and Culex genera, but the virus has been found in
multiple species of mosquito from at least five additional genera, including Anopheles,
Coquillettidia, Culiseta, Eretmapodites, and Mansonia [538–540]. A variety of other arthropod
vectors, including ticks and flies, have been implicated in transmission (reviewed in [541]).
Due to the role of arthropods in transmission, large outbreaks are frequently associated with
periods of heavy rainfall and flooding [3]. Increasing outbreaks, or emergence in new areas,
is of increasing concern due to global climate change and the large global distribution of
potential vectors; the potential loss of animal or human life, and accompanying production
losses, could be quite detrimental if RVF continues uncontrolled [541,542].

Direct contact with fluids or tissues from infected animals, or with contaminated
fomites, pose a risk of infection for susceptible animals [541]. Sheep and cattle are the
primary livestock species of concern, leading to the majority of virus spread and the
majority of clinical disease [541,543,544]. However, goats, camelids, nonhuman primates,
cats, dogs, and horses are also susceptible, sometimes without signs of clinical disease.
Common clinical signs of RVF include abortions in female adult animals, fever, swollen
lymph nodes, and lack of appetite. Weakness, nasal discharge, and bloody diarrhea are also
prominent features in infected sheep [541,543,544]. Cattle tend to exhibit hypersalivation,
diarrhea, and decreased milk production. Consequently, RVF can result in significant losses
to production and food supply, along with high mortality, in infected livestock [3]. Young
animals exhibit different disease progression and appear to more susceptible, though
more research is needed to better understand the mechanisms involved in the differences
between young and older animals [541,544].

Additionally, human infections are a serious concern. Humans can be exposed through
contact with mosquitoes, or fetuses aborted from infected animals; consumption of animal
products from infected animals or contact with various fluids such as blood, milk, or
semen from infected animals; or common herdsmen activities such as slaughtering or
skinning animals, or sleeping in close proximity to infected animals [545]. Humans are
often asymptomatic and long term or severe sequelae are rare. In milder cases, clinical
signs are generally influenza like [541]. However, in large outbreaks thousands of humans
can become infected [537,541], leading to a higher number of cases of severe disease with
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variable clinical presentations. These manifestations can include inflammation of the liver
or retina, encephalitis and neurological disease, or hemorrhagic disease, all of which are
associated with increased mortality rates; the overall case fatality rate is less than 5% [541].

A variety of animal models for RVF have been developed, including ruminants such as
sheep and cattle, laboratory rodents, and non-human primates (reviewed in [543]). Viremia
and fever are classic signs during experimental infection. Evidence of liver involvement
and liver damage (e.g., increased levels of liver enzymes) and decreased white blood
cells are also seen in severe experimental infections, similar to what is observed during
natural infections. Also similar to what is seen during natural infections, experimental
infections can present as either severe and lethal (accompanied by very high viremia),
mild or asymptomatic (accompanied by no viremia or viremia that resolves quickly), or
delayed onset with more severe sequelae (accompanied by viral dissemination throughout
the body) [541]. Inbred strains of laboratory rats show difference susceptibilities, which
may help researchers explore the underlying causes for different susceptibilities during
natural infections in target species [541].

Currently there are few fully licensed commercially available vaccines, or effective
therapeutics [546,547]. In certain African countries (e.g., South Africa), a vaccine derived
from a plaque purified clone of an attenuated mutant is used as a vaccine known as
Clone 13; this vaccine is effective and safe but may cause problems when used in pregnant
sheep [548,549]. One of the first vaccines generated to control RVF is the live attenuated
Smithburn vaccine, produced from repeated passage of virus isolated from a mosquito,
in mouse brain; future propagation was done in BHK-21 cells [548,549]. However, the
vaccine is not fully attenuated and genetic reassortment remains a concern and thus utility
is limited in certain areas. Formalin inactivated vaccines have also been produced but
are either not as efficacious or requires boosters to maintain protection [548,549]. Further
vaccine strategies have been developed, including vaccines designed to protect against
other diseases as well [550], but also include drawbacks, thus necessitating continued work
and continued vigilance [541]. Research is ongoing into effective antivirals, especially given
the burden of human morbidity and mortality in large outbreaks [547].

3.14. Rinderpest

Rinderpest (RP), or “cattle plague,” is caused by a Morbillivirus, of the family Paramyx-
oviridae [551]. It is generally accepted that measles emergence resulted from a spillover
of RP from cattle to humans, although the directionality has never been formally estab-
lished [552]. Rinderpest belongs to a select group of infectious disease that have changed
the course of history [553]. It is thought to have originated as far back as the domestication
of cattle in Asia 10,000 years ago, probably near the Indus River [554]. Invaders from
Asia likely brought Rinderpest Virus (RPV) to Europe with their Asian Grey Steppe oxen
which shed virus, but were resistant to RPV effects [551]. After the establishment of RPV
in Europe in the 18th century, the panzootic was eventually introduced to Africa in the
19th century [555]. The disease spread through warfare and cattle trade, and centuries
of epidemics deprived people of meat, milk and the ability to till land for crops, leading
to hunger and starvation [554,555]. Only one outbreak of RPV has been reported in the
America’s and Australia, occurring in the 1920′s in Brazil and Australia [554].

Rinderpest virus mainly affects wild and domestic ungulates including cattle (Bos spp.),
Asian and African buffaloes (Bubalus bubalis and Syncerus caffer), yaks (Bos grunniens), swine
(Sus spp.), and giraffes (Giraffa camelopardalis) [551,553,556]. After a 3–6 day incubation,
a prodromal phase characterized by high fever is followed by an erosive mucosal phase
with severe mouth lesions and copious nasal and ocular discharges [556,557]. Eventually, a
diarrheal phase is seen with severe bloody diarrhea and death from dehydration and weak-
ness [556,557]. Three signs dominate the clinical picture: discharge, diarrhea, death [557].
From start of fever, death occurs within a week [557]. Convalescence in nonfatal cases
may take weeks and include abortions, skin lesions and blindness [556]. Mortality could
reach 100% in susceptible populations [554]. It was often carried unnoticed by sheep, goats
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and pigs and pathogenesis in wildlife was highly variable [551,557]. The Great African
Pandemic of the 19th century, wiped out untold numbers of wild and domestic animals,
leaving only around 5% of the previous cattle and herds of wild ungulates in sub-Saharan
Africa and contributing to severe famine [554,558].

Diagnosis relies on serologic methods, but antibodies do not start developing until
2–10 days post infection [559]. Reverse transcription-PCR enables the detection of disease
2–4 days before the appearance of clinical signs [559]. No specific treatment is known [557].
Early slaughter of sick and contaminated animals was the only control option during
outbreaks and effective vaccines were eventually developed [557]. There are reports
from the 18th century of vaccination against cattle “distemper” by inoculating animals
with cloth soaked in discharge from infected animals [560]. Starting in the late 19th
century, vaccination was performed with a serum-virus active immunization technique
followed by an attenuated goat tissue vaccine and lapinised RP vaccine [555]. These early
vaccine strategies could induce disease and a safer attenuated vaccine was needed [555].
The Plowright tissue culture rinderpest vaccine (TCRV), developed in 1960, protected
against all clades, gave lifelong immunity and had no adverse reactions, but required strict
cold chain handling and could be contaminated due to use of bovine kidney cells [551].
The establishment of independent quality control and invention of a thermostable TCRV
formulation contributed to vaccine campaign success [551]. Recombinant vaccines have
been under development in the 21st century [555].

The consequences of RP raised attention to the studying of diseases of animals and
contributed to founding of the world’s first veterinary college in France in 1761 [554,555].
By 1960, RP had been eradicated from Europe, Russia, China and the Far East, but remained
entrenched in India and Africa [553]. Multiple eradication efforts with varying degrees of
success were undertaken throughout the 20th century [551]. Challenges included failure
to recognize circulation in wildlife and focus on vaccination without a clearly defined
objective or exit plan [551]. In 1994, the FAO established the Global Rinderpest Eradication
Program (GREP) and one key to success was the establishment of a 2010 deadline [551]. A
300-year global battle against RP led to declaration of worldwide eradication in 2011 [555].
Factors that helped make RPV a candidate for eradication include uncomplicated biology,
a single serotype, strong immunity in recovered animals, no carrier state and no vertical
or arthropod vector transmission [561]. Keys to successful eradication included a ther-
mostable vaccine and application of participatory epidemiological techniques [562]. The
collaborative effort that led to RPV eradication may be the first example of a successful
“one health” approach [551].

According to a 2011 survey, 55 labs in 35 countries still held some kind of rinderpest
virus [563]. The FAO and OIE aimed to reduce the number of sites holding live virus and
vaccine stocks to a handful of officially designated labs [563]. Vaccination was prohibited
as part of the eradication plan, meaning current cattle populations are fully susceptible
and re-introduced infection would spread rapidly potentially causing “billion-dollar-scale
disruption” [564,565]. The highest risk for re-introduction is probably the accidental use of
laboratory virus stocks [566]. Other potential pathways include deliberate use in labora-
tories, use of vaccines, exposure to environmental sources, and biological warfare [566].
In 2016, the virus remained in 21 countries in 22 separate facilities, of which only five
were officially inspected and approved [567]. Some labs have participated in a program
called “sequence and destroy”, launched by the FAO and OIE in 2015 [564]. Full genome
sequencing allows destruction of virus stocks while maintaining the ability to recover virus
if needed [568]. Ironically, the advances in synthetic biology that made destruction more
palatable may have raised the risk of reintroduction [569]. As of August 2019, samples
were still known to be stored in China, Ethiopia, France, Japan and the United States [569].

Initial vaccine development relied on passage in goats and rabbits but was eventually
transitioned to bovine kidney cells [551,555]. Rabbits and mice were used to explore
various pathogenesis and immunologic topics [570–574]. A variety of mathematical spatial,
epidemiological and risk mapping models have been developed [561,575–580]. Cattle
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challenge models have also been described [581]. The first approved in vivo study after the
moratorium on RP research, in place from 2011–2013, investigated whether PPRV vaccines
could protect against RPV outbreaks [563,581]. Rinderpest eradication itself has been used
as a case study and inspiration to model and explore possible eradication of other diseases
such as measles and other livestock diseases [562,582–584].

3.15. Sheeppox and Goatpox

Sheeppox virus (SPPV) and Goatpox virus (GTPV) are enveloped double-stranded DNA
viruses of the genus Capripoxvirus, family Poxviridae [585]. Sheeppox (SP) and goatpox (GP)
are enzootic in many African and Asian countries [586,587]. Goatpox was first reported
in Norway in 1879 [585]. Sheeppox has a documented history almost as long as that of
smallpox, being present as early as the second century AD [585]. Sheeppox and goatpox
are generally host specific, but this may vary between isolates [585,588]. Morbidity and
mortality in a susceptible flock may be 75–100% and 10–58% respectively [585]. After
a 1–2 week incubation, clinical disease starts with fever, labored breathing, depression,
inappetence and lymphadenopathy [585]. Skin lesions develop after 1–2 days and progress
through five stages, macular, popular, vesicular, pustular and scabbing [585,589]. Ani-
mals may recover in 3–4 weeks with permanent depressed scars [585]. The generalized
or malignant form of disease, characterized by prostration, high fever, depression and
discharges, is most often seen in lambs and kids aged 4–5 months [585,590]. Skin, digestive,
respiratory, and urogenital mucosal lesions may be seen [590]. Older animals are more
likely to have mild or benign forms of disease [590]. Abortion and secondary pneumonia
may also occur [585,590]. There is no effective treatment aside from providing supportive
care and controlling secondary bacterial infection [585,589].

Sheeppox virus and Goatpox virus commonly enter the respiratory tract via aerosol trans-
mission [585]. Transmission may also occur by contact with skin lesions or mechanically
by insect vectors [585]. The virus is generally resistant to drying, survives freezing and
thawing and remains viable for months [585]. Seasonality and environmental conditions
affect spread with higher occurrence in warm and cold moist months [591,592]. The spread
of disease into new areas is often associated with illegal animal movement and inadequate
veterinary services [593]. Diagnosis is generally based on clinical signs and gross pathology
followed by lab confirmation [585]. Histologic skin lesions are characterized by dermal
edema and cellularity with variable numbers of “sheeppox cells,” histiocytic like cells with
large vacuolated nuclei and poorly-defined eosinophilic cytoplasmic inclusions [594]. A va-
riety of serologic and molecular diagnostics are available, with some molecular approaches
capable of rapid detection and differentiation between GP and SP [588,595–602].

Despite decades of vaccination efforts in some areas, SP/GP still persist [603]. Previous
killed vaccines lacked the extracellular virion form, resulting in poor and at best, only
temporary protection, but new killed vaccines are under development [604,605]. Immunity
against poxviruses is both cell mediated and humoral [606]. A variety of commercially
available and locally developed live attenuated capripoxvirus vaccines have been used
to provide protection against SP/GP [604,606]. Strains of capripoxviruses share a major
neutralizing site giving animals recovered from infection with one strain resistance to
infection with other strains [604]. It is possible to use a single strain to protect goats and
sheep from all field strains, but some strains are host-specific and can only be used as a
species-specific vaccination [604]. Strain variations may be associated with adaptation in
the presence or either sheep or goats alone in isolated areas [560]. Confirming the identity
of vaccine seed virus and clearly indicating its origin is an important part of vaccine quality
control [606,607]. There is interest in creating multivalent capripoxvirus-vectored vaccines
that would protect against SP/GP along with multiple other viral diseases [608,609].

With several countries already heavily reliant on small ruminants and others aim-
ing to increase small ruminant populations in the face of the current african swine fever
outbreak, the control of small ruminant diseases including SP/GP is economically cru-
cial [603,610–613]. Early detection and notification, prompt movement restriction, and
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culling affected herds based on clinical signs are effective control measures [587]. Sen-
tinel animals can be used prior to re-stocking herds [587]. Characteristics that favor the
potentially successful control of SP/GP include a single serotype, no persistent infection,
limited host range and available effective vaccines [593]. As with LSD, arthropod vector
transmission can cause significant challenges in the control of SP/GP [372,585].

Mathematical and spatial models have been developed to better understand outbreaks,
transmission and potential impact of control methods [591,611,614–616]. Immunogenicity
and vaccination studies have been performed using both in vitro cell culture and in vivo
models [585,617–621]. An intradermal inoculation of sheep was performed to help deter-
mine the most suitable time for collection of diagnostic specimens and provide a description
of lesions [622]. Wolff et al. evaluated three different routes of SPPV infection (intravenous,
intranasal and contact with infected animals) using both an Indian and Egyptian SPPV
strain [623]. Intranasal inoculation of the Indian strain turned out to be the more natural
and efficient challenge model for use in future vaccine studies [623]. With experimental
infection showing underlying pathogenesis similar to other poxviruses, SP/GP models
may be convenient for evaluation of vaccines and therapeutics, but also for the study of
host-pox virus interactions [624].

3.16. Swine Vesicular Disease

Swine vesicular disease virus (SVDV) causes swine vesicular disease (SVD) and is
a non-enveloped, single stranded, positive sense RNA virus that belongs to the genus
Enterovirus, in the family Picornaviridae [625,626]. While there is genetic diversity within the
genus and at least four antigenic variants, one serotype encompasses all isolates [625,627].
The virus is antigenically similar to human coxsackievirus B [626]. The disease was first
reported in Italy and primarily remains a problem in Italy, but has been reported in other
European and Asian countries such as Germany, Portugal, Taiwan, and China [626,628].
Pigs are the natural host of SVDV and the virus is spread through contact with other
infected pigs or their bodily fluids, or with contaminated fomites [626,627]. Outside the
natural host, one day old laboratory mice have been shown to be susceptible to SVDV and
there is a reported case of an infected laboratory worker, who developed mild influenza
like symptoms [626].

Clinical symptoms in pigs are infrequent and mild and are nearly indistinguishable
from those observed in FMD infected pigs [628,629]. After infection, usually through
damaged skin or mucous membranes (though ingestion is possible as well), the virus
replicates to high levels before clinical signs may appear [626]. If symptoms develop, they
generally consist of vesicle formation on the feet, or in/around the mouth [626]. Vesicle
formation on the limbs can result in lameness, which resolves quickly as the vesicles
disappear. Mortality is negligible and outbreaks with severe clinical signs are rare [626].

A primary complication in controlling SVD is the extreme stability of SVDV [626,630].
Infected pigs develop high viral titers and begin to excrete virus one to two days after
infection, with shedding usually continuing for approximately one week, with shed virus
then remaining present in the surrounding environment, and viral shedding may occur
for months. This results in the disease being very costly to control and difficult to eradi-
cate [626]. The virus is also more resistant to traditional or common methods of disinfection,
such as detergents and organic solvents, though sodium hydroxide and formaldehyde
have demonstrated efficacy [629]. Another challenge is related to mild or asymptomatic
presentation. Since disease is generally mild, food products from infected animals are more
likely to enter the food chain [626,630]. Infected animals are difficult to recognize, and the
disease often spreads to numerous animals, or nearby farms, before SVDV is recognized.
As outbreaks of SVD are controlled by slaughter and livestock trade restrictions, SVD can
cause high economic loss despite the low morbidity and mortality [626]. The similarity
to FMD is largely responsible for why the control of SVD is so important, due to the
implications for trade [631]. Areas currently free of SVDV are at risk for importing the
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virus in livestock or food products, further leading to a need for increased control and
surveillance [631].

Control efforts are further hampered by challenges in diagnostics. Due to the simi-
larity to other vesicular diseases, laboratory-based diagnostics are crucial for control and
identification. However, commonly used serological tests can produce false negatives and
researchers are working toward developing more reliable tests [632,633]. The majority of
laboratory research is aimed at diagnostics [632] and understanding environmental persis-
tence [630]. In vitro cell based assays, aimed at understanding basic virus biology such as
cell entry and spread [634–636], are more common than animal modeling. As pigs are the
only natural host, experimental modeling studies focus on using pigs and are generally
targeted at understanding persistence or shedding, and vaccine testing. While modeling
studies have been underway for decades, there is little consistency in the elements of the
model (e.g., route of exposure, dose, strain, or experimental design [637–641]).

3.17. Vesicular Stomatitis

Vesicular stomatitis viruses (VSV) cause vesicular stomatitis (VS) and are enveloped,
single stranded, negative sense RNA viruses belonging to the genus Vesiculovirus, in the
family Rhabdoviridae [628,642,643]. The viruses are transmitted to a wide variety of hosts
via arthropods, such as flies, mosquitoes, and midges [628,642,643]. Infection with VSV
was likely described in the USA in the 1800s, based on symptoms in sick horses, cattle,
and pigs [642], but is generally accepted as being first identified in 1916 in the USA during
an epidemic and cattle and horses [628,642,643]. The virus is enzootic in Mexico, Central
America, and Northern South America—with high rates of seropositivity in humans in
countries such as Panama—and widely distributed across the Americas [628,642–644].
There are dozens of recognized species within the genus, but the more well characterized
and more significant New World species include VSV-New Jersey (VSV-NJ), VSV-Indiana
(VSV-IN), Alagoas, Chalchaqui, Cocal, and Piry [642].

The virus can infect livestock through aerosol exposure, via arthropod, or from contact
with infected animals or contaminated fomites. Infections can be asymptomatic, especially
in younger animals [645], but disease can also be acute. Acute disease symptoms present
in domesticated animals such as cattle, horses, and pigs. Symptoms are similar to FMDV,
including fever, swelling of the mouth or nose, lameness, depression, hypersalivation,
vesicular lesions in or around the mouth, on the feet, or the teats [628,642,643], though
lesions may be less prevalent in horses. Sheep and goats can be infected experimentally
but natural infection is rare [628,642,643] and there is some evidence of infection in a wider
range of animals such as wild ruminants and carnivorous mammals, other hooved wildlife,
or rodents [628,642,643]. Human infections are usually mild or symptomatic [628,642,643].
However, symptoms beyond influenza like symptoms have been reported, including
conjunctivitis, nausea and vomiting, lymphadenitis, muscle pain, lesions in the mouth or
skin, or rarely encephalitis (reviewed in [642]).

VSV is a prototypical virus for molecular biology and virology studies, especially in
the field of viral diversity and evolution [628,642,643]. Numerous in vitro techniques exist
to study the virus; VSV replicates in a large number of immortalized cell lines, such as BHK-
21 cells, as well as immortalized or primary cells derived from insects, birds, mammals,
reptiles, and fish [628,642,643]. Experimental infections have been performed in a large,
diverse variety of animals over the past century (reviewed in [646]). In larger animal
models, direct injection of the virus is frequently used and results in similar symptoms
to natural infections. Under laboratory conditions, cattle often develop lesions near the
site of virus injection, though the lesions last only a few days; direct inoculation of the
tongue has been shown to cause fever, hypersalivation, lack of appetite, and the expected
vesicular lesions [642]. Small animal models, primarily mice, are commonly used to study
pathogenesis and immune responses [647–649]. Other small animal models, such as guinea
pigs, hamsters, ferrets, and chickens, have also been developed [642]. Unsurprisingly, the
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outcome of experimental infection is largely depending on the dose administered, the route
of inoculation, and the species or strain of virus used [647].

Outbreaks in livestock can result in substantial economic losses due to loss in animal
productivity, considerable weight loss in infected animals, or lack of milk production (in
dairy cattle) [642,643,650]. There is also a significant economic impact from diagnosis and
control efforts. As the disease presents similarly to FMD, the identification of symptomatic
animals requires immediate diagnostic testing—often through RT-PCR or ELISA—and
positive test results usually trigger quarantine. Insect control measures can be challenging
to implement, but are another important control measure, along with the disinfection of
contaminated surfaces [628,642,643]. Vaccination is another control measure to be consid-
ered in enzootic countries. Research in mice has demonstrated neutralizing antibodies as
a result of infection [649], and cattle have been shown to develop antibodies. However,
the significance and implications for protection against natural infection is unclear. Thus,
research into vaccines is crucial and ongoing but much remains unknown about their
efficacy and duration of protection. Vaccines using wild type virus have been used but
should only be considered in emergent situations as the consequences can be undesirable.
As such, vaccines using inactivated virus have been implemented but may be less effica-
cious [642]. For other viral diseases, vector based vaccines that rely on a VSV backbone are
being increasingly developed and evaluated (reviewed in [651]), though more information
regarding the safety and implications of such vaccines is required [642,651]. Further work
is also needed to develop better vaccination strategies, and to better understand the natural
life cycle of the virus [642].

4. Discussion

Transboundary animal diseases are highly contagious or transmissible, epidemic dis-
eases, with the potential to spread rapidly across the globe, cause substantial socioeconomic
losses, and result in negative public health outcomes [1,2]. These diseases can threaten the
global food supply, by reducing the availability of animal products, causing significant
socioeconomic consequences, having severe public health consequences, and causing pain
or suffering in afflicted animals.

The potential economic impacts from TADs are quite severe. Defining these costs is
crucial to securing government and public commitment to disease control programs [512].
During the Great African Pandemic of the 1890s, Africa lost over 2.5 million cattle to
RP [556]. In addition to economic impacts, the potential for human suffering and loss of
life due to TADs is staggering. The loss of most of Ethiopia’s cattle to RP in the late 19th
century contributed directly to famine that claimed the lives of up to one-third of the coun-
try’s human population [556]. After the eradication of RP was declared in 2011, analysis
of costs and benefits were performed to demonstrate the positive impact of eradication
efforts. For example, the benefit of the Pan-African Rinderpest Campaign, which had
both regional and international support, was estimated to be up to 35,433,000 European
currency units (ECU or XEU, later replaced by the Euro; approximately $43,000,000) [554].
In contrast to a disease with such obviously devastating impacts, it can be challenging to
demonstrate the overall importance of eradicating diseases with low mortality or that pri-
marily affect animals of lower individual value or that are relied on mainly by individuals
in poverty-stricken regions [519,612]. Approaches that include participatory epidemiol-
ogy and studies focusing on the impact on small stakeholders could help address these
issues [3,271,652,653].

Further research is clearly needed for better diagnostics, especially in instances where
diseases resemble one another (e.g., FMD, VSV, SVD). In addition to a requirement for very
effective diagnostics (e.g., low instance of false negative or false positives), diagnostics
must be widely available and economically obtainable to be impactful. As with diagnostics,
more work is desperately needed for vaccines to prevent TADs. While some of these
diseases have effective vaccines, most do not or the vaccines available are not as effective
as they could be. Control efforts are expensive, on top of the economic impact caused
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by the diseases themselves, and communities are understandably reluctant to invest time
or money into vaccines that do not stop spread or that cause side effects. Mistrust from
previous vaccines that have showed low efficacy or side effects can also cause communities
to hesitate before implementing new vaccines. Proper prevention or containment of some
TADs may lessen the severity of others as well. For example, some diseases such as SVV or
VSV have lower incidence and result in less severe disease, but their resemblance to FMD
require their rapid identification and control. If FMD control measures succeed, SVV and
VSV control may be easier as a result. In contrast, successful efforts to control one disease
could inadvertently contribute to the emergence of another. For example, eradication of
RP may have facilitated spread of PPR because goats and sheep exposed to RPV were
immune to PPRV [493]. Lessons learned from eradicated diseases like RP and smallpox
can be applied to successful control of related disease in animals and humans [511,654].

In order to develop appropriate diagnostics and vaccines, and better understand the
pathogenesis of TADs, there is a need for more and better characterized animal models.
Well characterized animal models must demonstrate that disease in the model is well
understood and be used to adequately show efficacy and efficacy endpoints that are related
to outcomes in the natural host (e.g., increased survival). Developing such models relies
on characterizing a specific agent (e.g., species or strain), a relevant route and target dose,
and appropriate disease outcomes that recapitulate natural disease [291,655,656]. In many
cases for TADs, research design varies between facilities and standard models have not
been developed.

Many of the causative agents described herein, especially the RNA viruses, have high
mutation rates which result in heterogenous populations (quasispecies) (reviewed in [657]).
This high level of diversity and ability to mutate quickly has many implications for TADs.
For example, these viruses are more likely to be able to escape immune pressures, including
vaccine induced immune responses, and therapeutics. High genetic diversity also makes
developing an effective vaccine against all existing variants more difficult. These topics
are especially important for TADs, as vaccine control is crucial in many cases. As the
viruses mutate, they may also exhibit modified virulence, disease symptoms, tropism, or
host range. As a result, emergence or re-emergence of these diseases can be impacted by
their propensity for genetic diversity as mutants may spread to new geographic regions,
new hosts, or via new modes of transmission. Mutation rate and quasispecies should be
considered an important research area for TADs.

5. Conclusions

Transboundary animal diseases remain a serious threat to the global food supply and
have significant socioeconomic consequences, along with a potential for severe public
health consequences. This will continue until we have a better understanding of the
diseases and their causative agents, better control measures available, and better strategies
for implementing control measures that rely on community buy in at the local level.
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