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Abstract: The influence of the nanocrystalline structure produced by severe plastic deformation (SPD)
on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was
investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The resistance to general corrosion
and pitting became higher in both the solutions, with higher passivation capability observed with
increasing Cr content, and it is believed that the high corrosion resistance of CoCrFeMnNi alloys
can be attributed to the incorporation of the Cr element. However, the impact of the nanocrystalline
structure produced by SPD on the corrosion behavior was negligibly small. This is inconsistent with
reports on nanocrystalline binary Fe–Cr alloys and stainless steels processed by SPD, where grain
refinement by SPD results in higher corrosion resistance. The small change in the corrosion behavior
with respect to grain refinement is discussed, based on the passivation process of Fe–Cr alloys and on
the influence of the core effects of HEAs on the passivation process.

Keywords: severe plastic deformation; high-pressure torsion (HPT); high-entropy alloys; ultrafine-
grained materials (UFG); nanocrystalline materials; passivation; pitting corrosion

1. Introduction

As a well-known high-entropy alloys (HEA), equiatomic CoCrFeMnNi alloy, also
known as Cantor alloy, has been increasingly investigated in recent years, with a focus
on enhanced fracture toughness and ductility at cryogenic temperatures [1]. HEAs could
become future materials for structural applications due to these superior properties. How-
ever, compared with the mechanical properties, the corrosion properties, which are also
important for structural applications, have not been investigated to the same extent. The
majority of HEAs, as represented by Cantor alloy, have a higher amount of Cr and Ni
compared to commercial stainless steels (SS) such as AISI304, so that they are expected to
exhibit high corrosion resistance, and they have been demonstrated to possess high passi-
vating capability in neutral solutions [2–7]. However, it seems that the corrosion resistance
of HEAs is not necessarily as high as expected given the large Cr and Ni content [2,3,8],
and in particular the pitting corrosion resistance in chloride-containing environments is
inferior to AISI304 [2,4,8].

Grain refinement to a nanocrystalline structure has a significant influence on the
mechanical properties and corrosion behavior of metallic materials. This strong effect is
associated with a very small grain size and a large number of structural defects, i.e., grain
boundaries and triple points. Such a high fraction of structural defects in nanocrystalline
materials can lead to a significant increase in stored energy, which may increase reactiv-
ity. This phenomenon is expected to have a dual effect on corrosion behavior, which is
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dependent upon the material/environment system, as reviewed in [9,10]. As a general
rule, a nanocrystalline structure in passivating electrolytes exhibits an improvement in
corrosion resistance, whereas in depassivating electrolytes it exhibits a decrease in cor-
rosion resistance [9,10]. The effect of grain size on the corrosion behavior of HEAs has
been little studied to date [11,12]. Wang et al. examined the effect of grain size on the
corrosion behavior of CoCrFeMnNi alloys and found that both fine-grained (<1.24 µm)
and coarse-grained samples (145 µm) exhibited lower corrosion resistance than medium-
grain-size specimens [11]. Han et al. examined the corrosion behavior of ultrafine-grained
CoCrFeMnNi alloys produced via cryo-rolling and subsequent annealing for a short time,
and they found that ultrafine-grained alloys exhibited less corrosion resistance than their
coarse-grained counterparts [12]. In these studies, grain size was controlled by plastic defor-
mation and subsequent annealing, and post-deformation annealing may induce elemental
segregation or precipitation of phases such as the σ-phase, which degrade corrosion resistance.

Severe plastic deformation (SPD) techniques enable the fabrication of ultrafine-grained
(UFG) or nanocrystalline (NC) materials in bulk forms suitable for load-carrying structural
applications [13]. With the advent of SPD, there has been an increasing demand to clarify
the effect of UFG/NC formation on corrosion from a practical viewpoint, especially with
regard to the classic topic of the effect of grain size on corrosion [14,15]. Among the various
materials investigated to date, stainless steels exhibited mostly improved corrosion resis-
tance by forming UFG structures by SPD [10,14–20]. The enhanced corrosion resistance of
UFG/NC SSs compared with coarse-grained (CG) materials has been mostly attributed
to greater Cr enrichment in the passivation film [19–27], which has been validated exper-
imentally by X-ray photoelectron spectroscopy (XPS) [24] and recently by Cs-corrected
scanning-transmission electron microscopy (STEM) [28,29]. Two possibilities for the en-
hanced Cr enrichment in the passivation film of UFG/NC materials have been proposed.
One is the selective dissolution of Fe and oxidation of Cr due to the high chemical reactivity
of the UFG structure [21,22], and the second is fast diffusion of Cr from the metal matrix to
the passivation film through high-density grain boundaries in the UFG alloys [24–27]. In
this context, Cr-containing HEAs, represented by equiatomic CoCrFeNiMn alloys, could be
expected to exhibit higher corrosion resistance due to the UFG/NC structure.

Among the various SPD techniques, processing by high-pressure torsion (HPT),
where a specimen disk is subjected to a high applied pressure and concurrent torsional
strain, is especially effective for producing a microstructure with exceptionally small grain
sizes and a large fraction of high-angle grain boundaries [30,31]. Nanocrystalline CoCr-
FeMnNi HEAs have been fabricated by HPT, and their mechanical properties [32–34],
microstructures [32,35], thermal stability [32] and superplasticity [36,37] have been studied.
However, there have been no reports that describe the influence of HPT processing on the
corrosion behavior of HEAs.

The purpose of the present research was to clarify the effect of UFG formation by SPD
on the corrosion behavior of high-entropy Cantor alloys with various Cr contents in H2SO4
and NaCl solutions.

2. Materials and Methods

CoCrFeMnNi HEAs with a systematically varied Cr content ranging from 0 to 20 at.%
were prepared by arc melting. The chemical compositions of the samples are shown in
Table 1. The other elements, i.e., Co, Fe, Mn and Ni, were adjusted to be equiatomic, ranging
from 20 to 25 at.%. The as-cast alloys were annealed at 1273 K for 16 h for homogenization
in an Ar atmosphere, and this was repeated four times. The alloys were then cut by
electrical discharge machining into 10 mm diameter and 1.0 mm thick disks. The disks
were subjected to HPT at room temperature with a pressure of 6.0 GPa at 1 rpm for a total
of 10 turns. After the homogenization treatment (referred to as CG1-5) and HPT processing
(HPT1-5), the samples were evaluated in terms of Vickers microhardness, microstructure,
X-ray diffraction (XRD) characteristics and corrosion behavior. The XRD structural analysis
was performed using Co Kα radiation (λ = 1.7902 A) with a scanning step of 0.01 deg and a
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scanning speed of 2 deg/min. Field-emission transmission electron microscopy (FE-TEM,
JEM-2100F, JEOL), equipped with energy-dispersive X-ray spectroscopy (EDS) was used to
observe the microstructure and elemental distribution after HPT.

Table 1. Chemical composition of materials (at.%).

No. Cr Co Fe Ni Mn

1 0 25 25 25 25
2 6 23.5 23.5 23.5 23.5
3 10 22.5 22.5 22.5 21
4 16 21 21 21 21
5 20 20 20 20 20

Potentiodynamic polarization tests were conducted in 1 M H2SO4 and 3.5 wt.% NaCl
solutions at room temperature, using a potentiostat (HZ-5000, Hokuto-Denko Co Ltd.,
Tokyo, Japan) at a scan rate of 20 mV/min with an Ag/AgCl reference electrode in a
saturated KCl solution. Each sample was immersed in the solution for one hour prior to
the polarization tests. Dissolved oxygen was removed from the solution with argon gas
before corrosion testing.

To investigate the chemical composition of passivation films on the equiatomic CG5
and HPT5 samples (20 at.% Cr), the samples were charged under potentiostatic conditions
for 2 h at a potential of +400 mVAg/AgCl in 1 M H2SO4 solution, to produce stable passi-
vation films. The potential was chosen with reference to the characteristic features of the
potentiodynamic polarization curve. Cross-sectional TEM samples of the passivation film
formed on the alloys after corrosion tests were prepared using focused ion beam milling
(FIB, NB5000, Hitachi Hi-technology, Tokyo, Japan) at an acceleration voltage of 10–40 kV,
following the deposition of a Pt layer to protect the surface of the alloys. Cross-sectional im-
ages of the passivation films formed on the alloys were characterized using high-resolution
transmission electron microscopy (HRTEM), and the chemical composition of the pas-
sivation films was investigated using Cs-corrected high-angle annular dark-field STEM
(Cs-corrected HAADF-STEM) (JEM NEOARM, JEOL, Akishima, Tokyo, Japan) equipped
with EDS (JED-2300T, JEOL, Akishima, Tokyo, Japan)) at an acceleration voltage of 200 kV.

3. Results

Figure 1 shows the XRD patterns for the initial homogenized samples (designated
CG1 to 5) and HPT samples (20 at.% Cr designated as HPT5). They all exhibit a typical
single face-centered cubic (fcc) phase, and peak broadening is recognized for the HPT5
samples. There is no evidence of the formation of a new phase or the occurrence of phase
transformation during the HPT processing. This stable single fcc phase of the Cantor alloy
after HPT processing was also reported by other researchers using XRD [33], and the alloy
remained a true single-phase solid solution down to the atomic scale, as demonstrated
using three-dimensional atom probe tomography (3D-APT) [32].

Figure 2 shows the distribution of microhardness for the CG5 and HPT1-5 samples
along the diameter. The lower dashed line at Hv = 120 corresponds to the initial hardness
for the homogenized condition of CG5. The hardness was almost completely uniform across
the entire diameter after HPT for 10 turns, and compared to the homogenized condition,
the hardness was increased significantly by a factor of 4 to Hv = 510 in all samples.

Shahmir et al. processed equiatomic CoCrFeNiMn alloys using HPT, and the materials
reached a saturation hardness of Hv = 450, which is slightly smaller than the value obtained
in the present study. They also reported that fully uniform hardness was not achieved even
after 10 turns; a small center area was softer than the edge part [33]. The reason for this
inconsistency with the present results is unknown; however, the initial grain size or the
level of slippage between the anvil and the disc may be responsible.
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Bright-field TEM images at the center and edge parts of HPT5 samples are shown
in Figure 3. The microstructure consists of small grains with an average grain size of
about 40 nm, many of which are surrounded by curved or ill-defined grain boundaries.
Selected area electron diffraction (SAED) analysis revealed well-defined ring patterns,
which indicates that the grain boundaries mostly had high angles of misorientation. Both
the bright-field images and the SAED analysis indicate that there was essentially no distinct
difference in the microstructure between the center and edges, as also indicated by the
Vickers microhardness test. Elemental distributions of the HPT5 sample observed using
STEM-EDS are shown in Figure 4. The distribution of all elements was fairly uniform, and
there was no visible segregation or agglomeration after HPT.
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Figure 5 shows the potentiodynamic polarization curves for all samples in 0.5 M
H2SO4 solution. All the CG and HPT specimens passed through the active, active–passive
transition and passive regions, followed by second active, passive and transpassive regions,
with increasing anodic polarization potential. Both the peak current ip at the active–passive
transition and the steady-state passive current ipass decreased with increasing Cr content
in both the CG and HPT alloys, which indicates that Cr increases the passivation ability,
as documented in binary Fe–Cr alloys [22]. Therefore, Cr has a predominantly strong
influence on the corrosion behavior among the constituent elements of these HEAs. The
secondary passivation is associated with the oxidation of MnO2, while the final breakdown
is dominated by the dissolution of MnO4 [7]. Therefore, the secondary peak position was
almost the same for all the alloys despite the different amounts of Cr. Figure 6 compares
the polarization curves for the CG and HPT specimens with the same amount of Cr. For all
Cr contents, the polarization curves almost completely overlapped for the HPT and CG
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samples, which indicates that nanocrystalline formation did not alter the electrochemical
behavior, irrespective of the amount of Cr. The peak current density ip of the active region
and the passive current ipass are shown as a function of the Cr content in Figure 7. Data
for high-purity Fe–Cr alloys and AISI304SS are also shown for reference [20,22,38]. Note
that the fitting lines for ip and ipass for both the present alloys and the binary Fe–Cr alloys
are almost matched, except for ipass for the Fe–Cr alloys reported by Gupta et al. [22]. This
indicates that Cr exclusively influences the passivation behavior. According to the results
of Gupta et al. [22], both ip and ipass in nanocrystalline structures are smaller than in their
coarse-grained counterparts. Figure 8 shows the potentiodynamic polarization curves in
3.5%NaCl solutions. Both the HPT and CG alloys showed spontaneous passivity with
increasing overpotential, and the passivation films prevented continuous dissolution of
the surface. Current fluctuations were conspicuous in the entire passive region and are
attributed to the formation and repassivation of metastable pits. While passive currents
gradually increased with the anodic overpotential in the CG samples, those for the HPT
samples stayed constant until the breakdown potential, which indicates higher protective
properties of the passivation films of the HPT samples. The passivation breakdown poten-
tial due to pit formation, Epit, increases with Cr content in both the CG and HPT specimens.
It was confirmed that the pits were not localized in the center part, which has an immature
microstructure compared with the edge part. Figure 9 shows the critical pitting potential
Epit as a function of the pitting resistance equivalent number (PRE). PRE (= Cr + 3.3 Mo)
provides an empirical relative estimation of the pitting corrosion resistance for Fe–Cr and
Fe–Cr–Ni alloys based on experimental fitting of the pitting potentials when exposed to
NaCl solution. It is apparent that the pitting potentials for the HEAs are on the same fitting
line as for high-purity Fe–Cr alloys (Figure 9). These results indicate that the resistance to
pitting of the HEAs is determined exclusively by Cr, and the effect of other elements such
as Ni and Co on the passivity is limited. If one compares the pitting potential with those
of 304 SS [39,40], the pitting potential of 304 SS is higher than that in the present results
despite having the same PRE, and it increased with the formation of the UFG structure.
However, little difference in Epit was observed between the HPT and CG samples, which
suggests that UFG formation by HPT has little impact on the protective properties of the
passivation film and the corrosion resistance.
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Figure 10 shows the EDS line profiles for the CG5 and HPT5 specimens after polariza-
tion in the passive region (400 mVAg/AgCl) for 2 h in 0.5 M H2SO4 solution. Figure 11 shows
the corresponding STEM images and elemental maps. The layer with a high O signal is
considered to be the passivation film. A Cr-rich oxide layer was observed on both CG and
HPT specimens, which indicates that a stable passivation film can form on both specimens
and that Cr is the main passivation former. In binary Fe–Cr alloys, Cr enrichment of
the passivation films, which has mainly been observed using XPS, is due to the selective
dissolution of Fe and the higher oxidation tendency of Cr [41–43], and a higher Cr/(Fe
+ Cr) ratio in the passivation film results in higher corrosion resistance. In HEAs, higher
dissolution of Fe, Ni, Co and Mn compared to Cr is considered to occur during anodic
dissolution, and this could result in Cr enrichment. The levels of Cr enrichment, expressed
as the Cr/(Fe + Cr + Co + Ni + Mn) ratio, are comparable in both CG and UFG specimens
and are smaller than 0.5, and this is consistent with the similar corrosion behavior of the
two samples. According to Gupta et al. [22], the level of Cr enrichment Cr/(Fe + Cr) of
the passivation film in Fe–20%-Cr alloys passivated in H2SO4 solutions increases with NC
formation and reaches 0.8 [22], which is higher than the present result. Therefore, it is
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considered that the selective dissolution of other elements during the anodic reaction is not
facilitated in HEAs compared with that of Fe in Fe–Cr alloys. The Ni-rich phenomenon
underneath the surface oxide film was also observed in CoCrFeMnNi alloy [5], and this is
commonly seen in studies of austenitic stainless steels [29].
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4. Discussion

In the studied CoCrFeMnNi alloys, the amount of Cr had a strong effect on the
electrochemical behavior, and the passivity became more stable with increasing amounts
of Cr. This higher pitting potential in NaCl solution and greater protective properties of
passivation films in H2SO4 with a higher amount of Cr has been established in binary Fe–Cr
alloys and stainless steels. However, in spite of extensive reports of enhanced corrosion
resistance in UFG Fe–Cr alloys, in the present study, the effect of UFG formation on the
corrosion resistance was less than expected; UFG formation via HPT of CoCrFeMnNi had
little or no impact on the corrosion behavior.

Cr enrichment of passivation films in binary Fe–Cr alloys has often been attributed to
the selective dissolution of Fe and the oxidation of Cr [41–44]. Higher corrosion resistance
of UFG Fe–Cr alloys fabricated by SPD than that of CG alloys, which has been reported by
many researchers [10,14–20], is mostly attributed to greater Cr enrichment of the passivation
film [19–27]. This local enrichment of Cr in the passivation film was mostly validated
experimentally using XPS and established to date. This greater Cr enrichment in UFG
Fe–Cr alloys has been explained by the following two processes. The first explanation is
accelerated selective dissolution of Fe and oxidation of Cr [21,22]. UFG materials have a
high density of grain boundaries, and atoms at grain boundaries have higher chemical
activity, which results in greater dissolution into the solution and oxidation. The second
explanation is the faster diffusion of Cr from the base metal to the passivation film through
high-density grain boundaries which act as fast diffusion channels in UFG alloys [24–27].
Significant diffusion of Cr in nanostructured Fe–Cr alloys was reported by Wang et al.,
where Cr diffusion in nanostructured Fe–Cr alloys was 7 to 9 times faster than in the Fe
lattice, and 4 to 5 times faster than at the grain boundaries of Fe [45]. This fast diffusion in
nanostructured Fe is attributed to a high density of non-equilibrium grain boundaries [45].

The present results for CoCrFeMnNi alloys on the stable passivation composition
against UFG formation (or less sensitive composition to grain size than Fe–Cr alloys) can
be explained by considering some high-entropy effects, which are among the four core
effects of HEAs. The high-entropy effect of HEAs decreases the possibility of elemental
segregation or local enrichment of specific elements and favors the formation of a uniform
distribution of component elements. Therefore, the selective dissolution of specific elements,
which leads to local enrichment of the other remaining elements, increases the mixing
enthalpy and may destabilize the fcc phase. Thus, selective dissolution could be suppressed
during anodic dissolution. Luo et al. conducted an in situ element-resolved corrosion
analysis using online ICP-MS analysis and concluded that no obvious selective dissolution
of Mn, Co, Ni and Fe occurred during surface passivation of the equiatomic HEA in 0.1 M
H2SO4 [3]. The second reason for the small influence of grain size on the corrosion behavior
of CrCoFeMnNi alloys compared with Fe–Cr alloys is related to diffusion. The kinetics
of diffusion are considered to be low in HEAs [46], and the so-called sluggish diffusion
suppresses Cr diffusion from the base metal to the passivation film and thus suppresses Cr
enrichment, in spite of UFG formation with high-density grain boundaries. In addition,
grain boundaries in HEAs may not provide a fast diffusion channel due to grain boundary
segregation [47] and a low average grain boundary energy [48,49]. Since the grain boundary
is regarded as surplus energy when a grain boundary is embedded in a single crystal, the
grain boundary energy in HEAs is significantly reduced due to the severe lattice distortion
inside the grains [48,49]. This is because the energy difference between the grain boundaries
and grain interior becomes small. Therefore, grain refinement or a high density of grain
boundaries may not facilitate Cr diffusion and local enrichment in the passivation film
during anodic dissolution in CrCoFeMnNi alloys.
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5. Conclusions

The corrosion behavior of UFG CoCrFeMnNi alloys processed by HPT with Cr con-
tents ranging from 0 to 20 at.% was investigated in 3.5% NaCl and 0.5 M H2SO4 solutions
and compared to homogenized coarse-grained (CG) counterpart materials. Several conclu-
sions were obtained, as follows.

The polarization curves in 1 M H2SO4 solution showed the active–passive, passive and
transpassive behavior typical of binary Fe–Cr alloys. An increase in Cr content decreased
the potential of the active–passive transition, and thus increased the ability to passivate. Cr
was the dominant element providing the passivation ability.

The polarization curves in 1 M H2SO4 solution showed little difference between the
coarse-grained state after homogenization and the nanocrystalline structure after HPT. The
impact of nanocrystalline structure on corrosion was negligibly small. Similarly, corrosion
resistance to pitting in 3.5% NaCl solution was also little affected by the formation of the
nanocrystalline structure, and this is in striking contrast to the high corrosion resistance of
nanocrystalline or ultrafine-grained stainless steels processed by SPD reported elsewhere.

Moderate Cr enrichment in the passivation films was observed equally for coarse-
grained and nanocrystalline structures. This stable, less-sensitive composition in the
passivation film with respect to grain refinement may originate from the core effects, i.e.,
severe lattice distortion and sluggish diffusion of high-entropy alloys.
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