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Abstract

While many disease-associated single nucleotide polymorphisms (SNPs) are associated

with gene expression (expression quantitative trait loci, eQTLs), a large proportion of com-

plex disease genome-wide association study (GWAS) variants are of unknown function.

Some of these SNPs may contribute to disease by regulating gene splicing. Here, we inves-

tigate whether SNPs that are associated with alternative splicing (splice QTL or sQTL) can

identify novel functions for existing GWAS variants or suggest new associated variants in

chronic obstructive pulmonary disease (COPD). RNA sequencing was performed on whole

blood from 376 subjects from the COPDGene Study. Using linear models, we identified

561,060 unique sQTL SNPs associated with 30,333 splice sites corresponding to 6,419

unique genes. Similarly, 708,928 unique eQTL SNPs involving 15,913 genes were detected

at 10% FDR. While there is overlap between sQTLs and eQTLs, 55.3% of sQTLs are not

eQTLs. Co-localization analysis revealed that 7 out of 21 loci associated with COPD

(p<1x10−6) in a published GWAS have at least one shared causal variant between the

GWAS and sQTL studies. Among the genes identified to have splice sites associated with

top GWAS SNPs was FBXO38, in which a novel exon was discovered to be protective

against COPD. Importantly, the sQTL in this locus was validated by qPCR in both blood and

lung tissue, demonstrating that splice variants relevant to lung tissue can be identified in

blood. Other identified genes included CDK11A and SULT1A2. Overall, these data indicate

that analysis of alternative splicing can provide novel insights into disease mechanisms. In
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particular, we demonstrated that SNPs in a known COPD GWAS locus on chromosome

5q32 influence alternative splicing in the gene FBXO38.

Author summary

While it is known that chronic obstructive pulmonary disease (COPD) is caused in part

by genetic factors, few studies have identified specific causative genes. Genetic variants

that alter the expression levels of genes have explained part of the genetic component of

COPD, however, there are additional genetic variants with unknown function. In some

genes the protein coding sequence can be altered by a mechanism known as RNA splicing.

We hypothesized that some genetic variants that are associated with risk of COPD con-

tribute to the disease by altering RNA splicing. In this study, we identified genetic variants

that are associated both with COPD risk and RNA splicing. In particular, we found that a

COPD associated variant of previously unknown function may contribute to the inclusion

of a new exon in the FBXO38 gene. These finding are significant because they indicate

that analysis of RNA splicing can help identify genes that contribute to disease.

Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow

obstruction. While cigarette smoking is the leading environmental risk factor for COPD, only

a subset of smokers develop the disease. Genetic factors have been shown to contribute to

COPD susceptibility, with the best characterized example being SERPINA1, the causal gene for

α1-antitrypsin deficiency [1–5].

Genome-wide association studies (GWAS) have been used to identify common genetic var-

iants associated with many complex diseases, including COPD. These studies have identified

multiple well-replicated genome-wide significant loci, including a locus on 15q25 (CHRNA3/
CHRNA5/IREB2), FAM13A, HHIP, CYP2A6 and HTR4 [6–10]. In addition, a recent large

meta-analysis identified twenty-two genome-wide significant loci in COPD, of which 13 were

newly genome-wide significant [11, 12]. However, the majority of single nucleotide polymor-

phisms (SNPs) that have been identified in COPD GWAS are of unknown function. Since

most GWAS variants are located in noncoding regions, it is possible that these variants could

contribute to COPD susceptibility through transcriptional regulation of target genes, amongst

other possible mechanisms.

Expression quantitative trait locus (eQTL) studies have been used to identify SNPs that con-

tribute to gene expression levels, thereby providing insight into the biological mechanism

responsible, and providing additional confidence in GWAS findings by implicating putative

causative genes. In addition, methods such as TWAS and PrediXcan, which utilize eQTL data

to analyze genetic regulation of gene expression, have replicated GWAS findings [13]. To date,

only a moderate percentage of GWAS findings have been shown to be eQTLs with strong

effect size [14]. This is likely due to a variety of mechanisms including inadequate sample size,

multiple testing correction, tissue type investigated, as well as the focus on total gene-level

expression levels without consideration of transcript isoforms.

COPD has been shown to have a disproportionate amount of alternative splicing compared

to other complex diseases such as type 2 diabetes, Alzheimer’s disease, and Parkinson’s disease,

suggesting that transcriptional regulation through splicing may play an important role [15].

Splice QTLs in COPD
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Genetic variation could contribute by altering mRNA splicing, which in turn could result in

changes in protein sequence or expression levels. Several recent studies have demonstrated

that SNPs associated with alternative splicing (sQTLs) are enriched for GWAS variants. Evi-

dence suggests that at least 20–30% of disease causing mutations may affect pre-mRNA splic-

ing [16, 17]. Furthermore, several reports have discovered that there are a proportion of

GWAS SNPs that have evidence of sQTLs but not eQTLs, indicating that sQTL analysis can

provide additional insight into the functional mechanisms underlying GWAS results [18]

[19, 20].

Here, we characterize sQTLs in human peripheral blood in COPD to determine whether

these loci can identify novel functions for COPD GWAS variants. We hypothesize that a sub-

stantial fraction of COPD GWAS loci influence disease susceptibility through sQTLs. Previous

studies to identify sQTLs have been performed in small sample sizes or have focused on exon

expression instead of differential exon usage [18]. This study characterizes variants associated

with differential exon usage in a large population.

Materials and methods

Ethics statement

This study has been approved by Partners Healthcare IRB (Protocol # 2007P000554). All sub-

jects provided written informed consent.

Study population

This study included 376 non-Hispanic white subjects from the COPDGene study. COPDGene

enrolled individuals between the ages of 45 and 80 years with a minimum of 10 pack-years of

lifetime smoking history from 21 centers across the United States [21]. These subjects returned

for a second study visit 5 years after the initial visit at which time they completed additional

questionnaires, pre-and post-bronchodilator spirometry, computed tomography of the chest,

and provided blood for complete blood counts (CBCs) and RNA sequencing. In this study,

moderate to severe COPD was defined as GOLD spirometric grades 2–4 [22].

RNASeq data acquisition and processing

The protocol for RNASeq data generation has been previously described [23]. Total RNA was

extracted from PAXgene Blood RNA tubes using the Qiagen PreAnalytiX PAXgene Blood

miRNA Kit (Qiagen, Valencia, CA). Extracted samples with a RIN> 7 and concentration�

25ug/uL were included in sequencing. Globin reduction, ribosomal RNA depletion and cDNA

library prep was performed using the TruSeq Stranded Total RNA with Ribo-Zero Globin kit

(Illumina, Inc., San Diego, CA). The Illumina HiSeq 2500 was used to generate 75 bp reads,

and an average of 20 million reads were generated per sample.

Read alignment, mappability filtering and quality control

Reads were trimmed using skewer [24] to remove specified TruSeq adapter sequences. Quality

control was performed using the FASTQC [25] and RNA-SeQC [26] programs. Trimmed

reads were aligned to the GRCh37 reference genome using a two-pass alignment method with

STAR 2.5 [27]. Following sequence alignment, mappability filtering to correct for allelic bias

in read mapping was performed using WASP [28]. An average of 840,000 reads were removed

due to read mapping bias resulting in an average of 19.9 million reads being available for sub-

sequent analysis.
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Genotyping

Genotyping was performed by Illumina (San Diego, CA) on the HumanOmniExpress Array.

Eagle v. 2.3 was used for phasing and HRC reference panel version 1.1 was used for imputa-

tion. SNPs with minor allele frequency greater than 0.05 and imputation R2 greater than 0.5

were included in analysis. Details on genotyping QC and imputation have been previously

published. [9, 11].

Quantification of splicing ratios and gene expression counts

Gene expression counts were computed using Rsubread [29]. Quantification of splicing ratios

was performed using Leafcutter [19]. This method extracts junctional reads (or reads that span

introns) from aligned bam files and clusters them according to shared start or stop positions.

Default leafcutter parameters were used in the detection of clusters, i.e., 50 split reads across all

individuals were required to support each cluster, and introns up to 500 kb were included. For

sQTL analysis, intron ratios were calculated by determining how many reads support a given

exon-intron junction in relation to the number of reads in that region. Introns used in less

than 40% of individuals were filtered out, and the remaining intron ratios were used as input

for sQTL analysis.

eQTL and sQTL analysis

MatrixeQTL [30] was used to test for association between genotype of all SNPs within 1000 kb

of a gene (cis-) and quantifications of gene expression or alternative splicing using linear mod-

els, adjusting for age, gender, pack-years of smoking, current smoking status, white blood cell

differential, PEER factors of expression data and five principal components of genetic ancestry.

Calculation of principal components has been previously described [8]. Out of a total of

5,405,234 SNPs passing QC and filtering, 4,664,386 were within 1000kb of a gene and were

tested for association with 25,313 genes and 97,365 splice sites.

SNP lookup and colocalization analysis

COPD-associated SNPs were obtained from a subset of a published GWAS [11]. We selected

920 SNPs with p<1 x 10−6 in white subjects to match the ethnicity of the RNA-Seq data. These

SNPs were grouped into 21 loci based on their genomic positions (S1 Fig; Table 1). Specifically,

SNPs with positions located within the window shown in Table 1 were grouped into the corre-

sponding locus. SNPs that were associated with splicing at the 10% FDR, or with gene expres-

sion at the 10% FDR were identified. The 10% FDR threshold was selected based on published

sQTL studies [20, 31]. Co-localization analysis was performed for GWAS loci that contained

sQTLs using eCAVIAR [32]. All SNP-cluster and SNP-gene pairs within these loci with

FDR<0.1 were included in the colocalization analysis.

Quantitative PCR (qPCR) of FBXO38
Thirty COPDGene blood samples were selected for qPCR based on expression levels in RNA-

Seq data. An additional ninety resected lung tissue samples from individuals undergoing tho-

racic surgery [33] were selected based on genotype. A total of 400 ng of RNA was reverse

transcribed using the SuperScript III First-Strand Synthesis System (ThermoFisher Scientific,

Waltham, MA) for blood RNA or the iScript cDNA Synthesis Kit (BioRad, Hercules, CA) for

lung RNA. A Taqman assay was designed to amplify cDNA fragments from the 3’ region of

the cryptic FBX038 exon, to the 5’ region of exon 10 (S2 Fig). A predesigned Taqman assay

(Hs01004563_mH) was used to amplify the alternate isoforms from the 3’ region of exon 9 to
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the 5’ region of exon 10. A final amount of 30 ng of cDNA was amplified per well, and each

sample was assayed in triplicate. GAPDH was amplified as a housekeeping gene to control for

RNA concentration. To calculate the ratio of transcripts containing the novel exon, delta CT

values for the novel isoform were divided by delta CT values for the alternate isoform. Linear

Table 1. COPD genome-wide association study loci containing cis-eQTLs and cis-sQTLs at 10% FDR.

Locus Window2 Minimum GWAS

p-value

sQTLs eQTLs

Top SNP FDR Top Cluster1 � SNP FDR Top Gene �

15q25.1 15:76100000-

79500000

9.54x10−24 15:78826180

rs931794

0.0012 15:78834561-78836532

PSMA4
15:78857986

rs55781567

0.0012 CHRNA5

4q31.21 4:141700000-

145000000

4.05x10−22 4:145257681

rs2202507

0.028 4:145041741-145059314

GYPA
4:145270867

rs987246

0.066 GYPE

5q32 5:143100000-

147200000

2.59x10−14 5:147790860

rs7730971

1.56 x 10−7 5:147790328-147793699

FBX038
4q22.1 4:88200000-

94000000

1.32x10−12 4:89900452

rs10470936

0.0069 4:89319596-89326028

HERC6
4:89930392

rs1398942

0.013 FAM13A

14q32.12 14:90500000-

92800000

2.91x10−12

5q33.3 5:155600000-

159900000

1.09x10−10 5:156928008

rs56168343

0.0043 5:156957891-156964921

ADAM19
3p24.2 3:23800000-

26400000

1.80x10−9

2q36.3 2:225800000-

230700000

7.19x10−9

6p24.3 6:7000000-

10600000

1.78x10−8

4q24 4:102500000-

107900000

2.14x10−8 4:106622190

rs17036123

4.54 x 10−6 GSTCD

8q22.3 8:101600000-

106100000

3.29x10−8

1q41 1:212100000-

222100000

4.14x10−8

4p15.1 4:27900000-

35500000

5.39x10−8

20q11.21 20:28400000-

31500000

7.84x10−8

16p11.2 16:27600000-

34400000

8.12x10−8 16:28539848

rs4788084

1.888 x 10−18 16:28603764-28606688

SULT1A2
16:28539848

rs4788084

2.18x10−30 SULT1A2

3q21.3 3:127700000-

131500000

1.58x10−7

6q24.1 6:139100000-

142900000

2.79x10−7 6:142655490 0.0057 ADGRG6

1p36.32 1:2300000-

5300000

5.33x10−7 1:2316315

rs2843126

0.0250 1:1643839-1647785

CDK11A
18q21.33 18:57100000-

59800000

5.79x10−7

6p23 6:13500000-

15500000

8.10x10−7

6q16.3 6:99900000-

104800000

9.19x10−7

1 A cluster is defined as set of overlapping spliced junctions or introns. One or more junctions/introns within a cluster may be associated with genotype to give an sQTL.
2 SNPs with positions located within a given window were grouped into the corresponding locus.

�Top Gene or Top Cluster is the gene or cluster with minimum p-value. Many SNPs in this analysis were associated with more than one gene or cluster. For results from

all genes/clusters see S6 and S7 Tables

https://doi.org/10.1371/journal.pgen.1008229.t001
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regression was performed to test for an additive relationship between genotype and splicing

ratio.

Immunoblots and immunoprecipitation

Cells were lysed in EBC buffer (50 mMTris pH 7.5, 120 mMNaCl, 0.5% NP-40) supplemented

with protease inhibitors (Complete Mini, Roche) and phosphatase inhibitors (phosphatase

inhibitor cocktail set I and II, Calbiochem). The protein concentrations of lysates were mea-

sured by the Beckman Coulter DU-800 spectrophotometer using the Bio-Rad protein assay

reagent. Same amounts of whole cell lysates were resolved by SDS-PAGE and immunoblotted

with indicated antibodies. For immunoprecipitation, 1000 μg whole cell lysates were incubated

with the indicated anti-Flag M2 affinity gel and monoclonal anti-HA agarose for 3–4 hr at 4

degrees Celcius (Millipore Sigma). Immunoprecipitants were washed five times with NETN

buffer (20 mMTris, pH 8.0, 100 mMNaCl, 1 mM EDTA and 0.5% NP-40) before being

resolved by SDS-PAGE and immunoblotted with indicated antibodies.

Results

Identification of sQTLs and eQTLs in human peripheral blood

This analysis included 376 Non-Hispanic white COPDGene participants (S1 Table). Samples

were sequenced to a depth of approximately 20 million reads per sample, and splice ratios

from a total of 97,365 splice clusters (defined as overlapping introns that share a spice donor

or acceptor site) were included in the sQTL analysis. Gene expression counts for 25,312 genes

were used for eQTL detection.

We identified 1,706,704 cis-sQTLs at 10% FDR, comprising 561,060 unique SNPs (Table 2,

S2 Table). These SNPs were associated with 30,333 splice sites which were annotated to 6742

unique genes (S3 Table). Similarly, we identified 1,242,993 cis-eQTLs corresponding to

Table 2. Functional annotation of cis expression quantitative trait loci (eQTLs) and splice QTLs (10% FDR), based on RefSeq annotation.

Location Cis-eQTL analysis Cis-sQTL analysis p-value

Number Percentage of total eQTLs Number Percentage of total sQTLs

Downstream 9,110 1.29 6,843 1.22 1.05x10−3

Exonic 9,901 1.40 7,867 1.40 0.80

Exonic; splicing 3 4.23x10−4 7 1.24x10−3 0.18

Intergenic 293,661 41.42 212,616 37.89 <2.20x10−16

Intronic 323,666 45.66 279,762 49.86 <2.20x10−16

ncRNA_exonic� 4,986 0.70 3,670 0.65 8.51x10−4

ncRNA_exonic; splicing� 2 2.82x10−4 1 1.78x10−4 1

ncRNA_intronic� 43,617 0.06 32,152 0.06 <2.20x10−16

ncRNA_splicing� 27 3.81x10−3 20 3.56x10−3 0.94

Splicing 74 0.01 68 0.01 0.42

Upstream 8,841 1.25 6,218 1.11 <7.52x10−13

Upstream; downstream 429 0.06 336 0.06 0.92

UTR3� 11,563 1.63 9,111 0.02 0.76

UTR5� 3,039 0.43 2,383 0.42 0.75

UTR5, UTR3� 9 1.27x10−3 6 1.07x10−3 0.95

Total 708,928 561,060

� ncRNA: non-coding RNA; UTR: untranslated region.

https://doi.org/10.1371/journal.pgen.1008229.t002
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708,928 unique SNPs. These SNPs were associated with expression of 15,913 genes. We found

that 44.6% of sQTLs were also eQTLs, but that 55.3% (310,361 SNPs) were sQTLs exclusively.

In addition, 2299 genes contained at least one splice site that was significantly associated with

genotype of a neighboring SNP, while total gene expression of the same gene was not signifi-

cantly associated with any SNP. This suggests that analysis of sQTLs can identify novel regula-

tory events that are not captured through whole gene expression analysis.

Pathway analysis of genes with sQTLs

To characterize the biological functions of genes for which alternative splicing was associated

with nearby SNPs, Sigora [34] was used to identify overrepresented pathways in genes that had

sQTLs but not eQLTs. This method of pathway analysis focuses on genes or gene pairs that are

specific to a single pathway. In this way it utilizes the status of other genes in the experimental

context to identify the most relevant pathways and minimize the identification of spurious

pathways. We identified 2299 genes which had significant sQTLs but not eQTLs at the 10%

FDR. These genes were enriched for 33 KEGG pathways and 70 Reactome pathways (S4 and

S5 Tables), mostly related to RNA processing.

Functional categories of cis eQTLs and sQTLs

Both eQTLs and sQTLs were categorized on the basis of their location relative to the gene

with which they were associated, and the results are shown in Table 2. The greatest difference

in distribution of sQTLs and eQTLs was at intergenic (38% of sQTLs and 41% of eQTLs;

p<2.2x10−16) and intronic (50% of sQTLs and 46% of eQTLs; p<2.2x10−16) sites. Only a small

number of sQTLs (n = 68) and eQTLs (n = 74) were located in splice sites, defined as intronic

and within 2 bp of an exon/intron boundary. In addition, we identified 7 sQTLs and 3 eQTLs

located within an exon and 2 bp of an exon/intron boundary.

Identification of genetic loci containing both GWAS associated SNPs and

sQTLs

sQTLs were at least as enriched among low p-value associations with COPD case status as

eQTLs (S3 Fig). To identify whether sQTLs can identify functions for GWAS SNPs that

could not be explained by eQTLs alone, 920 SNPs associated with COPD in white subjects

with a p <1 x 10−6 were grouped into 21 genetic loci according to genomic position

(Table 1). These SNPs were then interrogated in the eQTL and sQTL data sets to identify

which GWAS SNPs were also associated with alternative splicing or gene expression at 10%

FDR. Of these 920 SNPs, 67 SNPs were both sQTLs and eQTLs, 71 SNPs were eQTLs alone,

and 156 were sQTLs alone, indicating that a greater number of GWAS SNPs are sQTLs than

eQTLs (Fisher’s Exact Test P-value = 5.31x10−6)(S6 and S7 Tables). Out of the 21 genomic

loci, 6 included GWAS-associated SNPs that were eQTLs, and 7 included GWAS SNPs that

were sQTLs (Table 1). In addition there were three loci that contained sQTLs but not eQTLs

for any gene.

Colocalization analysis of SNPs in HTR4/FBXO38

To investigate whether GWAS associations may be attributed to alternative splicing, colocali-

zation analysis was performed using eCAVIAR in the seven genetic loci containing both

GWAS SNPs and sQTLs (Table 3). All significant (FDR<0.1) SNP-gene and SNP-cluster

pairs were included in this analysis. All seven of the GWAS loci had at least one variant with

significant colocalization to sQTL data (colocalization posterior probability [CLPP] > 0.01)
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(top results are shown in Table 3 and all CLPP scores> 0.01 are shown in S8 Table). The locus

with the strongest colocalization between either GWAS & sQTL or GWAS & eQTL was

selected for in depth follow up; this was the 5q32 region containing HTR4/FBXO38. This

region was identified in the COPD case control GWAS, with 151 SNPs with p-value < 1x10−6;

rs3995091 SNP located in the HTR4 gene had the lowest p-value (2.59 x 10−14). Additional sig-

nificant variants from an independent association in this region include rs7730971 and

rs4597955 (Fig 1a) with GWAS p-values of 5.51x10−12 and 4.78 x 10−12, respectively.

rs7730971 was significantly associated with splice sites in the FBXO38 gene (S4 Fig), while this

SNP was not associated with total expression of any gene. eCAVIAR analysis revealed that

rs7730971 colocalized with the sQTL and GWAS data (CLPP = 0.845) (Fig 1b), while there

was no colocalization with eQTLs for FBXO38, suggesting that the GWAS association may be

caused be alternative splicing. Furthermore, eCAVIAR identified rs7730971 to be the SNP

with the highest degree of colocalization between sQTL and GWAS data, suggesting that this

may be the causative variant (Table 3 and S8 Table). Despite being the GWAS SNP with the

minimal p-value in the locus, there was no colocalization between sQTL and GWAS data for

rs3995091 (CLPP = 0.002). Characterization of the splicing cluster associated with genotype

of rs7730971 revealed a previously unannotated cryptic exon located at chromosome 16:

147,790,643–147,790,801. This 158 bp exon is present in a greater proportion of subjects with

the GG genotype (13%) than the CC genotype (8%) (Fig 1c). The CC genotype is also associ-

ated with greater risk of COPD, so the novel isoform may be protective against COPD. Since

this splice site has not been previously documented, quantitative PCR was performed to inde-

pendently validate the existence of the novel exon as well as replicate the effect of genotype on

exon inclusion levels in RNA from whole blood (linear regression p = 0.01, Fig 1d). Further-

more, the novel exon was identified in RNA from homogenized lung tissue, where splicing

Table 3. Colocalization of sQTLs and eQTLs with COPD case-control GWAS data.

Locus 500kb Window tested GWAS window Top colocalized sQTL SNP sQTL

CLPP1
Top colocalized eQTL SNP eQTL

CLPP1

15q25.1 78,576,180 –

79,076,180

78,712,101 –

79,024,016

312 kb

rs931794 0.2303 rs8034191 0.1897

4q31.21 145,007,681 –

145,507,681

145,227,600 –

146, 073,103

846 kb

rs13141641 0.2232 rs6857262 0.0840

5q32 147,540,860 –

148,040,860

147,685,952-

147,856,522

171 kb

rs7730971 0.8448 NA2 NA2

4q22.1 89,650,452 –

90,150,452

89,750,361 –

90,073,214

323 kb

rs7671261 0.0845 rs2869966 0.0918

5q33.3 156,678,008 –

157,178,008

156,824,546 –

157,002,695

178 kb

rs56168343 0.1176 NA2 NA2

16p11.2 28,289,848 –

28,789,848

28,513,403 –

28,595,700

82 kb

rs750155 0.2644 rs79039694 0.2096

1p36.32 2,066,315 -

2,566,315

2,315,680-

2,316,315

635 bp

rs2843128 0.1553 NA2 NA2

1Colocalization posterior probability from eCAVIAR
2NA indicates that the locus does not contain SNPs that are significant eQTLs at the 10% FDR

https://doi.org/10.1371/journal.pgen.1008229.t003
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levels were also associated with rs7730971 genotype (linear regression p = 0.007, Fig 1d). The

cryptic exon leads to a premature stop codon in FBXO38, which could alter or inhibit protein

function. Additionally, immunoprecipitation was performed in 293T cells which indicated

that FBXO38, an F-box protein with unknown substrates, interacts with Cullin 1, but not

other Cullin members (S5 Fig), indicating that it may be a component of a SKP1-Cullin-1-F-

box (SCF) type of E3 ubiquitin ligase complex. In combination, these findings suggest that the

GWAS association at 5q32 may be partly explained by the inclusion of an exon which results

in a truncated FBXO38 protein.

Fig 1. Colocalization analysis of sQTLs and COPD GWAS data at 5q32. a) Locus zoom plot of the GWAS association at 5q32. The

secondary GWAS association at this locus consists of two SNPs–rs7730971 and rs4597955. The primary association is in moderate

LD (R2 = 0.4–0.6) with this association. b) Locus zoom plot of sQTL data for the association between FBXO38 splicing with

genotype. SNPs associated with FBXO38 splicing are located in HTR4 and FBXO38. c) Visualization of the FBXO38 splice site

associated with rs7730971 genotype. The y axis shows read depth and the x axis shows genomic position on chromosome 5. Arched

lines indicate junction spanning reads. There are fewer junctional reads supporting the presence of the cryptic exon in the CC

genotype (8%) compared to the GG genotype (13%). d) Boxplot of qPCR results showing the fold change of the isoform containg the

crypic exon compared to the CC genotype in whole blood (n = 30; selected based on expression levels) and lung tissue (n = 90,

selected based on genotype). The center line indicates median, the box captures the interquartile range, and the whiskers show the

range excluding outliers. P-values are from linear regression which was performed to test for an additive relationship between

genotype and splicing ratio.

https://doi.org/10.1371/journal.pgen.1008229.g001
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Colocalization analyses at additional GWAS loci

16p11.2—SNPs in CCDC101 are associated with both splicing and gene expression of

SULT1A2. An 82 kb region on chromosome 16p11.2 was significantly associated with COPD

in the GWAS (5 SNPs with p<1 x 10−6, Fig 2a). The rs4788084 SNP, which is in high linkage

disequilibrium (LD) with the top GWAS SNP (rs7186573, R2 = 0.842), was significantly associ-

ated with both splicing and gene expression of SULT1A2 (S6 Fig). The GWAS data colocalized

with both sQTL and eQTL data (Fig 2b, Table 3, S4 Table), suggesting that the SULT1A2 may

be responsible for the GWAS association, and that both gene expression and splicing may con-

tribute to disease. The SNP with the greatest colocalization between GWAS data and sQTL

data was rs750155 (CLPP = 0.26), but for the eQTL data the greatest colocalization was with

rs79039694 (CLPP = 0.21) (Table 3). Characterization of the splicing cluster associated with

genotype demonstrated that Exon 4 is differentially included based on rs4788084 genotype

(Fig 2c). 81% of SULT1A2 transcripts in individuals with the CC genotype included this exon,

while it was present in 98% of transcripts in TT individuals. Exon 4 is skipped in one known

transcript, SULT1A2-002. The T allele, which is associated with greater inclusion of exon 4,

is associated with greater risk of COPD (based on GWAS data); increased expression of

SULT1A2-002 may be protective due to skipping of exon 4.

1p36.32—SNPs in MORN1 are associated with splicing of CDK11A but not with gene

expression. The COPD GWAS identified two SNPs in a 635 bp region at 1p36.32 that were

Fig 2. Colocalization analysis of sQTLs and eQTLs with GWAS data at 16p11.2. a) Locus zoom plot of the GWAS association at

16p11.2. b) Locus zoom plot of sQTL data for the association between SULT1A2 splicing with genotype. c) Locus zoom plot of

eQTL data for the association between SULT1A2 whole gene expression with genotype. d) Visualization of the SULT1A2 splice site

associated with rs4788084 genotype. The y axis shows read depth and the x axis shows genomic position on chromosome 16. Arched

lines indicate junction spanning reads.

https://doi.org/10.1371/journal.pgen.1008229.g002
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associated at near-genome wide significance in whites (p = 5.33 x 10−7 and 8.24 x 10−7, Fig 3a).

These SNPs are located in the MORN1 gene, but are significantly associated with a splice site

in CDK11A (S7 Fig). These SNPs were not associated with expression of any gene. Both

GWAS SNPs colocalized with sQTL data (CLPP for rs2843128 = 0.155, rs2843126 = 0.120)

(Fig 3b, Table 3, S4 Table). This indicates that splicing of CDK11A may contribute to the

GWAS association. The identified splice site corresponds to an annotated exon in CDK11A
(Fig 3c). This exon is skipped in one known transcript–CDK11A-201. The minor allele of

rs2843126 (A) is associated with greater levels of inclusion of exon 6, with 15% of CDK11A
transcripts including this exon in AA individuals, vs 12% inclusion rates in GG individuals.

Furthermore, the A allele is associated with greater risk of COPD. This suggests that increased

expression of the CDK11A-201, which skips exon 6, may be protective against COPD.

Discussion

eQTL studies can provide insight into the biological mechanisms responsible for disease asso-

ciations. While many disease-associated SNPs are eQTLs, a large proportion of GWAS variants

are of unknown function. SNPs that are associated with transcript isoform variation may con-

tribute to disease risk and explain additional GWAS associations. In this study, we character-

ized eQTLs and sQTLs in human peripheral blood to identify novel functions for COPD

GWAS associations. Among the genes identified to have splice sites associated with GWAS

Fig 3. Colocalization analysis of sQTLs and COPD GWAS data at 1p36.32. a) Locus zoom plot of the GWAS association at 1p36.32.

b) Locus zoom plot of sQTL data for the association between CDK11A splicing with genotype. c) Visualization of the CDK11A splice

site associated with rs2843128. The y axis shows read depth and the x axis shows genomic position on chromosome 1. Arched lines

indicate junction spanning reads.

https://doi.org/10.1371/journal.pgen.1008229.g003
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SNPs were CDK11A, which may be of biological relevance for COPD due to its role in apopto-

sis; SULT1A2 which has both eQTLs and sQTLs which strongly colocalize to the GWAS signal;

and of particular interest, FBXO38, in which a novel exon may be protective against COPD.

Although we found a larger number of eQTLs than sQTLs genome wide (708,928 vs

561,060 unique SNPs), a greater number of COPD GWAS SNPs were sQTLs (156/920) than

eQTLs (89/920). This phenomenon has previously been shown in multiple sclerosis, where

GWAS SNPs were more highly enriched among sQTLs than eQTLs [19]. Furthermore, several

studies have shown that sQTL analyses can uncover functions for GWAS-associated polymor-

phisms that would not have been identified through eQTL analysis alone. Zhang et al. found

that 4.5% of GWAS SNPs from the GWAS catalog had evidence of cis-sQTLs but not cis-

eQTLs [18]. Li et al. showed that sQTLs identified in lymphoblastoid cell lines are enriched

among autoimmune-disease associated variants [20]. Another study demonstrated [19] that

there were similar levels of enrichment of both eQTLs and sQTLs among SNPs associated with

rheumatoid arthritis. In addition, Li et al. showed that in an analysis of rheumatoid arthritis,

the inclusion of intronic splicing data allowed for the identification of 18 putative disease

genes, of which 13 would not have been associated on the basis of gene-expression level mea-

surements alone [19]. Twelve to 36% of the 156 GWAS eQTLs that were identified in this

study have been found in the large datasets produced by GTEX and eQTLgen (S6 Table), indi-

cating that some of our data can be applied to the general population and are not COPD

specific.

We identified 156 GWAS SNPs that were significant in the sQTL study, and these SNPs

were grouped into 7 loci based on SNP position (S1 Fig). Each of the seven loci had at least one

SNP which colocalized with GWAS data. Of these loci, three could only be explained by sQTLs

and not eQTLs. Of particular interest was the association at 5q32 in which SNPs in HTR4 were

associated with COPD case-control status. This is a well-replicated GWAS association for lung

function [35–37], COPD [11, 38] and airflow obstruction in smokers [10]. Despite the consis-

tent genetic association, as well as prior studies identifying HTR4 expression in developing

lung and increased airways resistance in a murine model, the mechanism by which the specific

SNPs contribute to COPD risk is unknown, and additional genes in the region have not been

investigated. Our analysis revealed that these SNPs may contribute to COPD by regulating

splicing of a neighboring gene, FBXO38. This is consistent with evidence that the nearest gene

to an associated SNP is the causative gene in only a minority of cases [39, 40]. Therefore, analy-

ses such as eQTL and sQTL studies are critical to uncover a relationship between an implicated

SNP and the gene responsible for the association.

The characterization of splicing in F-box protein 38 (FBXO38) resulted in the discovery of a

cryptic exon which has not been previously annotated. Through qPCR we were able to validate

the existence of the exon as well as replicate the association with genotype in both blood and

lung tissue. This is of particular importance as it demonstrates that analysis of splicing in the

blood can uncover sQTLs that are also relevant to the lung. Sequence analysis using ORF

Finder [41] determined that this newly identified transcript encodes a premature stop codon

in the cryptic exon. This will result in a truncated protein that could have altered structure and

function. To date, relatively little is known about the biological processes as well as the down-

stream signaling pathways through which FBXO38 operates to possibly influence COPD. Fur-

thermore, no known ubiquitin substrate has been identified for FBXO38, which makes

FBXO38 one of the orphan F-box proteins. Here we identified Cullin-1 as a binding partner

for FBXO38. Therefore, the biological role of FBXO38 may rely mostly on its biochemical fea-

ture as an E3 ligase, through the formation of a complex with Cullin-1 and Skp1, similar to its

family members Skp2 and Fbw7 [42, 43]. FBXO38 is additionally known to co-activate the

transcriptional regulator Kruppel Like Factor 7 (KLF7) [43, 44]. Members of the KLF gene
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family regulate cell proliferation, differentiation and survival, and have been found to play a

role in airway inflammation [45]. In particular, KLF7 is involved in regulating epithelial cell

differentiation and epithelial-mesenchymal transition [46, 47], and possibly in airway remod-

eling [48].

Another gene of interest is SULT1A2, located at 16p11.2. In this locus, SNPs were associated

with both gene expression and splicing of SULT1A2. Therefore, two lines of evidence impli-

cated SULT1A2 as the causative gene. SULT1A2 is a sulfotransferase enzyme, which is a family

of phase II liver enzymes that detoxify a variety of endogenous and xenobiotic compounds

[49]. SULT1A2 can sulfonate hormones like estrogens and androgens, but of particular interest

for COPD, sulfation through SULT1A2 is a pathway for the metabolism of cigarette smoke

compounds [50]. The 16p11.2 region contains a large inversion spanning ~0.45 MB. This

region encompasses the entire SULT1A2 gene as well as the CCDC101 gene in which the asso-

ciated SNPs are located, and is near other genes such as TUFM. This region contains SNPs

which are associated with both obesity and body mass index (BMI)[51, 52] asthma [53], and

autoimmune diseases like diabetes and inflammatory bowel disease; the inversion allele itself

has been shown to be protective against the joint occurrence of asthma and obesity[54]. There

are 24 polymorphisms that have been shown accurately tag the inversion [54]. The rs4788084

SNP which was identified in our study to be associated with both splicing and gene expression

is among these markers, and is in LD with the inversion (R2 = 0.982). However, since both the

SNP and the associated splice sites are located within the inversion, it is unlikely that inversion

alters or contributes to this regulation of splicing.

Finally, we identified the CDK11A gene as a novel COPD candidate gene in the 1p36.32

locus. Here, SNPs were associated with the occurrence of a single exon in the CDK11A gene.

CDK11A encodes a member of the serine/threonine protein kinase family. This kinase can be

cleaved by caspases and may play a role in cell apoptosis [55, 56], which is a key dysregulated

pathway in COPD [57, 58]. As this locus did not reach genome-wide significance in the larger

GWAS, additional studies will be needed to confirm the phenotypic association.

Most polymorphisms that were associated with splicing were acting from a distance, and

were not located within or close to the splice donor or acceptor site. The majority of sQTLs

(88%) were located in intronic or intergenic regions, and only 0.01% percent were located

within splice sites. However, we found that 12% of all tested SNPs were sQTLs, while 31% of

splice variant SNPs were associated with splicing, indicating that there is enrichment of sQTLs

in splice sites (Fisher exact test p-value = 6.1 x 10−11), although only a small proportion of

tested SNPs (241/4,664,386; or 0.005%) were located in splice sites. This is consistent with

what has been shown in the literature. Kurmangaliyev et al. [59] found that 2,259 out of

37,852,169 SNPs (0.006%) from 1000 Genomes are located in splice sites, and Yang et al. [60]

found that 1,576 out of 14,718,752 SNPs (0.01%) from dbSNP build 129 are located in splice

sites. Furthermore, it has been found that the SNPs within splice sites tend to have little effect

on gene function [59], suggesting that splice sites are well conserved and the majority of splice

regulation is not through splice site mutations. In our study, out of the seven GWAS loci that

were discovered to have sQTLs, the most likely causative SNP was located greater than 500bp

from the splice site in all cases. The mechanism by which these SNPs act on splicing is likely

complex, but may involve auxiliary splicing regulatory elements such as exonic splicing

enhancers (ESEs), intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs) and

intronic splicing silencers (ISSs). These regulatory elements control splicing through the

recruitment of trans-acting factors that interact with other regulatory factors or core spliceo-

some components [61, 62].

A potential limitation of this study is that our eQTLs and sQTLs were identified in whole

blood samples. COPD is a respiratory disease, and the most relevant cell-types in which to
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study gene expression changes may be located in the lung. However, due to the strong

inflammatory component of COPD, characterization of gene expression and splicing in

immune cells also has biological relevance. In addition, there is a high proportion of sQTL

sharing across tissues [63], which has been recently supported by the finding that 75–93% of

sQTLs are replicated across tissue pairs from the GTEx consortium, with the estimated level

of sharing between whole blood and lung being 92% [19]. Therefore, it is likely that the

majority of the sQTLs identified in peripheral blood are also sQTLs in lung tissue. Further-

more, we experimentally demonstrated that the association with FBXO38 splicing is also

present in lung tissue, and therefore the mechanism discovered in whole blood is likely to

also be of relevance in the lung. Another potential limitation is that peripheral blood samples

contain a mixture of cell types, any of which could contribute to gene expression signals. We

included white blood cell percentages as a covariate in eQTL and sQTL analyses to limit

potential confounding by differences in cell proportions. An additional limitation of this

study is the depth of sequencing of approximately 20 million reads per sample. This read

depth was selected to maximize sequencing value within a large genetic epidemiology study.

In order to be able capture the effect of genotype on gene expression and splicing, a large

sample size was required, and therefore there was a tradeoff to be made between sequencing

depth and sample size. While this could lead to the failure to capture rare splicing events, the

goal of the study was to capture common splicing variations associated with genotype,

which this design allowed us to do. Furthermore, it is important to note that the eCAVIAR

calculation of CLPP is dependent on sample size as well as effect size of the eQTL/sQTL. As

previously shown [32], an increase in sample size, or an increase in effect size results in

higher CLPP values, and thus there is more power to detect colocalization with a larger sam-

ple size, or with eQTLs/sQTLs of strong effect. This means that while we may have been able

to detect additional colocalization with a larger sample size, this does not impact our confi-

dence in the CLPP values we have calculated here. This study was restricted to non-Hispanic

white subjects, however RNA sequencing in additional subjects including those with African

American ancestry is currently underway, and thus future studies will have sufficient sample

size to perform analyses in these individuals.

In conclusion, we found that many SNPs were associated with alternative splicing in

peripheral blood. More COPD-associated variants were sQTLs than eQTLs, and we identified

variant associations with splice sites in three genes including FBXO38, an orphan F-box pro-

tein, which have a function role in COPD through an effect as an E3 ligase on a currently

unknown substrate. These data indicate that analysis of alternative splicing may provide novel

insights into disease mechanisms.
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