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Abstract—Understanding how cells migrate in fibrous environ-
ments is important in wound healing, immune function, and
cancer progression. A key question is how fiber orientation and
network geometry influence cell movement. Here we describe a
quantitative, modeling-based approach toward identifying the
mechanisms by which cells migrate in fibrous geometries having
well controlled orientation. Specifically,U251 glioblastoma cells
were seeded onto non-electrospinning Spinneret based tunable
engineering parameters fiber substrates that consist of networks
of suspended 400 nm diameter nanofibers. Cells were classified
based on the local fiber geometry and cell migration dynamics
observed by light microscopy. Cells were found in three distinct
geometries: adhering two a single fiber, adhering to two parallel
fibers, and adhering to a network of orthogonal fibers. Cells
adhering to a single fiber or two parallel fibers can only move in
one dimension along the fiber axis, whereas cells on a networkof
orthogonal fibers can move in two dimensions. We found that
cells move faster andmore persistently in 1D geometries than in
2D, with cell migration being faster on parallel fibers than on
single fibers. To explain these behaviors mechanistically, we
simulated cell migration in the three different geometries using a
motor-clutch based model for cell traction forces. Using nearly
identical parameter sets for eachof the three cases,we found that
the simulated cells naturally replicated the reducedmigration in
2Drelative to1Dgeometries. Inaddition, themodestly faster1D
migration on parallel fibers relative to single fibers was captured
using a correspondingly modest increase in the number of
clutches to reflect increased surface area of adhesion on parallel
fibers. Overall, the integrated modeling and experimental
analysis shows that cell migration in response to varying fibrous
geometries can be explained by a simple mechanical readout of
geometry via a motor-clutch mechanism.
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Glioblastoma.

ABBREVIATIONS

MSD Mean squared displacement
ACF Autocorrelation function
STEP Spinneret tunable engineered parameters

INTRODUCTION

Cell migration is important in a wide range of set-
tings, including wound healing and cancer progres-
sion.7 For example, glioblastoma is an aggressive form
of cancer that can quickly spread throughout a pa-
tient’s brain using microstructural pathways, like axon
tracts and blood vessels.3 Understanding these avenues
for migration of glioblastoma cells through the brain
represents an aspect of the disease that could poten-
tially be targeted by new treatment options. Develop-
ment of an in vitro system, and a computational model
that explains behavior in it, could elucidate migration
mechanisms and aid in the development of potential
treatment strategies for processes that rely on cell
migration along defined structures.

Toward this goal, we explored the use of STEP
Fibers as a nanoscale system that somewhat replicates
the restricted geometry along capillary and axonal
structures. STEP Fiber arrays contain within them
diverse, complex geometries with ability to control fi-
ber material type, diameter, orientation, and spacing.18

Our experiments used substrates with two regions of
crossed nanofibers having diameters of approximately
400 nm in a net-like pattern with regions of freely
spanning nanofibers in between18 (Fig. 1A). STEP
Fiber substrates are mechanically anisotropic: though
made of amorphous polystyrene (Elastic Modu-
lus = 1–3 GPa) the diameter of the nanofibers is such
that cells have the ability to laterally deflect the free
span regions. However, cells are not predicted to be
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able to generate sufficient force to buckle a nanofiber
through axial loading, and buckling is not observed
experimentally. The combination of geometric variety
and anisotropy makes the STEP Fiber substrate dis-
tinct from other systems used to study cellular migra-
tion, like micro-patterned lanes,22 channels,8 and 2D
surfaces.14

Using the DBTRG-05MG glioblastoma cell line,
the Nain research group studied blebbing dynamics of
cells on STEP Fiber substrates.21 They found that
cells exhibit three primary morphologies adhering to
this substrate: spindle, rectangular and polygonal.21

The spindle morphology when cells that were sus-
pended on one single fiber. The rectangular mor-
phology when cells adhered to two parallel fibers.
Finally, the polygonal morphology when cells ad-
hered to orthogonal fibers or were in the crosshatched
net region of the substrate. The geometry-driven
morphology affected the blebbing dynamics of the
DBTRG-05MG cells, and appeared to affect the
speed the cells migrated.21 It is these geometry-driven
differences that have motivated the present study and
informed the hypothesis that these fibers could repli-
cate brain structures. The study Sharma et al. showed
that geometry affected cellular behavior in STEP Fi-
bers, it did not explain the mechanisms behind them,
which we now address.

In order to develop a mechanistic understanding of
Sharma et al. results, a stochastic model of cellular
migration was developed based on our 2D cell
migration simulator.13 The cell migration simulator
models the action of individual adhesion proteins
(termed ‘‘clutches’’, e.g., integrins or CD44) and
myosin motor proteins (termed ‘‘motors’’).4,13 The
speed of a simulated cell is very sensitive to the ratio
of motors to clutches.2 Previous work revealed that
cell adhesivity effects the speed of glioma cell migra-
tion and correlates with CD44-mediated migration.13

In this study, both high and low concentrations of
CD44 result into lower cell speeds. However, inter-
mediate CD44 concentrations are significantly
faster.13 Importantly, this study showed that cell
migration speed is anti-correlated with mouse and
human disease survival. Intermediate adhesivity leads
to the fastest migration in mice and the worst survival
outcomes in mice and humans.13 To use this cell
migration simulator to predict cell migration behavior
in fibrous environments, we need to incorporate the
mechanical features of the nanofibers, such as their
stiffness, mechanical anisotropy, orientation, diame-
ter, and spacing. Adding these features to the model
allowed us to investigate the mechanisms that drive
experimentally observed differences in cellular
behavior.

RESULTS

Persistent RandomWalk and RandomWalk Models can
be Used to Parameterize Cellular Migratory Behavior in

1D and 2D, Respectively

To investigate the migratory behavior of GFP-actin
U251 cells on STEP fibers, cells were imaged via phase
contrast and fluorescence microscopy for 5 h at 15 min
intervals. The three different geometries observed
were: cells on single fibers (n = 90), cells spanning two
parallel fibers (n = 94) and cells on net structures
(n = 97) (Figs. 1A–1E). Cell centroids were then
tracked as cells migrated on the fibrous structures
(Figs. 2A–2C). The cells were categorized based on the
local geometry of the STEP nanofiber.21 During the
experiment nanofibers were oriented at random angles
in the field of view. As a result, coordinate systems for
each cell were rotated to ensure that the nanofibers
were oriented along a major axis. The single and par-
allel fiber geometries that were restricted to 1D motion
had their coordinate systems rotated clockwise such
that the nanofiber was parallel to the x-axis. The net
fibers had their coordinate systems rotated clockwise
to ensure that the fibers and their orthogonal partners
aligned with either the x-axis or y-axis. Cellular
migration is a noisy process that is best expressed using
Mean squared displacement (MSD) a calculation that
averages the x and y positions of a cell over time,
converting the noisy 2D process of cellular migration
into a time dependent expression of average cell posi-
tion from a start point. MSD data can be used to fit
models of stochastic cellular motion such as a random
walk or persistent random walk.23 MSD time series
were calculated for each cell in the three geometric
conditions from the position data generated by particle
tracking. The MSD data was used to characterize and
quantify the migration behavior of cells in the three
different geometries. Because cells can exhibit persis-
tent behavior when traveling in 1D or oriented envi-
ronments9,5 we tested whether a persistent random
walk model was appropriate for describing cell tra-
jectories. The same cells do not appear to exhibit this
behavior when traveling on the 2D net structures and
trajectories more closely resembled a random walk
(Figs. 3A–3C). Since our imaging frequency was
Dt = 15 min, any persistence values that were less than
the 15 min threshold could not be confidently detected
by our experiment. In this case the migration model
would collapse to a simple random walk.

MSD tð Þ ¼ 2nDt ð1Þ

MSD tð Þ ¼ nS2P2 e
�t
P þ t

P
� 1

� �
ð2Þ
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FIGURE 1. Experimental setup and description of the three geometries encountered by U251 cells. (A) A schematic cartoon
diagram of the STEP fiber substrate. Cells in the three different geometric environments are labeled C, D and E. (B) GFP (top) and
phase contrast (bottom) image of U251 GFP-Actin expressing cells seeded onto STEP Fiber substrates. Cells were imaged for 5 h
at fifteen minute intervals. Red boxes identify the three different geometries that cells encounter C,D and E. (C) GFP (L) and phase
contrast (R) image of a cell on a single fiber (region ‘‘C’’ from Fig. 1B). (D) GFP (L) and phase contrast (R) image of a cell straddling
two parallel fibers (region ‘‘D’’ from Fig. 1B). (E) GFP (L) and phase contrast (R) image of a cell suspended on a fiber network
(region ‘‘E’’ from Fig. 1B).
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FIGURE 2. Representative position vs. time plots and average mean squared displacement for each experimental geometry. (A)
GFP channel video (Supplement) (L) and 1D Position-vs.-time plot (R) for a cell on a single fiber. (B) GFP channel video (Sup-
plement) (L) and 1D Position-vs.-time plot (R) for a cell on two parallel fibers. (C) GFP Channel video (300 min) (Supplement) (L) and
a 2D position plot (R) for a cell on net fiber structure. D) Average Mean Squared Displacement for all cells in each geometry (Single
Fiber Geometry (n experiments 5 14, n cells 5 90), Parallel Fiber Geometry (n experiments 5 14, n cells 5 94) and Net Fiber
Geometry (n experiments 5 14, n cells 5 97)).
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Cell migration has been described by a persistent
random walk model (Eq. 2) where n is the number of
dimensions in which motion is occurring (n = 1 for
single and parallel fibers, n = 2 for net structures), t is
the time, S is the speed of the cell and P is the per-
sistence time.24 A special case of the persistent random
walk is the random walk model, given by Eq. (1) when
P � Dt, where D is the random motility coefficient. It
is qualitatively clear from the MSD-vs.-time data that
cells in the three different geometries exhibit distinct
behaviors (Fig. 2D). MSD values for 1D motion (sin-
gle and parallel fibers) are an order of magnitude
higher than the net fibers (Fig. 2D). This is despite the
fact that cells moving in 1D have one less degree of
freedom available for movement than cells moving in
2D. To parameterize and quantify cell behavior on the
three different geometries the MSD-vs.-time data was
fit to both of these models (Figs. 3A–3C). We deter-
mined that the two parameter persistent random walk
model is a more appropriate approximation of single
and parallel fiber MSD-vs.-time data sets via the
Bayesian Information Criterion (BIC). When fitting
with a persistent random walk model to the single and
parallel fiber geometries an � 20% reduction in BIC
was observed for the persistent random walk model as
opposed to the random walk model (single fiber
DBIC = 21%, parallel fiber DBIC = 24%). The net
fiber geometry did not have a significant improvement
for the persistent random walk BIC value over the

random walk (DBIC = 22%). Additionally, the
model’s best-fit persistence time on the net fibers was
30-fold smaller than the 15 min sampling time
(PNet = 0.4 min). Therefore a random walk model is
more appropriate to describe the 2D motion of the net
structures (Fig. 3C). Each model was fit to the average
MSD-vs.-time data (Figs. 3A–3B). The distribution of
parameter values was estimated from the 95%
parameter confidence intervals. The increase in cell
persistence and MSD magnitude between 1D and 2D
motion occurs despite the fewer degrees of freedom
cells have when moving on 1D substrates.

Cells Have a Longer Persistence Time when Adhering
to Two Parallel Fibers

The persistence of cells was assessed in two ways:
first, the estimated distribution of persistence param-
eters extracted from the persistent random walk fits
were analyzed for a statistically significant shift via
Student’s t test. It was found that the average persis-
tence time of 165 min for the parallel fiber cells was
significantly higher than the 61 min average value for
the single fiber cells (P � 0.01) (Fig. 4C). The second
method which was used to analyze the persistent
behavior of cells in 1D geometries, was autocorrelation
analysis of the displacements of each cell between each
sample time point.19 Displacements were calculated for
each cell in both the single fiber (n = 90) and parallel
fiber geometries (n = 94). The vector of displacements

TABLE 1. Simulation parameter values.

Symbol Parameter Single fiber valueParallel fiber valueNet fiber value Source

Nm Total number of motors 125 125 125 Adjustable (estimated based on Ref. 17)

Nc Total number of clutches 135 170 125 Adjustable (Nm/Nc based on Ref. 2)

Atot Total possible actin protrusion length 100 lm 100 lm 100 lm Typical cell length

vp* Maximum actin polymerization velocity 200 nm/s 200 nm/s 200 nm/s 4

kmod* Maximum module birth rate 1 s-1 1 s21 1 s21 13

kmod Typical module birth rate 0.00001 s21 0.00001 s21 0.00001 s21 Must be similar to kcap

kcap Module capping rate experiments 0.00001 s21 0.00001 s21 0.00001 s21 Lowered from Ref. 13 to match

Iinit Initial module length 1.5 lm 1.5 lm 1.5 lm Adjustable

Imin Minimum module length 0.1 lm 0.1 lm 0.1 lm Adjustable

kcell Cell spring constant 1000 pN/nm 1000 pN/nm 1000 pN/nm Adjustable

nc,cell Number of cell body clutches 1 1 1 Adjustable (< Nc)

nm* Maximum number of module motors 25 25 25 Adjustable (0.2*Nm)

Fm Motor stall force 2 pN 2 pN 2 pN 17

vm* Motor unloaded velocity 120 nm/s 120 nm/s 120 nm/s 4

nc* Maximum number of module clutches 27 34 25 Adjustable (0.2*Nc)

kon Clutch on-rate 1 s21 1 s21 1 s21 Increased from Ref. 4

koff* Clutch unloaded off-rate 0.1 s21 0.1 s21 0.1 s21 15

kc Clutch spring constant 0.8 pN/nm 0.8 pN/nm 0.8 pN/nm 2

Fb Clutch bond rupture force 2 pN 2 pN 2 pN 12

ksub Substrate spring constant 220 pN/nm 220–1 pN/nm 220 pN/nm Estimated from Euler–Bernoulli

beam theory, Eq. (3)

Table contains a breakdown of the parameter values used in stochastic cell migration simulations for each geometry. Sources, justification

and derivation of each parameter is outlined.
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for each cell was autocorrelated and an exponential
decay function was fitted to it (Fig. 4A). The decay
time extracted from the autocorrelation fit, represents
a persistence time that gives the average amount of
time a cell spent traveling in a direction before reversal.
It was found that the average of persistence times for
parallel fibers (l = 31 min) was again higher than that
of the single fibers (l = 21 min) via Dunn-Sidak post
hoc statistical analysis (a = 0.05) (Fig. 3B).

Stochastic Cell Migration Model Captures Cellular
Behavior on STEP Fibers

In order to better understand the mechanistic basis
of the faster migration in 1D vs. 2D, and the higher
persistence on parallel fibers vs. single fibers, a
stochastic cell simulator was developed to replicate the
mechanical environment of the STEP Fiber substrate.
Cell migration was simulated using the cell migration
model as previously described,13 all parameters were
identical to Klank et al. except with modification to
allow for spatial inhomogeneity and mechanical ani-
sotropy in the cellular environment, as described in the
methods section. Approximately ninety simulations
were run on each geometry to generate a simulated
dataset similar in size to the experiments (Single Fi-
bers = 90, Parallel Fibers = 91 and Net Fibers = 91).
The simulations were then analyzed using the same
procedures as the experiments, and the simulated cells
were found to be consistent with the MSD of the dif-
ferent experimental geometries (Figs. 5C–5D, 5F). The
simulations also matched the distribution of persis-
tence times extracted from the persistent random walk
fit applied to the experimental MSD-vs.-time data of

the single lexperiment ¼ 61 min; lsimulation ¼ 62 min
� �

and parallel fiber geometries lexperiment ¼
�

165 min; lsimulation ¼ 192 minÞ. There was a modestly
broadened distribution of simulated persistence as
opposed to the experimental persistence times (Single
Fibers: rexperiment ¼ 24 min; rsimulation ¼ 35 min, Par-

allel Fibers: rexperiment ¼ 56 min; rsimulation ¼ 95min).

The distribution of simulated random motility
coefficients is similar to the experimental

distribution lexperiment ¼ 0:6104 lm2
�
min; lsimulation ¼

�
0:5414 lm2

�
minÞ. The simulated single fiber and par-

allel fiber cells however did not have a statistically

FIGURE 3. Comparison of persistent random walk and ran-
dom walk models to experimental average mean squared
displacement. (A) Comparison of the two models fitting the
experimental average mean squared displacement data of the
single fiber geometry (n experiments 5 14, n cells 5 90).
(Random Walk BIC 5 232.9>Persistent Random Walk
BIC 5 184.3) (B) Comparison of the two models fitting the
experimental average mean squared displacement data of the
parallel fiber geometry (n experiments 5 14, n cells 5 94).
(Random Walk BIC 5 260.6>Persistent Random Walk
BIC 5 197.2). (C) Random Walk model fit to average mean
squared displacement of net fiber geometry (n experi-
ments 5 14, n cells 5 97). (Random Walk BIC 5 138.3<Per-
sistent Random Walk BIC 5 141.2).

c
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significant difference in the persistence time as mea-
sured by the displacement autocorrelation function.

Amongst the simulated geometries, the only
parameters that varied between simulated cells were

the motor-clutch ratios, which was changed exclusively
by simply changing the number of clutches. In order to
match the experimental behavior the motor-clutch ra-
tios were modified in each geometry. The single fiber

FIGURE 4. Increased persistence for cell migrating in the parallel fiber geometry. (A) Average displacement autocorrelation for
cells in single fiber and parallel fiber geometry. Displacement autocorrelation is calculated by finding the displacement between
each time point for each cell and performing an autocorrelation.19 (B) Cells that are seeded onto single fibers or parallel fibers
display persistent motion. Cells traveling on two parallel fibers have a longer persistence time than cells that are only on one single
fiber. This difference in persistence time is statistically significant (a 5 0.05) showing that persistent motion is stronger when cells
are adherent to two fibers. (C) Using parameters extracted from persistent random walk fitting of average behavior of cells we
observe that there is a significant difference in persistence times between the single and parallel fiber geometries. Persistence was
found to be l 5 61 min for single fibers geometry and l 5 165 mins for parallel fibers geometry.
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FIGURE 5. Simulation of cellular migration in a 2D stochastic model of each geometry replicates experimental behavior. (A)
Trajectory of single fiber simulation. (B) Comparison of average experimental and simulated MSD for the single fiber geometry
(nsimulations 5 90). (C) Trajectory of parallel fiber simulation. (D) Comparison of average experimental and simulated MSD for the
parallel fiber geometry (nsimulations 5 91). (E) Trajectory of net fiber simulation (300 min simulation). (F) Comparison of average
simulated and experimental MSD for net fiber geometry with average random walk fits to simulation (Avg. RMC 5 0.6104 lm2/min)
and experiment (Avg. RMC 5 0.5414 lm2/min) (nsimulations 5 91).
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geometry had a motor-clutch ratio of 0.926, the par-
allel fiber geometry had a motor-clutch ratio of 0.735,
and the net fiber geometry had a motor-clutch ratio of
1. The difference in motor-clutch ratios in these dif-
ferent geometries leads us to conclude that changes in
adhesion is able to explain the differences in cellular
behavior in these different geometric conditions. The
doubling of potential adhesive surface area for cells
spanning two parallel fibers increases the persistence of
these cells as the increased number of adhesions re-
duces the chances of reversing direction. The decrease
in the motor-clutch ratio shows that increased adhe-
sion in 1D migration can increase the persistence of
this migration. This may explain why cells in channels
tend to move persistently.8 However, increase in
adhesive surface area will eventually hinder cellular
migration. A motor-clutch ratio> 1 was found to
significantly hinder simulated migration on the two
dimensional net fiber geometry.

DISCUSSION

In this study we investigated the cellular response to
well-defined fiber geometries through a combination of
experimental analysis and computational modeling
using a motor-clutch-based cell migration simulator.
Our experimental analysis shows that cells migrating
on parallel fibers exhibit increased persistence, as
compared to cells traveling on single fibers or two
dimensional fiber nets. Qualitatively, our experiments
support the conclusion that cells move faster when they
are migrating under geometric constraints. Our simu-
lations revealed that an increase in adhesivity in a 1D
environment is a potential explanation for this increase
in persistence on parallel fibers relative to single fibers.
This insight builds on our labs previous work from
Reference 13 where we showed that the relative
expression levels of CD44 effected patient outcome.
Changing the levels of CD44 effects how strongly a cell
can bind to the hyaluronic acid rich ECM of the brain.
In this work we reinforced the pervious result that
intermediate adhesivity leads to the fastest motion. The
cells in the parallel fiber geometry had intermediate
levels of surface area available to adhesion and moved
the fastest. Our results imply that the geometry of the
brain influences this phenomenon observed in Refer-
ence 13 Cancers with intermediate levels of adhesivity
are deadlier because they can effectively leverage the
advantages provided by geometric constraints such as
axon bundles. The cells do not find themselves bogged
down in these structures and can move persistently into
new regions of the brain. These results give us quan-
titative evidence that the speed and persistence of
phenomena such as contact guidance20 and glioblas-

toma migration in human brain tissues1,3,10 can be
explained simply by both geometry and adhesivity, and
does not necessarily require phenotypic or molecular
expression changes.

This work was conducted using a simple model of
the microfabricated spatially inhomogeneous and ani-
sotropic environments, we simulated and effectively
captured the migration behavior of the three different
fiber geometries. This was achieved without making
any functional changes to the model presented Refer-
ence 2. This result shows ability of the motor-clutch
model of cellular migration to explain cellular migra-
tion in a variety of geometric and mechanical contexts.

Limitations of Study

While non-electrospun STEP Fibers provide a great
number of experimental advantages such as the ability
to study cellular migration in a complex yet well
characterized mechanical structure it does have some
disadvantages. The quality of our images was signifi-
cantly reduced due to the suspended nature of the
STEP fibers. The fibers are suspended approximately
0.8 mm above the surface of glass bottom dishes used
for the experiments, which necessitated the use of
longer working distance lens having relatively low
numerical aperture. One solution would be to use an
upright microscope and submerge the object lens in the
media above the STEP fibers during experimental
observation.

Additionally, our experiments had a relatively low
sampling frequency with one image taken every 15
min. This allowed us to observe more cells by multi-
plexing across multiple fields (typically 40) in one
experiment at the cost of reducing the temporal reso-
lution of cellular migration. Therefore, our experi-
ments do not provide information regarding cell
migration on time scales shorter than the sampling
time (< 15 min).

Our simulations, while able to provide good agree-
ment with the experimental data, were limited by their
two dimensional nature. Cells in the parallel fiber
geometry were shown to have a statistically significant
increase in persistence through the displacement
autocorrelation analysis. There are features that we
could not account for in our simulations such as the
three-dimensional spatial distribution of adhesion
molecules that could stabilize the cell. Our stochastic
model works by concentrating all adhesions in a cel-
lular protrusion to one point in space. There is also a
probability built into our model will randomly disen-
gages a protrusion, significantly reducing the stability
of simulated cellular protrusions as opposed to the
experiment. This lack of simulated protrusion stability
and adhesion distribution likely is the reason the dis-
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placement autocorrelation analysis did not show a
significant difference in the simulated cells.

STEP Fibers as a Potential In Vitro Mimic of Tissue
Microstructures

The non-electrospun STEP fiber substrate has a
significant number of mechanical properties that pop-
ular 3D culture methods do not have. Culturing cells
in vitro in collagen, fibrin or Matrigel (Corning Inc.,
Tewksbury, MA), while potentially more physiologi-
cally relevant than 2D culture methods, has difficulty
approaching mechanical stiffnesses comparable to
in vivo tissues. For example, collagen gels have elastic
moduli of around 700 Pa.25 However, axons and
in vivo extra cellular matrix (ECM) have been mea-
sured to have elastic modulus values of 12,000 and
4000 Pa respectively.11 The elastic moduli of ECM is
highly heterogeneous spatially and extremely aniso-
tropic. The STEP fibers provide a way to achieve a
mechanically well-characterized engineered structure
that has the mechanical anisotropy of in vivo structures
combined with orders of magnitude higher stiffness
values. Further development of this technology could
potentially yield more accurate in vitro tissue mimics
that can recapitulate important aspects of the in vivo
complexity of both geometric and mechanical envi-
ronments. Perhaps most importantly, the STEP tech-
nique permit the fabrication of well-defined fiber
geometries. While such patterns might appear to be
identical to surface micropatterned lanes on 2D de-
formable substrates, we not that parallel STEP fibers
have mechanical anisotropy, i.e., along the fiber axis
vs. transverse across two parallel fibers. However,
further work is needed to determine the degree to
which mechanical anisotropy influences the behaviors
we have observed.

MATERIALS AND METHODS

STEP Fiber Cell Culture

Glioblastoma U251 cells stably expressing GFP-
Actin16 were cultured in Gibco� Opti-MEM� media
(Invitrogen Corporation, Carlsbad, CA, USA) con-
taining 10% fetal bovine serum. Four hundred nm
diameter polystyrene STEP Fiber substrates18 were
attached to MatTek No. 0 glass bottom 35 mm dishes
(MatTek Corp., Ashland, MA, USA) onto Dow-
Corning� High Vacuum Grease (Dow-Corning Inc.,
Midland, MI, USA). The STEP Fiber substrate was
incubated with 1 mg/mL bovine plasma fibronectin
(Sigma-Aldrich Inc., St. Louis, MO, USA) for 4 h at
37 �C prior to cell seeding. 50 lL of cell suspension

was seeded onto fibronectin-coated STEP fiber sub-
strates at a concentration of 100,000 cells/mL and
incubated for 3 h prior to imaging.

Cell Migration Imaging

Cells were imaged with a Nikon Instruments Eclipse
Ti-E (Nikon Instruments Inc., Melville, NY, USA) for
5 h at 15 min intervals. Widefield phase contrast
images were collected with a Nikon 20 9 air phase ring
objective lens (Nikon Instruments Inc., Melville, NY,
USA) and GFP channel images were collected with a
Cool LED pE-100 LED fluorescent illumination bank
(CoolLED Ltd., Andover, England, UK). Images were
taken with an Andor Zyla 5.5 sCMOS camera (Andor
Technology Ltd., Belfast, Northern Ireland, UK).
Cells were incubated on the microscope through the
use of an AirTherm ATX (World Precision Instru-
ments Inc., Sarasota, FL, USA). Image collection was
driven by NIS-Elements software (Nikon Instruments
Inc., Melville, NY, USA).

Image Processing and Data Analysis

Cells were classified based on which geometry the
cell spent the majority of its time in the time-lapse
movie. Wide-field GFP image stacks were cropped to
select individual cells and thresholded using ImageJ
(National Institutes of Health (NIH), Bethesda, MD,
USA). Thresholded image stacks were fed into MA-
TLAB and cell centroids were tracked using software
developed in MATLAB 2012a and 2016a (MathWorks
Inc., Natick, MA, USA) as described in Reference 13.
The cell tracking software works by applying a binary
filter to the grayscale images. Using MATLAB’s image
processing tool box, objects are labeled and the user
selects the cell to track. Cell centroid positions are
calculated for each frame for the object the user selects.
Cell position data is saved to a plaintext file that can be
read back into MATLAB for further processing.
Coordinate systems were rotated using MATLAB,
which used angles that were calculated in ImageJ.
Mean squared displacement was calculated in MA-
TLAB. Random walk and persistent random walk fits
performed using the MATLAB Curve Fitting Tool-
box. Statistical tests performed using the MATLAB
Statistics Toolbox.

Stochastic Cell Migration Simulator Description

The cell migration simulator works by simulating
the action of individual adhesion molecules (termed
‘‘clutches’’), myosin motor proteins (termed ‘‘mo-
tors’’), and actin subunits, which self-assemble at the
leading edge to form simulated cellular protrusions
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that displace the centroid of simulated cell, as previ-
ously described.13 Briefly, the total starting amount of
each of these three molecular species is fixed, ensuring
mass conservation of key species. Upon initialization,
cell protrusions extend at randomly chosen angles with
a fixed initial length. Each time a new cellular pro-
trusion is nucleated it removes the actin required to
form it from the pool of F-actin the cell has initially.
Each protrusion is populated with a random number
of clutches and motors which is subtracted from the
total amount in their respective starting pools. The
clutches are able to interact stochastically with the
substrate to allow clutch binding and unbinding.
Simultaneously, the F-actin in the protrusion is pulled
retrograde by the motors, at a velocity given by a linear
force–velocity relationship, thus creating a displace-
ment which simulates actin retrograde flow. In order to
simulate the well-documented phenomenon of cellular
sensitivity to substrate stiffness6 the substrate and the
clutch are both modeled as linear springs. The clutch
springs are arranged in parallel and connected in series
with the substrate spring. The F-actin network is
modeled as inextensible. The displacement generated
by the F-actin retrograde flow generates reaction for-
ces on the clutch and substrate springs. This set of
events is occurring in parallel in every protrusion in the
cell. Once force is generated, an elastic force balance
equation is solved to achieve elastic equilibrium, which
assumes that viscoelastic relaxation times are short
relative to the time event. This force balance, combined
with the random orientation of force-generating pro-
trusions, leads to cellular displacement. The forces
generated can also cause protrusions to detach from
the substrate: the more force that a clutch experiences,
the higher the unbinding rate constant according to
Bell’s Law given by the following equation:

koff ¼ koff;0 � e
F
FB ð3Þ

This sudden protrusion failure will also have the
effect of displacing the cell as the forces must rebalance
with fewer protrusions. When retrograde flow causes
the clutches to pass beyond the myosin motors the
protrusion disassembles and the actin, motors and
clutches are added back to their respective original
pools. Thus performing a mass balance in the simu-
lated system. A new protrusion may then be born with
these components again restarting the process. This
model of cellular migration has been well-characterized
and it has been found that the two most sensitive
parameters are the total number of motors and clut-
ches (Table 1).2

Each geometry was modeled by restricting the re-
gion that cells can adhere to on the surface. The single
fiber geometry was modeled as a 400 p nm wide lane

with uniformly high stiffness (220 pN/nm). The paral-
lel fiber geometry was modeled as two parallel
400 p nm wide lanes separated by 4000 nm. The par-
allel fiber geometry’s mechanical anisotropy was
modeled using a model based on Euler–Bernoulli beam
theory that depended on the angle of orientation of the
protrusion relative to the fiber, h given by:

jsub ¼ pEr2

L
� cos hð Þ þ 12pEr4

L3
� sin hð Þ

����
���� ð4Þ

where E is the elastic modulus, r is the fiber radius
(200 nm), L is the fiber length (8 9 106 nm). The first

coefficient in the equation pEr2
L represents the spring

constant experienced when the cell is loading the fiber

laterally (h = 0�). The second coefficient 12pEr4

L3 repre-

sents the spring constant experienced when the cell is
loading the fiber orthogonally (h = 90�). The net fiber
geometry was modeled as a series of orthogonal lanes
of uniform stiffness (220 pN/nm). The gap width
between each fiber was identical to the parallel fiber
geometry (4000 nm).
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