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�
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Nuclear quantum effects are often neglected for systems without hydrogen atoms. However some planar

boron rotors turn out to exhibit remarkable nuclear quantum effects. Recent experiment on infrared

spectroscopy of B13
+ shows unexpected spectral broadening which still awaits physical explanation. Here

we present quantitative investigations of the vibrational energy levels of B11
� up to full dimension. A

harmonic-bath averaged Hamiltonian suitable for planar boron rotors is constructed and used to predict

typical types of vibrational states of B11
�. Band structures caused by internal rotations are found for all

the investigated vibrational states. The experimental phenomenon of spectral broadening is thus due to

the band structures of the corresponding vibrational levels. The detailed information of the relevant

vibrational states reported in the present work may provide valuable references for future investigations

of high resolution spectroscopy of B11
�.
1 Introduction

Molecular machines have been extensively investigated both
experimentally and theoretically.1–3 The development of boron-
based molecular machines, in particular molecular motors,4,5 is
a promising research eld. In 2010 the planar boron cluster
B19

� (ref. 6 and 7) was reported to behave like a molecular
Wankel motor, in which the intramolecular rotation between
the inner and the outer rings is almost barrierless. Soon later
similar internal rotations were reported in B13

+,8,9 B20
�,10 and

B2
18

�.11 The above mentioned boron clusters have roughly
circular shapes thus the internal rotations are expected to be
kind of smooth. It was then found that elongated boron clusters
B11

� and B15
+ also exhibit similar internal rotations.12,13 The

elongated boron clusters were described as nanoscale tank
treads and the reason for their uxionality were further
addressed by investigations on B10C.14 Recently the transition-
metal-doped boron cluster NiB11

� was also reported to exhibit
internal rotation between its inner B3 ring and the outer B8

ring.15 In general the wide availability of boron-based molecular
Wankel motors prots from the fact that most medium-sized
boron clusters are planar or quasi-planar.16,17 The uxionality
of strong covalently bonded molecules such as the boron clus-
ters was counterintuitive, but it was rationalized as a conse-
quence of delocalized chemical bondings.4 A sufficiently large
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outer ring is important for such kind of internal rotations of
boron clusters.5

It should be noted that nuclear quantum effects are in
general important for large amplitude motions18 such as the
internal rotations of boron clusters.19–22 In 2017 a universal
mechanism for the internal rotations of planar boron clusters
B11

�, B13
+, B15

+, and B19
� was proposed,19 with explicit treat-

ment of nuclear quantum effects. Accordingly the inner wheel
of each boron cluster rotates with respect to its pseudo-rotating
outer bearing.19 Rigorous study of nuclear quantum effects in
medium to large molecules is challenging,23–26 in particular
when there are large amplitude motions. For this purpose the
reaction path/surface Hamiltonian which divides the system
into a few large amplitude motions and many small amplitude
harmonic vibrations is a good alternative.27,28 For reference
a simplied one-dimensional reaction path Hamiltonian has
been adopted in ref. 19, neglecting all the normal modes
perpendicular to the reaction path, to predict band structures for
the rotational/pseudo-rotational energy levels of B11

�, B13
+, B15

+,
and B19

�. The rst experimental infrared spectroscopy of B13
+

shows unexpected broadening of some absorption bands,29

which is consistent with the picture of energy bands but different
from isolated levels calculated by standard harmonic frequen-
cies. To discover what is the possible reason behind the observed
spectral broadening it is important to obtain the details of all the
relevant vibrational levels with resolution up to internal rota-
tions. For this purpose we need full dimensional treatment for
the corresponding vibrational states which will deeply expand
and improve the results and physical picture in ref. 19.

In the present work we will quantitatively investigate the
vibrational energy bands of the planar boron rotor B11

� using the
RSC Adv., 2021, 11, 3613–3621 | 3613
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intrinsic reaction path Hamiltonian. The nuclear quantum
effects will be included up to full dimension. The relation
between the intrinsic reaction path and the adopted reaction
path in ref. 19 will be elucidated. The theory and methods for the
Hamiltonian and vibrational states are in Section 2. The results
and discussions are in Section 3 and the conclusions in Section 4.
2 Theory and methods
2.1 The intrinsic reaction path and coordinates

The global minimum (GM) and transition state (TS) structures
of B11

� are obtained using Gaussian09 suit of programs30 at the
PBE0/6-311+G* level of theory.31 All the subsequent ab initio
calculations are performed at the same level. B11

� is a planar
rotor. Due to the indistinguishability of identical boron atoms,
there are in total 11! ¼ 39, 916, 800 equivalent GMs. The
number of accessible GMs is 18 by only considering the in-plane
so mode motions. They are connected cyclically by 18 TSs
according to the following reaction mechanism

GM1 )*
TS1;2

GM2 )*
TS2;3

GM3.GM18 )*
TS18;1

GM1

To get more details of the reaction we rst locate the reaction
path by the IRC (intrinsic reaction coordinate) calculations32 as
implemented in Gaussian09. This will start with a TS and follow
the steepest descent direction until nally reaching a GM. The
reaction path can be mathematically dened by the structure
R0(s) of B11

� for each value of s. Here s is the intrinsic reaction
coordinate which is a mass-weighted variable in units of

ffiffiffiffiffiffi
me

p
$a0,

where me is electron mass and a0 is Bohr radius. Thus the
potential energy curve along the reaction path is V0(s) ¼ V[R0(s)].

In ref. 19 the reaction path has been well approximated as
the inner wheel (two inner atoms) rotating with respect to the
outer bearing (namely the outer ring of nine atoms) accompa-
nied by small amplitude reshaping of the outer bearing (known
as pseudorotation33) to adapt to the inner wheel's rotation. In
ref. 19 it was shown that the complete set of motions during this
reaction (namely both the internal rotation and the pseudor-
otation) can be uniformally characterized by a single angle
variable 4. Consequently either s or 4 can be used as our reac-
tion coordinate. The equivalence between s and 4 will be dis-
cussed in Section 3.

An arbitrary structure of B11
� can be characterized by

a vector R with 3N ¼ 33 cartesian components for the coordi-
nates of N ¼ 11 atoms. First of all we need to dene the coor-
dinates of arbitrary structures using our reaction coordinate 4.
To simplify the things we use the molecular xed frame with the
origin at the center of mass and the orientations of the xyz-axes
along the three principal axes of the moment of inertia.
Consequently the three dimensional translation is separated
and the three dimensional global rotation can be separated
within a good approximation.

To dene the coordinates of an arbitrary structure R, we need
another 3N � 7 coordinates apart from 4. It is more convenient
to use the corresponding mass-weighted coordinates ~R. There
are 3N � 7 vibrational motions perpendicular to the reaction
3614 | RSC Adv., 2021, 11, 3613–3621
path. For most of the processes which are of interest, the
perpendicular vibrations have small amplitudes. Therefore it is
convenient to introduce the normal modes. Specically we need
to dene normal mode vectors êk(4) on each grid 4 of the
reaction path. Subsequently the corresponding normal mode
coordinates Qk can be dened.

For convenience we denote the unit vector for the reaction
coordinate, namely the tangent of the reaction path, as ê1(4). By
denition we have

ê1ð4Þ ¼ N1

dfR0ð4Þ
d4

¼ �N2

vV

v~R eR0

ð4Þ;
��� (1)

where N1 and N2 are the corresponding normalization constants
and � means the corresponding mass-weighted coordinates.
Here V(R) is the full dimensional potential energy surface which
does not need to be available. Actually we only need the force

�vV
vR

and the Hessian matrix
v2V
vR2 on each point of the reaction

path R0(4) which can be routinely obtained by quantum

chemistry calculations. Note we use simplied notations �vV
vR

and
v2V
vR2 for the force and Hessian matrix with corresponding

components
�
vV
vR

�
i
¼ vV

vRi
and

�
v2V
vR2

�
ij
¼ v2V

vRivRj
. The perpen-

dicular normal mode vectors are

êk(4), k ¼ 2, 3, ., 3N � 6. (2)

They are obtained by diagonalizing the projected Hessian
matrix

ð1� PÞ v
2V

v~R
2 eR0 ð4Þ

ð1� PÞ
��� (3)

with P ¼ ê1(4)ê
T
1(4) + PT + PR. The three projection operators

ê1(4)ê
T
1(4), PT and PR project out the components of the reaction

coordinate, translation, and global rotation, respectively.27,28

The superscript T means transpose. In our molecular-xed
frame, an arbitrary structure R can be characterized as

~R ¼ fR0ð4Þ þ
X3N�6

k¼2

Qk êkð4Þ: (4)

Note all the ~R, fR0ð4Þ and Qk are mass-weighted coordinates.
2.2 The reaction path Hamiltonian and vibrational states

The vibrational wavefunctions are

jvib
n1n2.n3N�6

ð4;Q2;Q3;.;Q3N�6Þhjvib
n ð4;QÞ: (5)

According to ref. 34, the 3N � 7 perpendicular modes Q2, Q3,
., Q3N�6 form a harmonic bath which weakly affects the
motions along the reaction coordinate 4. For convenience we
dene nb ¼ (n2, n3, ., n3N�6) thus n ¼ (n1, nb). Using similar
adiabatic approximations in ref. 34 and 35, the wavefunctions
are approximated as
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 The intrinsic reaction path and the associated normalmodes. (a)
The reaction path for the reaction GM18 # TS18,1 # GM1 of B11

�

obtained by IRC calculations using Gaussian09. (b) The potential
energy curve V0(s) along the reaction path. The corresponding domain
for s is ½�107:92; 107:92� ffiffiffiffiffiffi

me
p

$a0. (c) and (d) The normal modes of the
TS18,1 (c) and GM1 (d) which correlate with the motions along the
reaction path.
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jvib
n ð4;QÞ ¼ jvib

n1nb
ð4;QÞzjRP

n1nb
ð4Þ

Y3N�6

k¼2

jHO
nk

ðQk;4Þ; (6)

where “;” implies parametrical dependence, namely jHO
nk para-

metrically depends on 4. Here jHO
nk ðQk;4Þ is the nk-th eigenstate

of the corresponding harmonic oscillator dened by�
� ħ2

2

v2

vQk
2
þ 1

2
uk

2ð4ÞQk
2

�
jHO
nk

ðQk;4Þ

¼
�
nk þ 1

2

�
ħukð4ÞjHO

nk
ðQk;4Þ; (7)

where the frequency uk(4) is also obtained by diagonalization of
the projected Hessian matrix in eqn (3). Specically the non-
zero eigenvalues and corresponding eigenvectors of the pro-
jected Hessian matrix are uk

2(4) and êk(4), respectively. With
the ansatz of the wavefunctions the full dimensional
Schrödinger equation

Hvib(4,Q)jvib
n (4,Q) ¼ Enj

vib
n (4,Q) (8)

can be approximated as a series of one dimensional equations

HHBA
nb

ð4ÞjRP
n1nb

ð4Þ ¼ Enj
RP
n1nb

ð4Þ: (9)

Here HHBA
nb ð4Þ is the harmonic-bath averaged (HBA) Hamilto-

nian adapted from ref. 34 and 35

HHBA
nb

ð4Þ ¼ �ħ2

2

v

v4

1

Ieffð4Þ
v

v4
þ VHBA

nb
ð4Þ;

VHBA
nb

ð4Þ ¼ V0ð4Þ þ DVð4Þ þ
X3N�6

k¼2

�
nk þ 1

2

�
ħueff

k ð4Þ;
(10)

where the effective moment of inertia and harmonic frequen-
cies are

Ieffð4Þ ¼ I0
�
1þ D1ð4Þ

	
;

ueff
k ð4Þ ¼ ukð4Þ½1þ Dkð4Þ�:

(11)

Here I0 is the moment of inertia associated with the coordinate
4, which is just the moment of inertia in ref. 19. The correction
factors Dk(4) for both k¼ 1 and k¼ 2,., 3N� 6 are uniformally
expressed as

Dkð4Þ ¼ ħ
I0

X3N�6

l¼2

ð2nl þ 1Þ|Blkð4Þ|2


2ulð4Þ (12)

with mode-coupling parameters

Blkð4Þ ¼ vêlð4Þ
v4

$êkð4Þ: (13)

The additional potential energy is

DVð4Þ ¼ � ħ2

4I0

X3N�6

k;l¼2

|Blkð4Þ|2: (14)

The central approximation of the HBA Hamiltonian is the
adiabatic separation of the full dimensional wavefunction in
eqn (6). The adiabatic approximation will be questionable if the
motions along the reaction coordinate(s) are not slow compared
© 2021 The Author(s). Published by the Royal Society of Chemistry
to the perpendicular vibrations of normal modes. In this case it
is not recommended to use the HBA Hamiltonian. Another
condition which should be fullled is weak mode-coupling
since the HBA Hamiltonian is truncated to the second order
of the coupling parameters Blk(4) according to ref. 34. In most
cases we may use reaction coordinate(s) to characterise large
amplitude motions. Large amplitude may corresponds to long
period and thus implies relatively good adiabatic separation. On
the other hand the couplings may be decreased with suitable
denitions of reaction coordinate(s). For the present reaction of
internal rotations of B11

�, it is suitable to use the HBA Hamil-
tonian for vibrational analysis.
3 Results and discussions
3.1 The reaction path and the harmonic-bath averaged
Hamiltonian

The intrinsic reaction path R0(s) obtained from IRC calculations
for one-step reaction GM18 # GM1 is shown in Fig. 1a. Each
point in Fig. 1a stands for a boron atom and different boron
atoms for a given structure are distinguished by different color.
The potential energy curve V0(s) along the reaction path is shown
in Fig. 1b. To gain more insights into the reaction mechanism,
the normal modes (from diagonalization of unprojected Hessian
matrix) which correlate with motions along the reaction path are
shown in Fig. 1c (TS18,1) and Fig. 1d (GM1). The corresponding
normal mode is the one with the imaginary frequency for TS18,1
and the lowest-frequency in-plane mode for GM1. The rather
good correlation between the IRC in Fig. 1a and a single normal
mode imply weak couplings between the reaction coordinate and
the perpendicular normal modes.

We dene the molecule to be in the xy-plane. According to
ref. 19 the structure of TS1,2 can be obtained by rotating TS18,1
around the z-axis by 20� + 180� ¼ 200�. In terms of the reaction
RSC Adv., 2021, 11, 3613–3621 | 3615
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coordinate 4, from TS18,1 to TS1,2 corresponds to the internal
rotation of the inner wheel with respect to the outer bearing
around the z-axis by 4 ¼ 20� accompanied by small amplitude
motions of the outer bearing atoms (pseudorotations).

To be more specic, we use two angles 4r and 4b to charac-
terize the rotations of the wheel and bearing, respectively. The
correspondingmoments of inertia for the wheel and bearing are
Ir and Ib, respectively. The internal rotational angle is thus 4 ¼
4r � 4b. For 4 ¼ 20�, we have 4r ¼

Ib
Ir þ Ib

� 20� ¼ 19:32� and

4b ¼ �Ir
Ir þ Ib

� 20� ¼ �0:68�. Thus we can get TS1,2 by rst

rotating the inner wheel of TS18,1 around z-axis by 20� with
corresponding small adaptions of outer bearing. Then perform
a global rotation around z-axis by �0.68�. An equivalent way to
obtain TS1,2 from TS18,1 is thus a simple global rotation around
z-axis by 200�–0.68� ¼ 199.32�. In this way we generate all the 18
TSs and obtain the full reaction path shown in Fig. 2a. The
corresponding potential energy curve V0(s), or equivalently
V0(4), is shown in Fig. 2b with potential barrier DVb ¼ 225.65
hc cm�1.

In Fig. 2b we use two coordinates to characterize the same
reaction. One is the intrinsic reaction coordinate s from ab initio
Fig. 2 The full cycle of the reaction path and the corresponding
potential energy curve. (a) The reaction path for the reaction TS18,1 #
GM1 # TS1,2 # GM2 . # GM18 # TS18,1. Note the initial TS18,1 and
the last TS18,1 are different in the orientations by a small angle. This is
because internal rotation of 4¼ 360� is accompanied by a small-angle
global rotation. (b) The corresponding potential energy curve along
the reaction path. Two equivalent coordinates are indicated in the
upper and lower abscissas for the intrinsic reaction coordinate s and
the internal rotation 4, respectively.

3616 | RSC Adv., 2021, 11, 3613–3621
calculations. The other one is the internal rotation 4 dened in
ref. 19. It is straightforward to obtain the following relations:

sðTSi;iþ1Þ ¼ 2i$Ds; sðGMiÞ ¼ ð2i � 1Þ$Ds;
4ðTSi;iþ1Þ ¼ 2i$D4; 4ðGMiÞ ¼ ð2i � 1Þ$D4; (15)

where Ds ¼ 107:92
ffiffiffiffiffiffi
me

p
$a0 and D4 ¼ 10�. Within a good

approximation the two variables s and 4 can be linearly trans-

formed by s ¼ k4, with k ¼ Ds
D4

¼ 618:35
ffiffiffiffiffiffi
me

p
$a0. The details

can be found from the two abscissas of Fig. 2b. By considering
the zero order kinetic energy of both cases we have

T0ðsÞ ¼ �ħ2

2

v2

vs2
¼ T0ð4Þ ¼ � ħ2

2I0

v2

v42
: (16)

Since
v2

vs2
¼ 1

k2
v2

v42 we can get the moment of inertia for 4 as I0

¼ k2 ¼ 3.82 � 105me$a0
2 which agrees well with the reported

value of 3.74� 105me$a0
2 in ref. 19. The good agreement further

conrms the equivalence between the two coordinates s and 4.
Up to now we have the complete information for the zero-

order Hamiltonian H0(4) ¼ T0(4) + V0(4) up to an arbitrary
energy reference which will be specied in Section 3.2.
According to eqn (10), the zero-order Hamiltonian can be
improved to the HBA Hamiltonian HHBA(4) provided the zero-
order moment of inertia and potential are replaced by Ieff(4)
and VHBA(4), respectively. The details of VHBA

nb ð4Þ and Ieff(4) are
shown in Fig. 3 for typical sets of quantum numbers nb of the
harmonic bath.

In the subsequent sections we selectively investigate three
typical cases of the harmonic bath: the ground state, funda-
mental excitations, and combinational excitations. They can be
identied by nb which includes all the quantum numbers nk for
k $ 2. Specically we choose four cases including the ground
state for nk ¼ 0, two fundamental excitations for nk ¼ dk,2 and nk
¼ dk,27, and one combinational excitation for nk ¼ dk,2 + dk,27.
Among all the 26 normal modes of the harmonic bath, themode
2 and mode 27 are the lowest-frequency and the highest-
frequency modes, respectively. Accordingly the HBA potential
energy curves VHBA

nb ð4Þ for the four cases are shown in Fig. 3a.
They all have similar shapes as the zero-order potential V0(4) in
Fig. 1b and 2b. However they include corrections caused by
couplings between any pair of coordinates, cf. eqn (10)–(14). An
apparent consequence of these couplings is that the HBA
potential barrier will be modied. The corresponding potential
barriers are 221.90, 216.46, 240.39, and 234.92hc cm�1 for nk ¼
0, dk,2, dk,27, and dk,2 + dk,27, respectively. Compared to the zero-
order barrier of 225.65hc cm�1, the corresponding barriers are
modied by �1.66%, �4.07%, 6.53%, and 4.11%, respectively.
At rst glance, the modications of the HBA potential barriers
are not large. However eigenenergies are in general rather
sensitive to potential barriers. More details will be discussed in
the subsequent sections.

Strictly speaking the effective moment of inertia Ieff(4) also
depends on the set of quantum numbers nb associated with the
harmonic bath. However the dependence turns out to be
negligible according to Fig. 3b. To simplify the notations we
didn't explicitly write out the dependence of Ieff(4) on nb. The
differences of Ieff(4) between the four studied cases are not
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 (a) The potential VHBA
nb ð4Þ for the harmonic-bath averaged Hamiltonian in eqn (10) with given quantum numbers nb for the normal modes

perpendicular to the reaction path. (b) The effective moment of inertia Ieff(4) for the internal rotation with given quantum numbers nb. The green
line indicates the zero-order moment of inertia I0. Four different cases of nb are investigated in both (a) and (b).
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noticable on the graphic scale of Fig. 3b. An enlarged plot for 4
˛ [8, 12] degrees is shown in the inset of Fig. 3b. Form the inset
we can identify the extremely slight difference between nk ¼
0 and nk ¼ dk,27. The contributions to Ieff(4) from mode 2 is
almost zero. Consequently the difference between nk ¼ 0 and nk
¼ dk,2 (or between nk ¼ dk,27 and nk ¼ dk,2 + dk,27) is not noticable
even in the enlarged inset. The value for the zero-order moment
of inertia I0 ¼ 3.82 � 105me$a0

2 is indicated as a horizonal line.
The value of Ieff(4) is always larger than I0 for arbitrary 4 due to
non-negative characteristics of the factor D1(4) in eqn (12). In
general the difference between Ieff(4) and I0 is not large, which
further validates eqn (10) for the present work.
3.2 The vibrational energy levels

Having the harmonic-bath averaged Hamiltonian HHBA
nb ð4Þ at

hand, we can calculate the corresponding eigenenergies of
vibrational states with any quantum numbers n. Accordingly
the eigenenergies for the four cases studied in Fig. 3 (namely
four sets of nb¼ {nk, k$ 2}) are listed in Tables 1–4, respectively.
In each table the lowest 36 eigenenergies are documented,
which are labeled by the quantum number n1 associated with
the reaction coordinate 4. In general the 36 energy levels form
two energy bands. For each of the investigated cases, the lowest
energy band consists of 18 levels which are 0 # n1 # 17 with
a band width less than 2hc cm�1. While the second band for 18
# n1 # 35 has a band width more than 20hc cm�1. Between the
two energy bands there is a fairly large band gap of about
100hc cm�1. Higher energy bands with levels above the barrier
can also be calculated in the same spirit.

For detailed comparisons, the eigenenergies En calculated by
three different models are reported in Tables 1–4. Apart from
the HBA Hamiltonian, the other two are the harmonic approx-
imation and the zero-order Hamiltonian, respectively. The

harmonic energies are evaluated as
P3N�6

k¼1

�
nk þ 1

2

�
ħuGM

k , where

uGM
k ¼ uk(4 ¼ 10�) is the corresponding harmonic frequency of

the GM structure. Here n1 is set to zero and u1 is the frequency
of the mode shown in Fig. 1d. For convenient comparisons,
© 2021 The Author(s). Published by the Royal Society of Chemistry
the zero-order Hamiltonian is dened as

H0ð4Þ ¼ T0ð4Þ þ V0ð4Þ þ
P3N�6

k¼2

�
nk þ 1

2

�
ħuGM

k to be consistent

with the other two models in energy reference. Note the
Hamiltonian used in ref. 19 is T0(4) + V0(4), which is essentially
the same as H0(4) except for different energy references.

The harmonic energy is listed in the second column of each
table. The corresponding harmonic energy in Table 1, namely
for the ground state, is the zero point energy. Apparently the
zero point energy of 9580.6hc cm�1 is quite large. This large zero
point energy is automatically included in all the reported values
of eigenenergies in Tables 1–4 by the three models. The zero-
order eigenenergies are essentially the same for all different
cases of the harmonic bath, with detailed values listed in the
third column of each table. The only difference between the
third columns of any two tables is just a global shi of all energy
levels. The ground state energy of 9581hc cm�1 is quite close to
the harmonic value, which further conrms the good correla-
tion between the normal mode in Fig. 1d and the internal
rotation characterized in Fig. 1a and 2a. The eigenenergies ob-
tained by diagonalization of the HBA Hamiltonian are listed in
the fourth column of each table. In general the HBA energies are
lower than the corresponding zero-order values. This is because
the HBA Hamiltonian contains contributions from full dimen-
sional motions of the molecule. Consequently the molecule has
more freedom to relax, compared to the one-dimensional zero-
order Hamiltonian. For example, the HBA ground state energy
of 9569.66hc cm�1 is more stable than the corresponding zero-
order level by 11.34hc cm�1.

To get further details on how large the HBA Hamiltonian
makes improvements to the eigenenergies compared to the
zero-order Hamiltonian, the differences between the values of
the corresponding eigenenergies En obtained by the HBA and
the zero-order Hamiltonians are documented in Column 7 of
each table. In general all the energy levels are further stabilized
due to the improvements from the HBA Hamiltonian. Speci-
cally the eigenenergies En are improved due to the HBA poten-
tial VHBA and the moment of inertia Ieff. We further calculated
RSC Adv., 2021, 11, 3613–3621 | 3617



Table 1 Eigenenergies of the lowest two energy bands associated with the reaction coordinate 4 for ground-state normal modes (nk¼ 0 for k$
2)

Quantum numbera n1

Eigenenergyb En (hc cm
�1) HBA improvementsc of En (hc cm

�1)
Excitation energy En
� E0 (hc cm

�1)

Harmonic H0 HHBA From VHBA From Ieff From HHBA H0 HHBA

0 9580.60 9581.00 9569.66 �11.14 �0.20 �11.34 — —
1, 2 — 9581.05 9569.69 �11.14 �0.22 �11.36 0.05 0.03
3, 4 — 9581.21 9569.83 �11.14 �0.25 �11.38 0.21 0.17
5, 6 — 9581.46 9570.07 �11.13 �0.27 �11.39 0.46 0.41
7, 8 — 9581.76 9570.35 �11.12 �0.29 �11.41 0.76 0.69
9, 10 — 9582.10 9570.68 �11.11 �0.32 �11.42 1.10 1.02
11, 12 — 9582.41 9570.98 �11.10 �0.34 �11.43 1.41 1.32
13, 14 — 9582.68 9571.24 �11.09 �0.35 �11.44 1.68 1.58
15, 16 — 9582.85 9571.41 �11.08 �0.36 �11.44 1.85 1.75
17 — 9582.91 9571.47 �11.08 �0.37 �11.44 1.91 1.81
18 — 9686.58 9673.75 �12.47 �0.36 �12.83 105.58 104.09
19, 20 — 9687.08 9674.25 �12.47 �0.37 �12.83 106.08 104.59
21, 22 — 9688.56 9675.72 �12.45 �0.39 �12.84 107.56 106.06
23, 24 — 9690.95 9678.10 �12.43 �0.43 �12.85 109.95 108.44
25, 26 — 9694.15 9681.28 �12.40 �0.48 �12.87 113.15 111.62
27, 28 — 9697.99 9685.10 �12.36 �0.53 �12.89 116.99 115.44
29, 30 — 9702.19 9689.28 �12.31 �0.60 �12.91 121.19 119.62
31, 32 — 9706.28 9693.35 �12.26 �0.67 �12.93 125.28 123.69
33, 34 — 9709.48 9696.54 �12.21 �0.73 �12.94 128.48 126.88
35 — 9710.73 9697.79 �12.19 �0.76 �12.94 129.73 128.13

a Eigenenergies associated with the reaction coordinate 4 are labelled with quantum number n1. The quantum number nk (k$ 2) is associated with
the k-th normal mode. b Energies are calculated by three different models: the harmonic approximation, the zero-order Hamiltonian H0(4) and the
HBA Hamiltonian HHBA(4) in eqn (10). c The improvements by HHBA(4) with respect to H0(4).

RSC Advances Paper
the improvements solely by VHBA without Ieff, or solely by Ieff
without VHBA. The corresponding results are shown in Column 5
and Column 6, respectively. The improvements of En from Ieff
almost have no differences between the four cases, which is
Table 2 Same with Table 1 but for the fundamental excitation of mode

Quantum number
n1

Eigenenergy En (hc cm
�1) H

Harmonic H0 HHBA F

0 9729.77 9730.17 9701.25 �
1, 2 — 9730.22 9701.29 �
3, 4 — 9730.38 9701.44 �
5, 6 — 9730.63 9701.69 �
7, 8 — 9730.94 9702.00 �
9, 10 — 9731.27 9702.34 �
11, 12 — 9731.59 9702.66 �
13, 14 — 9731.85 9702.94 �
15, 16 — 9732.02 9703.12 �
17 — 9732.08 9703.18 �
18 — 9835.75 9803.16 �
19, 20 — 9836.25 9803.66 �
21, 22 — 9837.73 9805.16 �
23, 24 — 9840.12 9807.58 �
25, 26 — 9843.32 9810.82 �
27, 28 — 9847.16 9814.72 �
29, 30 — 9851.36 9819.00 �
31, 32 — 9855.45 9823.19 �
33, 34 — 9858.65 9826.48 �
35 — 9859.90 9827.78 �
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consistent with Fig. 3b. The improvements in Column 7 of each
table can be well approximated as sum of the corresponding
values in Columns 5 and 6. This is because the two factors VHBA

and Ieff mainly affect potential energy and kinetic energy
2 (nk ¼ dk,2 for k $ 2)

BA improvements of En (hc cm
�1)

Excitation energy En
� E0 (hc cm

�1)

rom VHBA From Ieff From HHBA H0 HHBA

28.72 �0.20 �28.92 149.17 131.59
28.72 �0.22 �28.93 149.22 131.63
28.70 �0.25 �28.94 149.38 131.78
28.68 �0.27 �28.94 149.63 132.03
28.65 �0.29 �28.94 149.94 132.34
28.62 �0.32 �28.93 150.27 132.68
28.59 �0.34 �28.92 150.59 133.00
28.57 �0.35 �28.91 150.85 133.28
28.55 �0.36 �28.90 151.02 133.46
28.55 �0.37 �28.90 151.08 133.52
32.25 �0.36 �32.60 254.75 233.50
32.23 �0.37 �32.59 255.25 234.00
32.19 �0.39 �32.57 256.73 235.50
32.13 �0.43 �32.54 259.12 237.92
32.03 �0.48 �32.50 262.32 241.16
31.92 �0.53 �32.44 266.16 245.06
31.77 �0.60 �32.36 270.36 249.34
31.61 �0.67 �32.27 274.45 253.53
31.45 �0.73 �32.17 277.65 256.82
31.38 �0.76 �32.12 278.90 258.12

© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 3 Same with Table 1 but for the fundamental excitation of mode 27 (nk ¼ dk,27 for k $ 2)

Quantum number
n1

Eigenenergy En (hc cm
�1) HBA improvements of En (hc cm

�1)
Excitation energy En�
E0 (hc cm

�1)

Harmonic H0 HHBA From VHBA From Ieff From HHBA H0 HHBA

0 11 096.46 11 096.85 11 090.25 �6.39 �0.20 �6.60 1515.86 1520.59
1, 2 — 11 096.91 11 090.28 �6.40 �0.23 �6.63 1515.91 1520.62
3, 4 — 11 097.07 11 090.40 �6.42 �0.25 �6.67 1516.07 1520.74
5, 6 — 11 097.32 11 090.59 �6.44 �0.27 �6.72 1516.32 1520.93
7, 8 — 11 097.62 11 090.84 �6.48 �0.30 �6.78 1516.62 1521.18
9, 10 — 11 097.95 11 091.12 �6.51 �0.32 �6.84 1516.95 1521.46
11, 12 — 11 098.27 11 091.38 �6.55 �0.34 �6.89 1517.27 1521.72
13, 14 — 11 098.54 11 091.60 �6.58 �0.35 �6.94 1517.54 1521.94
15, 16 — 11 098.71 11 091.74 �6.60 �0.36 �6.96 1517.71 1522.08
17 — 11 098.77 11 091.79 �6.61 �0.37 �6.98 1517.77 1522.13
18 — 11 202.44 11 199.17 �2.87 �0.37 �3.27 1621.44 1629.51
19, 20 — 11 202.94 11 199.63 �2.90 �0.37 �3.31 1621.94 1629.97
21, 22 — 11 204.41 11 200.98 �3.00 �0.39 �3.43 1623.41 1631.32
23, 24 — 11 206.80 11 203.17 �3.17 �0.43 �3.64 1625.80 1633.51
25, 26 — 11 210.00 11 206.07 �3.41 �0.48 �3.93 1629.00 1636.41
27, 28 — 11 213.84 11 209.53 �3.74 �0.54 �4.32 1632.84 1639.87
29, 30 — 11 218.05 11 213.24 �4.17 �0.61 �4.81 1637.05 1643.58
31, 32 — 11 222.14 11 216.75 �4.68 �0.68 �5.39 1641.14 1647.09
33, 34 — 11 225.33 11 219.40 �5.17 �0.74 �5.93 1644.33 1649.74
35 — 11 226.59 11 220.41 �5.39 �0.76 �6.18 1645.59 1650.75
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separately. Since Ieff is larger than I0, cf. Fig. 3b or eqn (11), the
kinetic energy from the HBA Hamiltonian is lower than the
zero-order case. Concerning the potential energy, the difference
between VHBA and V0 contains two terms according to eqn (10).
One term is DV(4) in eqn (14). According to eqn (14), DV(4) is
negative and does not depends on quantum numbers nb of
normal modes. For each of the reported energy levels the mean
value of DV(4) is about �100hc cm�1. The other term is the
Table 4 Same with Table 1 but for the combinational excitation of mod

Quantum number
n1

Eigenenergy En (hc cm
�1)

Harmonic H0 HHBA

0 11 245.63 11 246.03 11 221.88
1, 2 — 11 246.08 11 221.91
3, 4 — 11 246.24 11 222.04
5, 6 — 11 246.49 11 222.25
7, 8 — 11 246.79 11 222.52
9, 10 — 11 247.13 11 222.81
11, 12 — 11 247.44 11 223.08
13, 14 — 11 247.71 11 223.32
15, 16 — 11 247.88 11 223.47
17 — 11 247.94 11 223.52
18 — 11 351.61 11 328.66
19, 20 — 11 352.11 11 329.13
21, 22 — 11 353.58 11 330.50
23, 24 — 11 355.97 11 332.73
25, 26 — 11 359.17 11 335.70
27, 28 — 11 363.01 11 339.23
29, 30 — 11 367.22 11 343.03
31, 32 — 11 371.31 11 346.65
33, 34 — 11 374.50 11 349.38
35 — 11 375.76 11 350.43

© 2021 The Author(s). Published by the Royal Society of Chemistry
average energy of the 26 normal modes in terms of effective
harmonic frequencies ueff

k (4). According to eqn (11) each
effective frequency ueff

k (4) is larger than the original frequency
uk(4). Consequently the contribution of this term to the total
eigenenergy En is larger than the corresponding zero-order case.
The sum of the above two potential energy terms leads to
negative contributions for En (compared to zero-order) as shown
in Column 5 of each table.
es 2 and 27 (nk ¼ dk,2 + dk,27 for k $ 2)

HBA improvements of En (hc cm
�1)

Excitation energy En�
E0 (hc cm

�1)

From VHBA From Ieff From HHBA H0 HHBA

�23.94 �0.20 �24.14 1665.03 1652.22
�23.94 �0.23 �24.17 1665.08 1652.25
�23.95 �0.25 �24.20 1665.24 1652.38
�23.97 �0.27 �24.24 1665.49 1652.59
�23.98 �0.30 �24.28 1665.79 1652.86
�24.00 �0.32 �24.32 1666.13 1653.15
�24.02 �0.34 �24.36 1666.44 1653.42
�24.04 �0.35 �24.39 1666.71 1653.66
�24.05 �0.36 �24.41 1666.88 1653.81
�24.05 �0.37 �24.42 1666.94 1653.86
�22.56 �0.37 �22.95 1770.61 1759.00
�22.59 �0.37 �22.99 1771.11 1759.47
�22.66 �0.39 �23.08 1772.58 1760.84
�22.78 �0.43 �23.24 1774.97 1763.07
�22.97 �0.48 �23.47 1778.17 1766.04
�23.22 �0.54 �23.79 1782.01 1769.57
�23.56 �0.61 �24.19 1786.22 1773.37
�23.97 �0.68 �24.67 1790.31 1776.99
�24.37 �0.74 �25.12 1793.50 1779.72
�24.55 �0.76 �25.33 1794.76 1780.77
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For possible comparisons with high-resolution experiments
which may be measurable in the future, we further calculated
the excitation energy En � E0 for each of the investigated states.
The corresponding values are documented in the last two
columns of Tables 1–4 for zero-order and HBA models, respec-
tively. For the ground state harmonic bath (Table 1) all the
excitation energies from HBA Hamiltonian are slightly
redshied compared to zero-order case. Similarly all the HBA
excitation energies are redshied by about 20hc cm�1 in Table 2
(fundamental excitation of mode 2). However, for the funda-
mental excitation of mode 27 in Table 3, all the HBA excitation
energies are blueshied by several wavenumbers. Then the
combinational excitation case in Table 4 also exhibits redshis
for all the HBA excitation energies due to the competition
between mode 2 and mode 27.

To deeply investigate the properties of the energy bands, we
can arrange the four studied cases in terms of barrier heights.
Consequently we have Tables 2, 1, 4, and 3 with barrier heights
in ascending order: 216.46, 221.90, 234.92, and 240.39hc cm�1,
respectively. Note we only focus on results of the HBA model for
the time being. In this order the band widths of the lowest
energy band are 1.93, 1.81, 1.64, and 1.54hc cm�1, respectively.
The band widths of the second energy band are 24.62, 24.04,
21.77, and 21.24hc cm�1, respectively. Clearly the band width
decreases when the barrier height increases, for both the lowest
and the second energy bands. While the corresponding band
gaps are 99.98, 102.28, 105.14, and 107.38hc cm�1, respectively.
The band gap increases when the barrier height increases. Since
the differences between the effective moment of inertia are
negligible, cf. Fig. 3b, the behavior of the band structures can be
predicted and explained purely in terms of the barrier heights.
The band gap can be approximately estimated as the funda-
mental excitation energy for an isolated potential well. Higher
barrier leads to larger curvature of the potential well, which in
turn has higher fundamental transition frequency. The band
width is determined by tunnelling between neighbouring
potential wells. Higher barrier leads to smaller tunnelling
probability and consequently to narrower band width. For
innitely high barrier, tunnelling is prohibited thus the band
width would be zero. Harmonic approximation corresponds to
the case of innitely high barrier so that the system would be
located in a single potential well. In this case the unexpected
spectral broadening observed in ref. 29 would disappear.
However in reality the barrier is rather low. Consequently
tunnelling between neighboring potential wells gives rise to
fairly large tunnelling splittings which appear as band widths of
vibrational levels. The phenomenon happens essentially in all
the relevant vibrational levels, which leads to spectral broad-
ening of the infrared spectra.

4 Conclusions

Nuclear quantum effects beyond harmonic approximation are
important for boron Wankel rotors. A simplied one-
dimensional model in ref. 19 predicts rotational/pseudo-
rotational energy bands which triggers full dimensional
quantum mechanical investigations to unravel the origin of the
3620 | RSC Adv., 2021, 11, 3613–3621
line broadening of recent infrared spectra.29 In the present work
we construct a practical harmonic-bath averaged Hamiltonian
and calculate the eigenenergies of relevant vibrational states,
starting from a full dimensional reaction path Hamiltonian
using the cyclic intrinsic reaction coordinate. Typical vibra-
tional states including cases of ground-state, fundamental, and
combinational excitations of normal modes are investigated. All
the calculated energy levels associated with the internal rota-
tions of B11

� are improved compared to the one dimensional
results in ref. 19 for the case of ground-state normal modes. The
present work further includes analysis of typical excitations of
normal modes. Different mode excitations are found to have
negligible effects on the moment of inertia but do have some
inuence on the effective potential for the internal rotation. The
height of the potential barrier is modied due to mode excita-
tions which in turn changes the details of the energy bands.
With increasing barrier the band width decreases and the band
gap increases. For all the investigated vibrational states, the
lowest and second energy bands have band widths ranging from
1.5 to 2.0hc cm�1 and from 21 to 25hc cm�1, respectively. The
corresponding band gaps ranges from 99 to 108hc cm�1. We
nd that the observed phenomenon of spectral broadening in
ref. 29 is due to the band structures of the vibrational levels of
boron rotors. The observed spectral broadening will be nar-
rowed provided all the 10B atoms are substituted by 11B atoms.
Heavier boron atoms lead to smaller tunnelling probability and
consequently to a narrower band width for each energy band.
This isotope effects can be observed by infrared experiments
provided the resolution is sufficiently high. The reported
quantitative energy levels in this paper may provide valuable
references for future related investigations of high resolution
spectroscopy. In addition the present method can be applied to
study vibrational states of other medium to large molecules
which may be rather challenging for typical full dimensional
quantum dynamics calculations.
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