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ABSTRACT

Following antigenic challenge, activated B cells
rapidly expand and undergo somatic hypermutation,
yielding groups of clonally related B cells with diver-
sified immunoglobulin receptors. Inference of clonal
relationships based on the receptor sequence is an
essential step in many adaptive immune receptor
repertoire sequencing studies. These relationships
are typically identified by a multi-step process that
involves: (i) grouping sequences based on shared
V and J gene assignments, and junction lengths
and (ii) clustering these sequences using a junction-
based distance. However, this approach is sensi-
tive to the initial gene assignments, which are error-
prone, and fails to identify clonal relatives whose
junction length has changed through accumulation
of indels. Through defining a translation-invariant
feature space in which we cluster the sequences,
we develop an alignment free clonal identification
method that does not require gene assignments and
is not restricted to a fixed junction length. This align-
ment free approach has higher sensitivity compared
to a typical junction-based distance method without
loss of specificity and PPV. While the alignment free
procedure identifies clones that are broadly consis-
tent with the junction-based distance method, it also
identifies clones with characteristics (multiple V or J
gene assignments or junction lengths) that are not
detectable with the junction-based distance method.

INTRODUCTION

A defining property of the adaptive immune system is its
capability to adapt to new pathogens. One mechanism un-
derlying this adaptation is the ability to generate B cells ex-
pressing a broad range of antibody or Ig receptors and then
to modify these receptors upon a antigenic challenge. Each

B cell receptor (BCR) is composed of two protein chains, a
heavy chain (IgH) and a light chain (IgL). The IgH is cre-
ated through a somatic recombination process involving a
rearrangement of three genes, termed V, D and J, coupled
with stochastic insertions and deletions at the gene bound-
aries (i.e. between the V and D, and the D and J genes). The
IgL is generated through a similar process, but without a
D gene. This process provides the B cells an initial diversity
of ∼107 (1). After a B cell is activated through binding to
an antigen and receiving appropriate secondary signals, it
can undergo further diversification through somatic hyper-
mutation (SHM), which modifies the BCR mainly through
point mutations. B cells with higher affinity to the antigen
are preferentially selected to further expand. This process,
known as affinity maturation results in a group of clon-
ally related B cells. Identification of these clonally expanded
groups are a critical step in the analysis of B cell reper-
toires. Examples for such biological studies include lineage
reconstruction (2–4), diversity analysis (5,6), identification
of antigen-specific sequences (7), and more (8,9).

Our ability to analyze large B cell repertoires has im-
proved due to technological advances of Adaptive Immune
Receptor Repertoire Sequencing (AIRR-Seq) experiments,
which now allow generation of up to hundreds of millions
of BCR sequences per sample. Recent studies, e.g. (10–13),
use AIRR-Seq to detect properties of the immune system
which differentiate between healthy individuals and individ-
uals with cancer, autoimmunity, allergies, or other diseases.

Several methods (14–21) have been proposed to address
the challenge of automatic identification of clones from a
set of IgH sequences. A common first step is alignment and
V(D)J gene identification of each BCR sequence using a ref-
erence of known germline V, D and J gene sequences. This
step is often performed using IMGT/HighV-QUEST or Ig-
Blast (22,23). Next, sequences are separated into different
groups based on shared V and J gene assignments along
with identical junction lengths, where the junction is de-
fined as the CDR3 plus the two conserved flanking codons.
A distance (indicating a level of similarity) is computed be-
tween junctions in these smaller groups, and some form of
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clustering is then used to identify the clones. Various dis-
tance metrics have been used to compare the junctions, in-
cluding a Hamming distance (14,15), the Levenshtein dis-
tance (16,24) and metrics which incorporate SHM hot- and
cold-spot motifs (21,25). The Hamming distance is compu-
tationally efficient, but restricted to fixed sequence length
comparison. The Levenshtein distance removes this restric-
tion, but with a high computational cost and therefor does
not scale to huge repertoires. Furthermore, as reported in
(16) the Levensthein distance is sensitive to insertion and
deletions and obtains PPV values < 96% (even when incor-
porating gene assignments).

To distinguish between clonally related and unrelated se-
quences, earlier studies set a fixed threshold on the dis-
tance between junctions (26–28). The authors in (17) no-
ticed that the distribution of distances between sequences
and their nearest neighbors (distance-to-nearest) tends to
be bi-modal, with a first mode corresponding to clonally
related sequences and second mode corresponding to se-
quences without clonal relationship (singletons). Using this
bi-modality, (17) proposes to set a threshold that separates
the two modes. Following this observation (14,20), use the
bi-modality of this distribution to suggest an automatic way
to set the threshold. A recent method by (15) uses spectral
clustering with an adaptive threshold to identify the groups
of clonally related sequences.

Methods such as (14–15,20) identify clonally related se-
quences with high confidence (29); however, their success
relies on two assumptions, namely that all clone members
should share the same V and J gene assignments, as well as
a common junction length. The later assumption effectively
ignores the possibility of SHM to introduce insertions and
deletions (indels). The former premise relies on the success
of a pre-processing method that aligns the sequences and
assigns the V and J genes. Although most alignment meth-
ods use similar germline gene databases (such as IMGT) the
gene assignments may only partly overlap (30). Even for a
low mutation rate of 2.5%, the assignment errors of the V
and J genes can be 3% (31). Subsequently, these two types
of errors will lead to a non-negligible number of incorrect
clonal assignments.

In this study, we present an alignment free approach for
clonal identification; this enables us to bypass the V(D)J
gene assignment step and remove the fixed junction length
restriction. The alignment free method is based on tech-
niques from natural language processing (NLP), specifi-
cally, we use k-mer representations and re-weight them with
a term frequency inverse document frequency (tf-idf). The
tf-idf is a statistical measure widely used in NLP. Next, by
applying a cosine distance to the re-weighted representa-
tion, we define a tf-idf distance, which allows us to identify
sequences derived from clonally related B cells. This pro-
cedure does not require sequence alignment and is not re-
stricted to sequences with the same junction length. In Fig-
ure 1, we illustrate how the tf-idf distance bypasses three
building blocks from the standard distance-based clonal as-
signment procedure. In the Materials and Methods section,
we describe the proposed alignment free approach, and de-
tail alternative approaches for clonal assignments. In the
Results section, we evaluate the capabilities of the alignment
free methods using artificial and real repertoires.

MATERIALS AND METHODS

In this section, we describe the proposed alignment free ap-
proach, as well as an alternative method providing a base-
line.

Junction-based clonal identification

As a baseline, we compare the performance of the pro-
posed method to the fixed threshold, clustering-based ap-
proach proposed by (14), which has been shown to iden-
tify clonal relationships with high confidence. This junction-
based approach first separates the BCR sequences into dif-
ferent groups that share the same V and J gene annota-
tions, as well as a common junction length. Then, the Ham-
ming distance is computed between all pairs of junctions
from the same group, and the distribution of nearest neigh-
bors for each sequence (also termed distance-to-nearest dis-
tribution) is analyzed to find a fixed distance threshold
for single-linkage hierarchical clustering. This distance-to-
nearest distribution is often bi-modal (e.g. see Figure 2),
where the first mode is assumed to correspond to distances
between members of the same clone and the second mode
to distances between sequences from different clones. The
method identifies clonally-related sequences by aggregating
sequences that share a nearest neighbor distance smaller
than the value (threshold) that separates the two modes
of the distribution (1). The threshold is determined using
a two-step process. First, the distribution of the distance-
to-nearest is computed using a kernel density estimator.
Next, the threshold is estimated as the first local minimum
by calculating the first and second derivatives of the den-
sity estimate. As shown in (20), this is computationally ex-
pensive and empirically scales exponentially with the num-
ber of sequences. To improve run time, (20) fit a Gamma
and a Gaussian distribution to the bi-modal distribution
and use Maximum Likelihood to determine the threshold.
This method seems to scale linearly with the number of
sequences. Besides the improvement in run time, both ap-
proaches fail if the distribution is not bi-modal. This occurs
if there are few or no singletons in the data, i.e. most se-
quences are members of clones of a size larger than one. A
method to overcome this caveat was presented in (2); the
authors use spectral clustering, which allows them to iden-
tify the clones without restricting to a single threshold per
repertoire.

Throughout the experiments presented in the Results sec-
tion, in order to use the junction-based distance method, we
first apply IgBLAST with the IMGT gene references to infer
gene segments and the junction location. Then, we use the
Change-O-DefineClone function from SHazaM R package
(version 0.1.11) (32) to define the clones.

k-mer representation of terms

A k-mer representation maps a sequence of length L to the
set of all possible sub-sequences of length k. k-mers have
been widely used in the context of DNA analysis due to
their ability to reduce the computational effort of compar-
ing DNA strings. The k-mer representation of a sequence
is a vector with 4k entries, where each entry corresponds to
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Figure 1. A flow diagram depicting the major steps for identifying clonally-related B cell receptor sequences (bottom row). Given a set of BCR sequences
(the repertoire), first, the primers and barcodes are removed, then V(D)J genes are assigned based on an alignment of the sequences to a database of
germline genes. Sequences are grouped based on V and J gene assignments and junction length. A hamming distance is calculated on the junction regions
of pairs of sequences in each of the groups separately. Finally, distances are fed into a clustering algorithm (Hierarchical (14) or Spectral (15)). Here, we
propose to use a tf-idf based distance that bypasses the three steps prior to clustering, and is not restricted to sequences with the same V or J gene or
junction length.

Figure 2. An example of a distance-to-nearest distribution based on an
artificially generated repertoire, so that all clonal relationships are known.
The bi-modality of the distribution is evident. Blue bars correspond to se-
quences that belong to a clone (non singletons), while gray bars represent
sequences with no clonal relatives in the data set (singletons). Green bars
represent the distribution of distances to closest sequences pooled from al-
ternative individuals (negation sequences). The distance threshold (vertical
solid line) is set as the lowest 1 percentile of the negation distribution. This
values aims for 1% of false positives (FP) and 99% of true negatives (TN).

the number of times a specific k-mer is detected along the
sequence using a sliding window scheme. This construction
ignores the locations of particular k-mers within each se-
quence.

tf-idf representation

A challenging task in natural language processing (NLP) in-
volves comparing documents with a large and varying num-
ber of terms. One popular approach involves using a term
frequency inverse document frequency (tf-idf) (33). The tf-
idf weighting scheme aims to emphasize the rare and hope-
fully meaningful terms and reduce the influence of common
terms. The tf counts the number of term appearances in the
document, while idf measures the importance of the term
by counting its appearances in the corpus. A number vari-
ants of the tf-idf have been proposed in the literature, for
examples see (34,35).

In this study we adapt the tf-idf to reweigh k-mer based
representation of BCR sequences. The term-frequency
tfs(k) is a count table of the amount of k-mers k ∈ K present

in each sequence s ∈ S. The tf is reweighed using the in-
verse document frequency which is defined as id f (k) =
log( N

|s∈S;k∈s| ), where N is the total number of sequences and
the denominator is the total occurrences of specific k-mer k
across all the S sequences. The tf-idf is then defined as tf −
idfs(k) = tfs(k) · idf(k).

Fast cosine distance

To compare the tf-idf representations of sequences s and s′
we choose the widely used cosine distance. The cosine dis-
tance is defined as one minus the normalized inner product
between two tf-idf vectors, given sequences s and s′ it is com-
puted by

d(s, s ′) = 1 −
∑

k∈K

̂tf − idf s(k) · ̂tf − idf s ′ (k),

where ̂tf − idf s is the L2 normalized tf-idf representation
of sequence s. In practice, the tf-idf representation is sparse
and clone assignment only requires identification of the
most related sequences in terms of proximity (few hun-
dreds, or thousands depending on the size of the clones in
the dataset). We can exploit these two properties to reduce
the computational cost involved in evaluating the tf-idf co-
sine distance. The python implementation of the fast cosine
distance is available at https://bergvca.github.io/2017/10/14/
super-fast-string-matching.html.

Automatic clonal distance threshold determination by nega-
tion

As in (14,20) we use the properties of the distance to nearest
distribution to identify the threshold for cutting the hierar-
chy of distances. Instead of using the bi-modality, which has
a high computational cost, we take a different approach;
we propose to find the threshold by negation. The idea is
described as follows: given a set of sequences taken from
one individual, we introduce a set of sequences randomly
sampled from multiple unrelated individuals (negation se-
quences); then, we compute the distribution of distances
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between negation sequences and their closest counterpart
within the individual. Finally, we set the threshold such that
a fraction of the distances to negation sequences that are be-
low the threshold is � ≥ 0. By definition, clones can not span
multiple individuals. Therefore, by choosing a fixed value
for � > 0 (e.g. � = 0.01) we allow a fraction of false-positive
rate roughly equal to �. This heuristic aims for high speci-
ficity, which is approximately 1 − �. We present an example
of such distribution along with the estimated threshold in
Figure 2.

Simulation of clonal expansions

To generate artificial repertoires with known clonal rela-
tionships, we first select clone representatives from B cells
collected by (28) and filtered to maintain only naive se-
quences from healthy individuals as in (36). Next, we in-
fer tree topologies of each clone by applying Change-O-
buildPhylipLineage (version 0.4.5 (32)) to data from mul-
tiple individuals collected in (8). Finally, new artificial sam-
ples are generated by randomly adding mutations based
on the learned topologies using shmulateTree from the
SHazaM R package (version 0.3.0 (32)). We repeat this
process using repertoires from four subjects collected in
multiple sclerosis (MS) study (37). The corresponding four
datasets which contain samples from lymph nodes and are
denoted as MS2, MS3, MS4 and MS5 with around 100k,
150k, 200k and 200k sequences, respectively. Using the se-
quences from the four individuals we generate 74 simulated
datasets with ∼30k sequences each. To support the diver-
sity of the artificial datasets, we analyzed the properties of
the resulting 74 datasets and observed that the distributions
of sequence and junction lengths both follow Gaussian-
shaped distributions with means of 521 and 58 nucleotides,
respectively. Moreover, as evident in Figure 3, the generated
repertoire has a wide range of sequence and junction lengths
and diverse clone sizes.

RESULTS

We propose an alignment free method for identification of
clonally related sequences. The approach relies on a tf-idf
based distance that is invariant to translations of the se-
quence and is not restricted to the comparison of sequences
with the same junction length. The alignment free method
does not require alignment of sequences to germline V, D
or J genes. The only pre-processing required is removing
primers and truncating the sequences to a fixed length from
the 3′ end. Here, we evaluate the alignment free approach
using both simulated and real datasets. For the simulated
repertoires, the correct clonal assignments are known; this
allows us to compute the sensitivity, specificity, and positive
predictive values (PPV) for nodes and edges, where nodes
correspond to sequences and edges correspond to known
or inferred clonal relationships. We define node sensitivity
as the ratio between sequences identified as part of a multi-
sequence (i.e. expanded) clone relative to the total number
of sequences which belong to an expanded clone. We cal-
culate node PPV as the ratio between sequences correctly
retrieved as part of an expanded clone and the total num-
ber of sequences which are assigned to expanded clones. For

node specificity, we compute the fraction of sequences iden-
tified as singletons relative to the total number of single-
tons in the repertoire. Next, We define edge sensitivity as
the ratio between pairs of sequences (represented by edges)
correctly identified as clonally-related and the total num-
ber of sequence pairs which truly belong to the same clone.
We calculate edge PPV as the ratio between correctly as-
signed pairs of sequences and the total number of sequence
pairs assigned as clonally-related. For edge specificity, we
compute the fraction of identified unrelated sequence pairs
among all truly unrelated sequence pairs. Illustrative ex-
amples for the sensitivity, specificity, and positive predic-
tive values (PPV) computations are presented in Supple-
mentary Figure S6. To further evaluate the alignment free
method using real repertoires, we focus on a set of published
BCR repertoires from lymph nodes of four multiple sclero-
sis (MS) subjects referred as MS2-MS5.

idf normalization using a fixed sequence length improves sen-
sitivity and specificity

We start by evaluating how the idf normalization of k-
mer representation influences the performance of the align-
ment free approach. The alignment free method uses nu-
cleotide k-mers reweighed by a tf-idf normalization to find a
translation-invariant representation for BCR sequences. We
hypothesize that this representation captures sufficient in-
formation to allow efficient clonal identification. The term-
frequency tfs(k) counts the number of occurrences of each
k-mer; thus, the total count of terms per sequence s is af-
fected by the sequence length. As shown in Figure 3(A)
the length of the sequences range between 460 and 560 nu-
cleotides. In practice, the bounds of this range can vary de-
pending on the experimental library preparation method al-
though there will always be a distribution of lengths result-
ing from the V(D)J recombination process. Such variability
in the sequence length, in turn, translates to a variability in
the amount of k-mers present in each sequence. As shown
in (38), such variability may bias the tf-idf based representa-
tion. Specifically, applying cosine similarity favors retrieval
of short documents (sequences) over long ones.

In (38), the authors propose to use a pivoted normaliza-
tion to compensate for the length effect. Here we can exploit
the known structure of the BCR sequences to propose an
alternative solution by defining a representation that uses a
common number of nucleotides for all sequences. This can
be obtained by truncating each sequence using a fixed num-
ber of nucleotides (L) starting from the 3′ end. The length
of the sequence should be sufficient to cover the J segment,
the junction region, and part of the V segment. See Figure
4, in which we illustrate this truncation. We expect that a
good truncation should cover the junction region, as it is
highly diverse and has been used as a signature for identify-
ing clonally-related BCRs in several studies (14,15).

Given a sequence Si = [Si (1), Si (2), ..., Si (Ni )], where Ni

is the length of the ith sequence and Si(x) indicates its
xth nucleotide, we define the truncated sequence of size L
(number of nucleotides) as S̃

i = [Si (Ni − L + 1), Si (Ni −
L + 2), ..., Si (Ni )]. First, from the 74 artificial datasets, we
use a subset of 20 repertoires and seek an optimal value for
L, the length of the sequence used for the tf-idf representa-
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Figure 3. Statistical properties of the 74 artificially generated datasets. (A) The distribution of sequences length. (B) The distribution of junction lengths.
(C) The distribution of clone size (number of unique sequences).

Figure 4. Schematic representation of a BCR sequence. The alignment free method uses a fixed number of nucleotides (L) from the 3′ end of the sequence
after barcode and primer removal. Different repertoires use different library preparation procedures; thus, the starting position (Sp) may vary and the
sequence length L should be adjusted for each repertoire to capture the junction region.

tion, and for k the number of base pairs used for the k-mer
representation. The remaining 54 datasets will be used later
to evaluate the method’s performance. To compare the per-
formance across different values of L and k, for each value
of L in the range [100,190] and k ∈ {2, ..., 9} we first tune
the clustering distance threshold to obtain 99% specificity.
Then we evaluate the sensitivity and PPV. Based on statis-
tics of aligned sequences from the MS dataset, we expect
that this range of lengths will be sufficient to cover all of
the J segment along with the adjacent junction region (see
Figure 5 (A)). As depicted in Figure 5(B), when L is in the
range [120,150] the node sensitivity is peaked. Furthermore,
increasing the value of k improves the performance, but also
increases memory and computational requirements. The
node PPV in this experiment remains higher than 0.99. For
the rest of the experiments, we use L = 150 and k = 5 which
are sufficient for a node sensitivity >0.98.

Next, we compare the performance of the alignment free
method using three different variants of the tf-idf represen-
tations. The first term entitled full-seq, in which the tf-idf
is applied to the full sequence (with variable length). The
second, referred as tf in which only the tf normalization is
applied to a fixed part of the sequence with length L = 150.
The last, named tf-idf, inputs a fixed part of the sequence
as tf does, but uses both the tf and idf normalizations. As
in the field of NLP, we speculate that the idf normalization
will help by up weighting the unique k-mers, which repre-
sent the diverse junction region derived from V(D)J recom-
bination as well as unique SHM that are shared by clonal
relatives. At the same time, the idf should down weight the
common k-mers, which correspond to the unmutated V, D,
and J gene sequences. As in the previous experiment, we use
a threshold that achieves 99% specificity and evaluate the
sensitivity of the alignment free method. By applying the tf-
idf to full-seq we obtain ∼ 93% sensitivity, using a fixed part
of the sequence improves the performance to ∼ 99%, while

without the idf normalization the sensitivity is ∼ 97.5% (see
Figure 5 (C))

The alignment free has high sensitivity, specificity, and PPV

Next, we compare the overall performance of the alignment
free method to the performance of a widely-used junction-
based distance method (14) (see Supplementary material for
more details) using the remaining 54 simulated repertoires.
Comparing to a state-of-the-art-method allows us to evalu-
ate whether the alignment step (along with gene assignment
and sub-grouping) is necessary for accurate clonal assign-
ment.

To compare the two methods in terms of sensitivity, speci-
ficity, and PPV, we first apply the junction-based distance
method (describe in the Methods section) and evaluate
performance. For the alignment free method we tune the
threshold using the negation approach aiming for a node
specificity value of 99.9% using negation sequences that
are randomly selected from (37) as functional BCRs that
express either IGHG or IGHM constant regions and do
not have any indels. We assign clones based on the esti-
mated threshold and evaluate the alignment free method’s
node sensitivity, specificity, and PPV values. The alignment
free method achieves ∼4% higher node sensitivity compared
with the junction-based distance method, while maintain-
ing similar node specificity and PPV (values presented in
Figure 6 (A)). However, the junction-based distance method
outperforms the alignment free method (see Figure 6 (C))
in terms of edge sensitivity, in part because large clone are
sometimes split into smaller groups by the alignment free
method.

In the Supplementary material we qualitatively demon-
strate the efficacy of the negation approach in controlling
the false positive rate (specificity). First, in Supplementary
Figure S7 we present the distributions of estimated thresh-
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Figure 5. (A) 150 nucleotides is sufficient to cover the junction in most sequences. The number of nucleotides from the start of the junction to the 3′ end was
calculated for each sequence of 20 artificial repertoires. Note that this count includes additional base pairs from the constant region between the J region
and the primer (see Figure 4). (B) Comparing the node sensitivity based on different number of nucleotides (L) and different k-mers values. The threshold
is tuned to keep the specificity constant (0.99). The node PPV remains higher than 0.99 across all values of L and k presented above. (C) Performance
comparison for three different settings; tf-idf applied to the full sequence (full-seq), tf applied to L=150 nucleotides from each sequence (tf) and tf-idf
applied to L=150 nucleotides from each sequence (tf).

Figure 6. (A) Performance comparison of the alignment free method against the junction-based distance based on 54 artificial datasets. We evaluate each
approach by measuring node sensitivity, specificity and PPV. (B) Performance comparison using the same 54 artificial datasets but evaluating edges sen-
sitivity, specificity and PPV. (C) A run time comparison in minutes between the standard junction-based pipeline (red line) and the proposed alignment
free procedure (light blue line). The analysis is based on sequences from the simulated repertoires described in the main text (see Section Simulation of
Clonal Expansions). The comparison was performed on Yale’s High Performance Computing, using one node. Each node has 20–36 CPU cores with a
working frequency of 1.86 GHz. The junction-based procedure involves the application of IgBlast to every sequence followed by the junction-based clonal
assignment method (using Change-O-DefineClone function from the SHazaM R package (32)). The alignment free procedure involves cloning first based
on the tf-idf representation followed by IgBlast applied to one sequence per clone.

olds using negation sequences from two independent stud-
ies: (24) and (37). The two distributions overlap, and have
means of 0.29 and 0.28 using negations from (24) and (37),
respectively. This suggests that the negation approach is not
very sensitive to the precise data set used. Next, in Supple-
mentary Figure S7(c) we compare the estimated node speci-
ficity to the true node specificity computed based on the sim-
ulated repertoires. The results indicate that the node speci-
ficity estimated by the negation approach is highly corre-
lated with the true node specificity, but has a slight down-
ward bias.

One advantage of the alignment free method is that it does
not require running the full repertoire though a V(D)J as-
signment program like IgBlast. However, once a clone is
identified, it is still important to determine the V, D and J
gene assignments for biological interpretation. To achieve
this, we randomly select a clone representative that does
not contain non-ACGT characters (gaps or N’s) and run
it through IgBlast for gene assignment. Thus, gene assign-
ment is performed as a final step and is only applied to a
subset of sequences. This can save computational resources
as carrying out V(D)J assignment once per clone reduces

the number of sequence alignments and gene assignments
required. Next, we perform a run-time comparison between
the two pipelines. The results (presented in Figure 6 (C))
suggest that for a repertoire of 20,000 sequences a pipeline
based on the alignment free method can save approximately
half of the computational resources.

In (14,20) it was observed that the ability to correctly
identify clonal relationships drops for BCRs with shorter
junction lengths. This drawback was improved in (15) us-
ing spectral clustering with an adaptive distance thresh-
old. Here, since we use a single (fixed) threshold to iden-
tify clones, we expect that the performance of the alignment
free method will deteriorate for sequences with shorter junc-
tions. To evaluate how the length of the junction affects the
alignment free method, we apply it to the simulated reper-
toires, and compute the node sensitivity, specificity and PPV
for four different ranges of junction length (LJ), namely
(0,45), [45,54), [54,63) and [63,90]. These ranges were se-
lected as they separate the data to approximately equal size
subsets. As evident in Figure 7, the alignment free method
indeed achieves higher performance when focusing on se-
quences with longer junctions.
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Figure 7. The alignment free approach performs better for sequences with longer junctions. (A) The node sensitivity, (B) node specificity, and (C) node PPV
as a function of the junction length (LJ) evaluation using 54 artificial repertoires. Square marker correspond to performance on each individual dataset,
while star markers represent the mean value.

The alignment free method has low false-positive rates on real
repertoires

In this section, we compare the alignment free ap-
proach to the junction-based distance method on a set
of experimentally-derived human repertoires. We use pre-
viously published sequencing data from four MS sub-
jects (37) (MS2, MS3, MS4 and MS5). In three of these
datasets (MS3-MS5), the automatic distance threshold
identification applied by the junction-based distance method
(SHazaM-findThreshold (32)) fails, as the distance-to-
nearest distribution of these samples is not bimodal. There-
fore, following (14) for the junction-based distance method,
we use the threshold that was estimated based on MS2 to
identify clones in MS3-MS5. The same lack of bimodality
appears when evaluating the distance-to-nearest of the tf-idf
representation. To estimate the threshold, we use the nega-
tion method (explained in the Methods section) with naive
sequences from (28). The negation threshold is tuned to ob-
tain ∼ 99% specificity based on MS2. Finally, to have the
alignment free method consistent with the setting in (14), we
use the same threshold from MS2 for clonal assignments in
MS3-MS5.

To compare the clonal assignments of the alignment free
to the assignments made by the junction-based method, we
compute the normalized mutual information (NMI) be-
tween the clonal assignment of both methods. The NMI
measures how well the two clonal assignments predict one
another, and has a highest possible value of 1. As appears in
Table 1, the NMI between assignments for all the individ-
uals is high (>0.93), which indicates a high consistency be-
tween both clonal assignments methods. As a complemen-
tary evaluation, we show that the distribution of clones size
is consistent across methods for all four individuals (see Fig-
ure 8).

To evaluate the false-positive rates of the alignment free
method on real data, we rely on the fact that clones can-
not be shared across different individuals. This is because
clonally related cells develop from a common ancestor
with a single V(D)J germline rearrangement. The false-
positive rates are evaluated by first computing the tf-idf
based distance-to-nearest sequences across all pairs of in-
dividuals in the MS dataset (see Figure 9). Next, we ap-
plied the negation approach to automatically estimate the
distance threshold (described in the Methods section) by

Table 1. Properties of clones identified by the alignment free method. NMI
refers to the Normalized Mutual Information between clonal assignments
made by the alignment free method compared to the junction-based dis-
tance method. We also determined the percentage of clones with members
expression non-unique V or J genes, or non-unique junction lengths

MS-2 MS-3 MS-4 MS-5

NMI (with JB) 0.98 0.96 0.96 0.93
Non unique V [%] 0.008 0.008 0.006 0.002
Non unique J [%] 0.038 0.036 0.054 0.014
Non unique Jun. [%] 0.11 0.053 0.027 0.025

comparing sequences from individuals in the MS data to
naive sequences from (28). Here the threshold is tuned to
achieve a 1% false positive rate based on the negation se-
quences (i.e. aiming for 99% specificity). Clones are defined
by cutting the hierarchy based on the estimated threshold,
and we count the fraction of clone members from mixed
individuals. This portion provides an estimate of the false-
positive rates in the MS data. We apply this procedure to
all pairs of individuals in the MS data and observe that the
false-positive rates are lower than 0.5% (see Table 2).

The alignment free method identifies novel clonal relation-
ships

As the alignment free method is not restricted to a fixed
junction or common V or J gene assignments it has the po-
tential to retrieve novel clonal relationships. Here, we evalu-
ate whether the alignment free method identifies such novel
relationships in real data. Specifically, we identify clones
with multiple V and J gene assignments (when such assign-
ments are made on a sequence-by-sequence basis) or non-
unique junction lengths. First we turn our attention toward
estimating positive predictive value (PPV) of the alignment
free method when used on real repertoires.

Clone members evolve from the same germline; there-
fore, they should all share the same V and J genes. We use
this property to bound the PPV value of the alignment free
method. Based on repertoires from the MS study, we ob-
serve that the number of clones identified with non-unique
J genes is < 0.06% of the total number of identified clones
(see the full comparison in Table 1). More significantly, we
found that even though we do not use the junction length
and only use a small portion of the V gene, the percentage
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Figure 8. High clustering consistency between the junction-based distance (14) and alignment free methods using sequences from four individuals with
MS (8). A comparison between the distributions of clone sizes identified by both methods, (A)–(D) corresponding to MS2–MS5. The y-axis indicates the
number of clones identified with a specific size (x-axis).

Figure 9. Distribution of distance-to-nearest in the tf-idf space. Distances were computed between sequences within one subject (above the x-axis) and
between pairs of subjects (below the x-axis), for three pairs of subjects in the MS dataset. The three complement pairs are presented in Supplementary
Figure S5.

Table 2. The alignment free approach was applied to pairs of individ-
uals (MS2-MS4 from (8), rows and columns) and the percentage of se-
quences predicted to be part of clones that span individuals was calculated.
These clonal relationships are considered false positives, as clones cannot
be shared across individuals.

MS-2 MS-3 MS-4 MS-5

MS-2 NA 0.34 [%] 0.23 [%] 0.27 [%]
MS-3 0.34 [%] NA 0.032 [%] 0.012 [%]
MS-4 0.23 [%] 0.032 [%] NA 0.014 [%]
MS-5 0.27 [%] 0.012 [%] 0.014 [%] NA

of sequences with non-unique V genes or junction lengths
is also low (< 0.12%). If we consider these clonal relation-
ships as errors, they provide an upper bound for the PPV
in the MS dataset. However, it is possible that these clonal
assignments are correct. For example, sequences with differ-
ent V or J gene annotations in the same clone could result
from incorrect assignments by IgBlast. Such relationships
are possible, as the accumulation of SHM can make a BCR
derived from single V or J genes seem to stem from distinct
V or J genes. Clonal relatives may also have different junc-
tion lengths due to the occurrence of indels, which can ac-
cumulate as a part of normal SHM (39).

To further evaluate whether we have identified true clonal
relatives whose initial V or J gene assignments were incor-
rect or if the non-unique V or J gene assignments are, in
fact, false positives, we use a normalized Levenshtein dis-
tance (40). The Levenshtein distance (also termed edit dis-
tance) finds the minimal number of single edits required to
change one sequence to the other. In contrast to the align-
ment free approach, this comparison takes into account the
exact locations in the BCR, and it therefore more accurate
than the tf-idf based distance. We note that a direct appli-
cation of Levenshtein distance to all pairs of sequences is

computationally prohibitive. Specifically, for a repertoire of
size N, with sequences of length m complexity is O(Nm)2.

In Figure 10, we first focus on clones with non-unique
V or J gene assignments, we present a histogram of a nor-
malized Levenshtein distance (see definition in the Supple-
mentary material and Supplementary Figure S1) between
the pairs of closest sequences with different V or J gene as-
signments. As a background test, we select random groups
of sequences, consisting of the same number of sequences
as in the retrieved clones. All sequences in such a back-
ground group share a V and J gene (majority group) ex-
cept one sequence with a different gene (minority sequence).
Then, we compute the smallest distance between the mi-
nority sequence and all sequences in the majority group.
The background distribution represents a histogram of such
nearest distances (see Supplementary material and Supple-
mentary Figure S2 for more details on this procedure). As
evident from Figure 10 (A) and (B), the majority of the
clones composed of sequences with non-unique V or J gene
assignments identified by the alignment free method have
a low distance-to-nearest (relative to the background dis-
tribution) when comparing to randomly chosen sequences
with different V or J assignments. This supports that a
non-negligible portion of the identified sequences are in-
deed clonally-related, and may have diverged due to SHM.
Furthermore, in the Supplementary material, we recompute
the distance-to-nearest between the junction part of the se-
quences (see Supplementary Figure S3), and observe similar
low values (relative to the background distribution).

Next, in Figure 10 (C), we show that the distribution
of distance-to-nearest among clones with multiple junction
lengths is also low (compared to the background distribu-
tion), which explains why these sequences were pulled to-
gether. A complementary junction-based comparison shows
that some of these groups might contain members with
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Figure 10. Evaluation of clones with non unique V gene, J gene or junction length. We use the normalized Levenshtein distance (see definition in the
Supplementary material) to asses clones with non-unique V, J, or junction length. (A) Distribution of Levenshtein distance from each sequence to its
nearest non-identical neighbor within clones with non-unique J gene assignments (B) or non-unique V gene assignments, or (C) non unique junction
lengths. For the background distributions, we generate artificial groups of sequences that share the same V gene, J gene and junction characteristics, and
include an additional sequence that differ by one of these characteristics. See supplementary material Supplementary Figure S2 for additional details on
this computation.

Figure 11. Tree topologies inferred from clones that include members with multiple junction lengths as determined by the alignment free method (A–C).
Branch numbering indicates number of shared mutations, node numbering represents the length of the junction. The germline sequence is colored in black
and light blue represents the minority junction length sequences. (D) The distribution of the minimum number shared mutations between sequences with
different junction lengths within each clone. The background distribution is computed by sampling random groups of sequences that share the same V
and J genes but different junction lengths.

highly diverse junctions (see Supplementary material). To
further evaluate clones with non unique junction lengths,
we study the structure of their phylogenetic trees. Lineage
trees were constructed for each clone using Change-O-
buildPhylipLineage (version 0.4.5 (32)). The inferred tree
topologies (see Figure 11) show that these clones have a
non-negligible amount of shared mutations relative to the
germline sequence. This is a positive indication that even
though these clones have sequences with different junc-
tion lengths, they are likely to have evolved from a com-
mon mutated ancestor. Furthermore, the average number
of minimal shared mutations across the clones with multi-
ple junction length is 7.5 (full distribution appears in Figure
11 (D)). Finally, to corroborate that the sequences presented
in Figure 11 have likely evolved from a common ancestor,
we present a multi-sequence alignment of these sequences
(see Supplementary Figure S4). These results demonstrate
the potential of the alignment free method in retrieving
clonal relationships between sequences with different junc-
tion lengths, or sequences that were assigned to different V
or J genes when analyzed individually.

DISCUSSION

B cells play a crucial role in the adaptive immune system.
Their ability to recognize and efficiently respond to antigens
relies on two diversification mechanisms. The first occurs at
an early stage of maturation and acts by joining V and J
genes (and D gene for heavy chains) to create a functional

antibody receptor. The second part of diversification occurs
in the germinal center trough SHM; this step generates a
diversified group of clonally related B cells. A critical step in
the analysis of high throughput B cell receptor sequencing
data is the identification of groups of such clonally related
B cells.

We have presented an alignment free method for clonal
identification. The approach uses a nucleotide k-mer rep-
resentation to define a term frequency-inverse document
frequency (tf-idf) based distance. This distance is invari-
ant to the exact locations of the k-mers in the BCR se-
quence; thus, it allows us to bypass the V(D)J alignment
step. A second advantage of the alignment free method is
that we can identify clonally-related sequences with mul-
tiple junction lengths, which can be generated though the
accumulation of indels and can be important in affinity
maturation to some pathogens. To evaluate the capabili-
ties of this new procedure, we generate simulated reper-
toires with known clonal relationships between all of the
sequences. Using these repertoires, we demonstrate that the
alignment free method has high node sensitivity, specificity
and PPV. Furthermore, our results suggest that by perform-
ing the V(D)J gene assignment after clonal identification,
more clone members are retrieved.

We apply the alignment free method to real repertoires
collected from four MS subjects. These repertoires lack
a correct known clonal assignment; nonetheless, two ob-
served properties suggest a low false positive rate; a low fre-
quency of identified clones containing sequences with dif-



e21 Nucleic Acids Research, 2021, Vol. 49, No. 4 PAGE 10 OF 11

ferent V or J gene assignments, and a low incidence of clones
shared across individuals. These features are expected to be
enriched among potential false positive relationships. How-
ever, it is likely that at least some of them result from in-
correct V or J gene assignments by IgBlast, in which cases
the alignment free method identifies clone members which
would be lost by other approaches.

The library preparation of the MS data is fairly typical;
in other experimentally-generated repertoires the precise lo-
cation of primers may differ and the number of nucleotides
required for the tf-idf representation (L) may vary. For more
information, see Figure 4, in which we describe the differ-
ent parts of the BCR and discuss the variability that may
arise from different library preparation processes. Our ex-
periments demonstrate that using tf-idf and restricting to a
fixed part of the sequence improves node sensitivity, speci-
ficity, and PPV values. Nonetheless, the fixed-length used
(L) should be adapted to the library preparation technology
of each repertoire. Specifically, L should be large enough
such that it covers the full junction region (counting nu-
cleotides from the 3′ end). In Figure 5(A) we present the
distribution of the number of nucleotides required to cover
the junction region based on 20 artificial repertoires.

The final step of the alignment free method requires clus-
tering sequences into clonal groups. Here, we identify these
groups by thresholding the dendrogram of distances be-
tween sequences. We implement this hierarchical cluster-
ing procedure using a fixed threshold, and we optimize
this threshold using negation sequences. By computing the
distance-to-nearest negation sequences, we optimize a sin-
gle threshold to obtain high specificity. As demonstrated
using simulated repertoires, the performance of the align-
ment free using a single threshold deteriorates when focus-
ing on sequences with short junctions. A natural extension
of this work could alleviate this shortcoming by considering
multi-scale thresholds. One example for such solution was
presented in (15), where the authors use spectral clustering
with an adaptive threshold to identify the clones.

Overall, we have developed an alignment free clonal iden-
tification method using tools form natural language pro-
cessing. We demonstrate using artificial and real repertoires
that the alignment free method compares to a state-of-
the-art distance-based method, in terms of node sensitiv-
ity, specificity and PPV. This shows that the fundamental
task of identifying clonal groups does not have to rely on
V or J gene assignments. Finally, as the method is capable
of identifying clonally-related BCRs with different junction
lengths it represents an important improvement in clonal
assignments for AIRR-seq analysis.
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