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Abstract

Background: The accurate prognosis definition to tailor treatment for early luminal invasive breast carcinoma
patients remains challenging.
Materials and Methods: Two hundred fourteen early luminal breast carcinomas were genotyped with single
nucleotide polymorphisms (SNPs) array to determine the number of chromosomal breakpoints as a marker of
genomic instability. Proliferation was assessed by KI67 (immunohistochemistry) and genomic grade index
(transcriptomic analysis). IHC3 (IHC4 score for HER2 negative tumors) was also determined.
Results: In the training set (109 cases), the optimal cut-off was 34 breakpoints with a specificity of 0.94 and a
sensitivity of 0.57 (Area under the curve (AUC): 0.81[0.71; 0.91]). In the validation set (105 cases), the outcome of
patients with > 34 breakpoints (11 events / 22 patients) was poorer (logrank test p < 0.001; Relative Risk (RR): 3.7
[1.73; 7.92]), than that of patients with < 34 breakpoints (19 events / 83 patients).Whereas genomic grade and KI67
had a significant prognostic value in univariate analysis in contrast to IHC3 that failed to have a statistical significant
prognostic value in this series, the number of breakpoints remained the only significant parameter predictive of
outcome (RR: 3.47, Confidence Interval (CI [1.29; 9.31], p = 0.014)) in multivariate analysis .
Conclusion: Genomic instability, defined herein as a high number of chromosomal breakpoints, in early stage
luminal breast carcinoma is a stronger prognostic marker than proliferation.
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Introduction

A major challenge of breast cancer treatment is to accurately
identify patients in whom adjuvant therapy can be safely
avoided [1]. Over the past decade, five molecular groups of
invasive breast carcinoma have been identified, each
associated with a different outcome [2]. Triple-negative
carcinomas are recognized as the group associated with the
poorest prognosis and efficiently treated with adjuvant
chemotherapy [3,4]. Identification of high-risk patients in this
group by means of the classical clinicopathological parameters
therefore remains difficult. As a result of mammography
screening, the majority of breast cancers are now diagnosed at
an early luminal stage with no axillary lymph node metastasis,

and HER2-negative. The benefit of medical adjuvant treatment
in these patients also remains controversial [1]. While luminal
carcinoma patients display various outcomes according to their
tumor proliferation rate and clinical stage, they harbor a
constellation of driver gene mutations and chromosomal
alterations [5–9].

Proliferation assessed either by mitotic index according to
the Ellis and Elston recommendations [10] or KI67
immunostaining improves the prognostic definition of luminal
breast carcinoma patients [11]. However, molecular methods
such as genomic grade index (Mapquant®)[12] have been
proposed as a more accurate tool to evaluate proliferation. This
technique has been developed to classify grade 2 tumors into
good and poor outcome groups. IHC4 score, an algorithm
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inferred from ER, PR, KI67 and HER2 immunostainings has
been recently proposed as an interesting alternative tool to
refine breast cancers prognostic. Its prognostic value was
found to be equivalent to that of the OncotypeDX® for a lower
cost [13].

Pangenomic analyses have provided substantial data
describing breast carcinoma patterns of genomic alteration
[9,14,15]. These analyses, consolidated by recent exome-
sequencing results, have also shown that genomic alterations
are different according to the molecular or histological types of
breast carcinomas [5–7].

The prognostic value of genomic instability for breast cancer
has been evaluated either by transcriptomic signature enriched
with genes involved in chromosomal integrity maintenance
[16–19] or inferred evaluation of ploidy based on fluorescent in
situ hybridization [20].

We and others have proposed that the level of genomic
complexity within breast carcinomas could contribute to define
patient outcome [16,20–23]. In our previous work, we
determined that the number of breakpoints had a prognostic
power to identify high-risk T1-T2 N0 invasive ductal carcinomas
of the breast. We used an in-house array-comparative genomic
hybridization (CGH) tool to define a CGH classifier. This
classifier was based both on the number of chromosomal
breakpoints together with three regions (2p22.2, 3p23 and
8q21-24) to discriminate tumors associated with good and poor
outcome. The sensitivity of this classifier was 66%, with a
specificity of 84% and an accuracy of 78% [21].

The objective of the present study was to validate, in an
independent series, the prognostic value of our previously
established genomic signature. In this study, we used a
different tool, the SNPs array (SNP 6.0 array, Affymetrix®), as
this array has a higher resolution than the array CGH used in
our previous study [21] and compared it to proliferation
prognostic value. We focused our analysis on early luminal
HER2-negative node-negative breast cancers, i.e. in the
population of patients in whom prognosis assessment remains
challenging, in whom treatment must be adapted to tumor
biology and decreased as far as possible to minimize the side
effects of chemotherapy.

Materials and Methods

Patients and tumors
All experiments were performed retrospectively and in

accordance with the French Bioethics Law 2004-800, the
French National Institute of Cancer (INCa) Ethics Charter and
after approval by the Institut Curie review board and ethics
committee (Comité de Pilotage of the Groupe Sein). In the
French legal context, our institutional review board waived the
need for written informed consent from the participants.
Moreover, women were informed of the research use of their
tissues and did not declare any opposition for such researches.
Data were analyzed anonymously.

This analysis was confined to ER-positive, node-negative
early (T1-T2 tumor smaller than 30 mm), HER2-negative breast
cancers because they now represent the majority of breast
carcinomas at diagnosis as a result of systematic screening

procedures in western countries [24]. Tumours from the two
sets (training and validation) were selected among the 7469
tumor samples from patients treated between 1989 and 1999
with a conservative surgery followed by radiation therapy at the
Institut Curie for T1T2 breast carcinoma. The selection criteria
for the two sets were small size (

< 3cm), node-negative, invasive ductal breast carcinomas
ER + HER2-, node negative. Patients older than 75 years, with
previous personal history of cancer, with familial history of
breast cancer, with multifocal or bilateral tumours, or with initial
metastatic disease were excluded from the study. The final
selection was based on the availability and quality of tumor
samples in our tumor bank. These samples were collected from
fresh surgical specimens by a pathologist within one hour after
surgery, flash-frozen in liquid nitrogen and stored at -80°C. The
Figure 1 represented the workflow for retrospective tumor
selection among available frozen samples collected
prospectively between 1989 and 1999. Training set consisted
of a case-control group composed of 109 tumors. The median
follow-up for the patients of this good prognosis group was 10.9
years, (95% CI: 10.4-11.5). Seventy-nine patients were
metastasis-free at five years (A good prognosis group,
controls). Thirty patients developed metastasis before four
years (Bpoor prognosis group, cases) with a median time to
metastasis of 2.3 years (interquartile range: 1.5-3.4). None of
the patients had received neoadjuvant or a

djuvant chemotherapy, but six patients had received
adjuvant hormone therapy.

The validation set was composed of 105 tumors samples
from 105 patients. Median follow-up was 10.5 years, (95% CI:
10.1-10.9). Tumors were invasive ductal carcinomas smaller
than 30 mm, ER-positive, HER2-negative, and node-negative.
None of the 105 patients had received neoadjuvant or adjuvant
chemotherapy and ten patients had received adjuvant hormone
therapy. Thirty out of the 105 patients developed loco-regional
or contralateral relapses or experienced a metastatic event (8
out of the 30 patients).

All tumors were retrospectively reviewed by pathologists
experienced in breast pathology (XSG and AVS) for the
purpose of this study.In particular, histoprognostic grade was
assessed retrospectively according to the recommendations of
Elston and Ellis [25].

Immunostaining for Estrogen-receptor (ER),
progesterone-receptor (PR), HER2 and KI67
determination

ER, progesterone receptor, HER2 receptor and KI67 status
were assessed by immunohistochemistry on representative
formalin-fixed tumor blocks, according to previously published
protocols[26] (see Data S1 for antibody details). The
semiquantitative KI67 assessment was performed as
previously published [27] and as recommended [28]. A cut-off
of 14% was used to define tumors with a high KI67 score
(according to St Gallen recommendations [29] and cut-off for
molecular classification[30]. Internal (normal glands
surrounding the carcinoma) and external controls (for ER, PR
and HER2: tissue-microarrays composed of tumors with known
ER, PR status, and known numbers of HER2 gene copies
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together with normal mammary tissue; for KI67: normal lymph
node with germinal centers as positive controls) were included
in all immunostaining experiments.

Following Cuzick’s recommandations, the IHC4 was
determined and adapted for HER2 negative tumors (named
“IHC3”) and, as KI67 was assessed manually, in the formulae,
the KI67 value was rescaled [13].

DNA and RNA analyses
All tumor samples contained more than 50% of cancer cells,

as assessed by Hematein & Eosin staining of histologic
sections of the frozen samples used for nucleic acid extraction.
DNA and RNA were extracted according to a previously
described phenol-chloroform protocol [27,31].

SNP6.0 analyses for tumor genomic complexity
evaluation

The Affymetrix GeneChip Human Mapping 6.0® was
normalized using Affymetrix Genotyping Console® (version
GTC 3.0.1) (.cel files and data available under accession
number GSE48064 in GEO database).The signal from SNP
probes was then segmented using Colibri [32]. A first
segmentation round was performed to identify and discard
outlier probes giving rise to singleton segments. The number of
breakpoints was estimated according to the Zhang and
Siegmund’s BIC-based model selection criterion (Data S2) [33].

The optimal segmentation in terms of least-square fit was
recovered via dynamic programming. The pruned version
proposed in [[32]] can be used to achieve this optimization step
with almost linear complexity. We used the implementation
available in the cghseg package [34] via the function

Figure 1.  Flowshart of patients and tumor’s selection and design of the study.  
doi: 10.1371/journal.pone.0076496.g001
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segmeanCO. The training set was used to assess the link
between the number of breakpoints and the tumor group (A:
late onset versus B: early onset metastatic or relapse event).
The breakpoint number (assessing the number of
chromosomal segmental alterations) cut-off able to accurately
identify B tumors (poor prognosis tumors) was determined
using the Youden index. This index is defined as the threshold
that maximizes the sum of sensitivity and specificity. The
number of breakpoints was used as a marker of genomic
complexity.

Expression analyses and determination of genomic
grade index

After RNA quality control and according to a previously
published protocol [27], 94 of the 105 validation cases meeting
our selection criteria for node status, tumor size, ER and HER2
status, were hybridized onto U133 plus 2.0 Affymetrix® chips.
Transcriptomic data were normalized using RMA (under R
software 2.13.2 version). The genomic grade index (GGI), a
continuous variable, was calculated using the MapQuant DxM
protocol, according to Sotiriou et al [12] and as previously
described [27], and was defined as GGI = scale [sum (Probe
Sets up in Grade 3 tumors-112 probe sets)- sum (Probe Sets
up in Grade 1 tumors-16 probe sets)- offset]. Scale and offset
are transformation parameters to standardize the genomic

grade index values. The MapQuant® GGI was then
standardized by setting the scale and offset parameters so that
the mean GGI of histologic Grade 1 tumors was -1 and that of
histologic grade 3 tumors was +1. The cut-off was set at 0.
Based on the value of the GGI, a genomic grade (Genomic
Grade 1 or Genomic Grade 3) was then attributed to each
tumor sample.

Results

Patients
Detailed patient and tumor characteristics are displayed in

Table 1. Training and validation sets comprised a large majority
of T1, grade 1 and 2 tumors.

In addition to the Elston and Ellis histoprognostic grade,
proliferation was also evaluated by KI67, IHC3 and genomic
grade index for 94 of the 105 tumors in the validation set. As
shown in Table 1, 45% and 60% of these tumors presented a
KI67 index less than 14% of positive cells and a genomic grade
index of 1, respectively.

Table 1. Clinico-biological characteristics of patients and tumors.

Characteristics Training set (n=109) Validation set (n=105)
Age (years)   
Means (min-max) 55.6 (36-75) 54.2 (40-69)
>50 74 (68%, 95%CI : 59%-77%) 68 (65%, 95%CI : 56%-74%)
<50 35 (32%, 95%CI : 23%-41%) 37 (35%, 95%CI : 26%-44%)

Size   
T1 77 (71%, 95%CI :62%-79%) 77 (73%, 95%CI : 65%-82%)
T2 32 (29%, 95%CI : 20%-38%) 28 (27%, 95%CI : 19%-35%)

Elston-Ellis grade   
I 63 (58%, 95% CI:49%-67%) 48 (46%, 95% CI : 36%-55%)
II 35 (32%, 95%CI:23%-41%) 41 (39%, 95%CI : 30%-48%)
III 9 (8%, 95%CI :3%-13%) 16 (15, 95%CI : 8%-22%)
Missing values 2 (2%) 0

Vascular invasion   
Yes 10 (9%, 95%CI:4%-14%) 20 (19%, 95%CI :12%-26%))

ER status (IHC)   
Positive 109 (100%) 105 (100%)

PR status (IHC)   
Positive 83 (76%, 95%CI:68%-84%) 80 (76%, 95%CI:68%-84%)

KI67   
< 14% nd 47 (45%, 95%CI:36%-55%)
> 14% nd 58 (55%, 95%CI:46%-64%)

Genomic grade   
GGI 1 nd 56 (60%, 95%CI:50%-69%)
GGI 3 nd 38 (40%, 95%CI:30%-49%)
Undetermined nd 11 (10.5%)

Min: minimum; max: maximum. GG: genomic grade; ER: estrogen receptors; PR: progesterone receptor; 95%CI: Confidence Interval.
doi: 10.1371/journal.pone.0076496.t001
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Assessment of genomic complexity with the number of
chromosomal breakpoints and definition of a classifier
within the training set

According to the segmentation protocol described above, the
numbers of breakpoints was determined in group A and group
B tumors of the training set and were compared. As shown in
Figure 2, the median number of breakpoints in group A tumors
was significantly lower (median value=7) than the median
number of breakpoints in group B (median value = 40.5)(95%
CI: -39.00 ;-14.00, p<0.001, Wilcoxon test).

An optimal cut-off of thirty-four breakpoints was defined to
assign each patient to a risk class, as the number of
breakpoints ensuring maximum sum of sensitivity (0.57 95%
CI: 39%-74%) and specificity (0.94 95% CI: 88%-99%), was

34. A tumor with more than 34 breakpoints was classified in the
high-risk complexity group, otherwise it was assigned to the
low-risk complexity group. In good prognosis group (no
metastatic event within five years), 74 tumors (74/79, 94% 95%
CI: 88%-99%) were considered to be low-risk complexity
tumors and 5 were considered to be high-risk complexity
tumors (5/79, 6% 95% CI: 0%-12%) whereas in poor-prognosis
group (metastatic relapse in less than four years), 13 tumors
were considered to be low-risk complexity tumors (13/30, 43%
95% CI: 26%-61%) and 17 tumors (17/30, 57% 95% CI:
39%-74%) were considered to be high-risk complexity tumors
(Table 2).

Figure 2.  Boxplot of the number of breakpoints within groups A and B from the training set.  The black line represents the
breakpoints median values (median = 7 in A group; median = 40.5 in B group). The bottom and top of the boxes represent the 25th
and 75th percentile respectively, whereas the box represents the interquartile range. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range from the box. The single point at the top of each boxplot represents the
maximum number of breakpoints within each group A and B respectively.
doi: 10.1371/journal.pone.0076496.g002

Table 2. Number of tumors with less or more than 34 breakpoints (Threshold) within A and B groups, specificity and
sensibility of tumor classification in the training set.

Groups Number of breakpoints Specificity Sensitivity
 < 34 (%) > 34 (%)   
A 74 (94) 5 (6) 0.94  
B 13 (43) 17 (57)  0.57

doi: 10.1371/journal.pone.0076496.t002
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Analysis of the complexity classifier produced a Receiving
Operating Characteristics (ROC) curve with a significant area
of 0.81 (95% CI: 0.71-0.91) (Figure 3).

Number of breakpoints is linked with histoprognostic
grade, genomic grade and KI67 labeling

In the validation set of this series of cases, a link between
grade (p<0.001; Kruskal-Wallis test), genomic grade (p<0.001,
Wilcoxon test), KI67 (p<0.001, Wilcoxon test) and the number
of breakpoints was observed.

The median number of breakpoints in the group of tumors
with a KI67 smaller than 14% and greater than or equal to 14%
were 5 and 17, respectively, (95% CI:-19-4) (Figure S1).

The Spearman correlation coefficient between genomic
grade index and number of breakpoints was 0.54 (p < 0.001)
(Figure S2).

Link between the number of breakpoints according to
the cut-off chosen and disease-free interval in the
validation set

To test the robustness of this cut-off, we determined disease-
free interval in the validation set and tested the correlation with
the number of breakpoints in univariate and multivariate
analyses taking into account clinicopathological and

proliferation markers such as grade, KI67 GGI and IHC3 (Table
3).

Whereas IHC3 score was not found statistically significant in
this series of tumors, the three proliferation markers,
histopronostic grade, KI67 and genomic grade index together
with the number of breakpoints were significantly associated
with disease free interval at a significance level of 10% in
univariate Cox analysis (Table 3). Interestingly, the number of
breakpoints remained the only significant parameter when
tested with grade, KI67 and genomic grade index in
multivariate Cox analysis (relative risk of 3.47, 95% CI:1.29–
9.31, p= 0.014, Wald test). Patients with more than 34
breakpoints experienced a statistically shorter disease-free
interval (Log rank test p<0.001), as determined by the Cox
model and Kaplan-Meier analyses (Figure 4a).

The number of breakpoints was significantly predictive of
metastasis-free interval

(
< 34 breakpoints: 4 events in 83 patients; > 34 breakpoints: 4

events in 22 patients (p=0.009, logrank test; RR: 5.29 [1.32;
21.26]) (Figure 4b).

Discussion

In this study, we assessed and validated the prognostic
power of a genomic complexity signature based on the number

Figure 3.  Receiving Operating Curve (ROC) curve for the number of breakpoints threshold determination.  Intersection of
dotted-lines = Youden index.
doi: 10.1371/journal.pone.0076496.g003
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of breakpoints determined with a pan-genomic SNP array in
early stage node-negative luminal HER2-negative invasive
ductal breast cancers. The number of breakpoints in this series
outperformed the prognostic value of histoprognostic grade,
KI67 index and genomic grade of the tumors.

Using high resolution genome-wide tools from different
platforms, Russnes and colleagues [22] showed that, within the
different molecular subtypes, qualitative genomic alterations
and complex arm aberration index identified tumors associated
with breast cancer-specific death. Others groups have shown
the prognostic value of chromosomal instability score evaluated
as the number of gains and losses assessed on SNP arrays,

either in ER positive or negative tumors [16,20,23]. However,
these analyses did not focus on early stage (T1 and small T2
N0) luminal tumors.

In our previous work, we have identified a DNA-based
genomic signature [21] on T1-T2 breast carcinomas but that
encompassed ER and HER2 positive and negative cases. In
the present study focused specifically on early stage luminal
breast carcinomas, we have further demonstrated the
prognostic value of the number of chromosomal breakpoints to
assess chromosomal instability using a SNP-based array. ER-
positive and HER2-negative, node-negative early stage breast
carcinomas are the commonest form of breast cancers in the

Table 3. Univariate and multivariate analyses for disease free-interval in the validation set.

Variables Univariate analysis Multivariate analysis

 Relative Risk (95% CI) p Relative Risk (95% CI) p
Age <=50 vs >50 years 0.94 (0.45-1.98) 0.873   
Pathological size >20mm vs <=20mm 1.11 (0.42-2.92) 0.827   
Grade II/III vs I 2.12 (0.99-4.5) 0.052 1.39 (0.52-3.70) 0.515

PR status Negative vs Positive 0.9 (0.38-2.1) 0.805   
Vascular invasion Yes vs No 1.36 (0.55-3.36) 0.512   
KI67(IHC) >14 vs < 14% 2.57 (1.16-5.68) 0.020 1.39 (0.48-4.08) 0.544

Genomic Grade GG3 vs GG1 2.59 (1,17-5.73) 0.019 1.16 (0.39-3.48) 0.788

IHC3 score (continuous) 1.01 (1.00-1.01) 0.204   
Number of Breakpoints >34 vs <34 3.7 (1.73-7.92) <0.001 3.47 (1.29-9.31) 0.014

vs: versus.
doi: 10.1371/journal.pone.0076496.t003

Figure 4.  Disease free-interval (a) and metastasis free-interval (b) analyses (Kaplan Meier analysis and log rank test) in
the validation set.  
doi: 10.1371/journal.pone.0076496.g004
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context of systematic mammography screening. Tailoring
treatment for these patients is mandatory but challenging [35].
The challenge is to identify poor prognosis patients when
classical anatomical parameters such as size and node status
are irrelevant and when the tumors are luminal [36]. The
specificity of this new DNA-based signature was increased
from 84% to 94%, which means that at initial diagnosis, this
signature can contribute to accurate identification of good
prognosis breast cancers, i.e. those with 34 breakpoints or
less. This signature takes into account the number of
breakpoints and not regions of gains or losses. Indeed, luminal
invasive carcinomas not otherwise specified demonstrate
highly heterogeneous genomic profiles [5] with numerous
chromosomal gains and losses, but which are never observed
in all cases in the same combination [14,22,34]. We therefore
preferred to develop a quantitative signature than a qualitative
assessment of the alterations. This approach is more easily
reproducible using a standardized bioinformatic tool that can be
applied in a customized fashion and is readily accessible [34].

Other authors and we have proposed the use of proliferation
as a powerful prognostic tool to identify those tumors with poor
outcome [27,28,36]. However, the present study showed that
the number of chromosomal breakpoints in multivariate
analysis remained the only statistically significant parameter to
identify poor prognosis early invasive luminal HER2-negative
and node-negative breast cancers, and was more reliable than
proliferation assessed by either grade, KI67, IHC3or genomic
grade.

Signature such as Oncotype DX® [37] has also been
proposed as a robust tool to classify luminal breast carcinomas
into three different prognostic groups. However, although the
proliferation set of genes is robust and based on five genes
encompassing KI67, the HER2 set of genes is more
controversial [38], it is of no value in HER2-negative
carcinomas. In addition, this test dramatically increases the
cost of the diagnostic procedure [39] and it adds little
prognostic information compared to the recently proposed
cheaper IHC4 test [13,40,41].

In that context, we propose that determination of the number
of breakpoints should help to refine the prognosis of early
stage breast tumors [21,22]. Even though, the DNA-based
signature is correlated with proliferation, it also assesses a
different level of biological alterations and provides the global
genomic profile of the tumor in a single experiment. It therefore
allows an identification of the regions of amplifications, some of
which encompass drivers genes that encode for druggable
targets [42]. Furthermore, recent developments of Affymetrix®

arrays performed with DNA extracted from paraffin-embedded
tissue provide promising and robust results like it has been
obtained with other arrays [43].

Conclusion

This study demonstrates that genomic complexity assessed
by SNPs arrays and determined as the number of breakpoints
can be used to predict the outcome of early stage luminal
HER2-negative invasive breast carcinomas. But the use of
chromosomal breakpoints number in clinical practice will
require a prospective validation of its prognostic value in larger
and multicentric series of breast cancer patients.
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