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Abstract

The effect of a mutation on fitness may differ between populations depending on environmental and genetic context, but
little is known about the factors that underlie such differences. To quantify genome-wide correlations in mutation fitness
effects, we developed a novel concept called a joint distribution of fitness effects (DFE) between populations. We then
proposed a new statistic w to measure the DFE correlation between populations. Using simulation, we showed that
inferring the DFE correlation from the joint allele frequency spectrum is statistically precise and robust. Using population
genomic data, we inferred DFE correlations of populations in humans, Drosophila melanogaster, and wild tomatoes. In
these species, we found that the overall correlation of the joint DFE was inversely related to genetic differentiation. In
humans and D. melanogaster, deleterious mutations had a lower DFE correlation than tolerated mutations, indicating a
complex joint DFE. Altogether, the DFE correlation can be reliably inferred, and it offers extensive insight into the genetics
of population divergence.
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Introduction
New mutations that alter fitness are the key input into the
evolutionary process. Typically, the majority of new muta-
tions are deleterious or nearly neutral, and only a small mi-
nority are adaptive. These three categories constitute a
continuum of fitness effects—the distribution of fitness
effects (DFE) of new mutations (Eyre-Walker and Keightley
2007). The DFE is central to many theoretical evolutionary
topics, such as the maintenance of genetic variation
(Charlesworth 1994) and the evolution of recombination
(Barton 1995), in addition to being key to applied evolution-
ary topics, such as the emergence of pathogens (Gandon et al.
2013) and the genetic architecture of complex disease
(Durvasula and Lohmueller 2021).

The DFE can be quantified by either experimental
approaches or statistical inference. Experimental approaches
measure the DFE using random mutagenesis (Elena et al.
1998) or mutation accumulation (Fry et al. 1999); however,
these approaches are limited to studying a small number of
mutations. Most of our knowledge regarding the DFE has
come from statistical inferences based on contemporary pat-
terns of natural genetic variation. In these inferences, genetic

data are typically summarized by the allele frequency spec-
trum (AFS; also known as the site frequency spectrum, SFS).
In some methods, a demographic model is inferred from the
AFS of putatively neutral variants, and the DFE is estimated
from the AFS of variants under selection, conditional on the
best fit demographic model (Eyre-Walker et al. 2006;
Keightley and Eyre-Walker 2007; Boyko et al. 2008; Kim et
al. 2017). In other methods, the background pattern of vari-
ation is accounted for by the inclusion of nuisance parameters
when fitting a DFE model to the AFS of variants under selec-
tion (Eyre-Walker et al. 2006; Tataru et al. 2017; Barton and
Zeng 2018). In an alternative approach, a recent study applied
approximate Bayesian computation to simultaneously infer
the DFE and a demographic model (Johri et al. 2020).
Moreover, a linear regression method can be used to infer
the DFE from nucleotide diversity (James et al. 2017). These
approaches has been applied to numerous organisms, includ-
ing plants (Chen et al. 2017; Huber et al. 2018; Chen et al.
2020), Drosophila melanogaster (Keightley and Eyre-Walker
2007; Castellano et al. 2017; Huber et al. 2017; Barton and
Zeng 2018; Johri et al. 2020), and primates (Boyko et al. 2008;
Huber et al. 2017; Kim et al. 2017; Ma et al. 2013; Castellano et
al. 2019).
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Using these inference methods, several studies have found
evidence for differences in DFEs among different populations
(Boyko et al. 2008; Ma et al. 2013; Kim et al. 2017; Castellano et
al. 2019; Tataru and Bataillon 2019). These studies, however,
have been limited by the implicit assumption that the fitness
effects of a given mutation in different populations are inde-
pendent draws from distinct DFEs. Moreover, these studies
only compared DFEs from the AFS of single populations and
therefore cannot investigate differences in fitness effects in
new environments after population divergence. Intuitively,
we expect the fitness effects of a given mutation in different
contexts to be correlated. Wang et al. (2009) experimentally
measured the fitness effects of twenty dominant mutations in
two environments in D. melanogaster and found a strong
positive correlation. But the generality of their results is
unclear, and it is not known what factors affect the strength
of the correlation.

Considering deleterious mutations, here we developed a
novel concept called the joint DFE of new mutations, which
can be inferred from the joint AFS of pairs of populations. We
then defined the correlation of mutation fitness effects be-
tween populations using the joint DFE. With simulation, we
showed that inferring the joint DFE and correlation requires
only modest sample sizes and is robust to many forms of
model misspecification. We then applied our approach to
data from humans, D. melanogaster, and wild tomatoes.
We found that the correlation of mutation fitness effects
between populations is lowest in wild tomatoes and highest
in humans. In D. melanogaster and wild tomatoes, we found
differences in the correlation among genes with different
functions. We also found that mutations with more delete-
rious effects exhibit lower correlations. Together, our results
show that the joint DFE and correlation of mutation fitness
effects offer new insight into the population genetics of these
species.

Results

Definition
To define the joint DFE, we considered two populations that
have recently diverged, one of which may have entered a new
environment (fig. 1A). We also considered that a mutation
has selection coefficient s1 in the ancestral population and s2

in the recently diverged population. For two populations, the
joint AFS is a matrix in which each entry i, j corresponds to
the number of variants observed at frequency i in population
1 and j in population 2 in a sequenced sample of individuals
from the two populations. Different combinations of s1 and s2

lead to distinct patterns in the joint AFS (fig. 1B). We refer to
the joint probability distribution for (s1, s2) as the joint DFE
(fig. 1C), and we refer to the marginal probability distributions
for s1 or s2 as the marginal DFEs for population 1 or popula-
tion 2, respectively. The observed AFS from a pair of popula-
tions results from integrating spectra for different values of s1

and s2 over the joint DFE.
Little is known about the shape of the joint DFE, so we

considered multiple parametric models. The best fit DFEs for
single populations tend to be lognormal or gamma

distributions (Boyko et al. 2008), although discrete distribu-
tions may sometimes fit better (Kousathanas and Keightley
2013; Johri et al. 2020). We first considered a bivariate lognor-
mal distribution (fig. 1C), because it has an easily interpretable
correlation coefficient. However, accurate numerical integra-
tion over the bivariate lognormal distribution becomes chal-
lenging when the correlation coefficient approaches one,
because probability density becomes concentrated in a small
number of sampled grid points (supplementary fig. S1,
Supplementary Material online). We also considered another
popular probability distribution for modeling DFEs, the
gamma distribution, but there are multiple ways of defining
a bivariate gamma distribution (Nadarajah and Gupta 2006).
We thus focused on a mixture model that consisted of a
component corresponding to perfect correlation with weight
w, and a component corresponding to zero correlation with
weight ð1� wÞ (fig. 1D). To limit the complexity of the
model, we assumed that the marginal DFEs were identical
for both populations. In this case, the correlation of the over-
all distribution is equal to the mixture proportion w. We thus
interpret and discuss w as a DFE correlation coefficient.

The DFE correlation profoundly affects the expected AFS
(fig. 1E). Qualitatively, if the correlation is low, there is little
shared high-frequency polymorphism. In this case, alleles that
are nearly neutral in one population are often deleterious in
the other, driving their frequencies lower in that population. If
the correlation of the joint DFE is larger, more shared poly-
morphism is preserved. To calculate the expected AFS for a
given demographic model and DFE, we first cached calcula-
tions of the expected AFS for a grid of selection coefficient
pairs. Assuming independence among sites, the expectation
for the full DFE is then an integration over values of s1, s2,
weighted by the DFE (supplementary fig. S1, Supplementary
Material online) (Ragsdale et al. 2016; Kim et al. 2017). We
based our approach on the fitdadi framework developed by
Kim et al. (2017), and our approach is integrated into our dadi
software (Gutenkunst et al. 2009). More detail can be found
in the Materials and Methods section.

Simulation
We focused our simulation studies on cases in which the
correlation of the DFE was high, because those cases turned
out to be most relevant to our empirical analyses.

To evaluate the precision of our approach, we first sto-
chastically simulated unlinked single nucleotide polymor-
phisms (SNPs) under a known demographic model
(supplementary table S1 and fig. S2, Supplementary
Material online) and a symmetric lognormal mixture model
for the joint DFE (fig. 1; eqs. 4 and 6). We then inferred the
three joint DFE parameters: the mean l and standard devi-
ation r of the marginal lognormal distributions and the DFE
correlation w. The demographic and joint DFE parameters for
these simulations were similar to those we later inferred for
human populations under a demographic model of diver-
gence, growth, and migration. When we fit the joint DFE to
these simulated data, we found that the variance of the in-
ferred parameters grew only slowly as the sample size de-
creased (supplementary fig. S3A, Supplementary Material
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online). This suggests that only modest sample sizes are nec-
essary to confidently infer the joint DFE, similar to how only
modest sample sizes are necessary to infer the mean and
variance of the univariate DFE (Keightley and Eyre-Walker
2010).

Because our inference approach focuses on shared varia-
tion, we expected precision to depend on the divergence time
between the populations. To test this, we simulated data sets
with sample size similar to our real Drosophila data and varied
the divergence time in the demographic model. We found
that the variance of the inferred l and r parameters was
always small (supplementary fig. S3B and C, Supplementary
Material online), but the variance of the inferred DFE corre-
lation w depended on the divergence time (supplementary
fig. S3B and C, Supplementary Material online). That variance
in w was large for small divergence times (T ¼ 10�4). This is
expected, because in this case selection has had little time act
differently in the two populations. That variance in w was also
large if the divergence time was large and there was no mi-
gration between the populations (supplementary fig. S3C,
Supplementary Material online). This is also expected, be-
cause in this scenario there is little shared variation between
populations. However, the variance of the inferred DFE cor-
relation w was small when the divergence time was between
10�3 and 10� (supplementary fig. S3B and C, Supplementary
Material online). Moreover, the variance of w was not large
unless FST in the simulated data was substantially larger than
found in the empirical data we analyzed. Ancestral state
misidentification could bias our inference (Baudry and
Depaulis 2003). To account for this, in our empirical analyses
we included a model parameter for such misidentification.
Tests with simulated data showed that the degree of mis-
identification could be precisely inferred (supplementary fig.
S4, Supplementary Material online), and including this

parameter in our model does not strongly affect other infer-
ences (supplementary table S14, Supplementary Material
online).

Having found good precision for our inference, we then
turned to testing the robustness of our inference to model
misspecification. Since these tests focused on biases in the
average inference, we did not stochastically sample data for
these analyses, but rather used the expected AFS under each
scenario as the data.

The demographic model is a key assumption of our joint
DFE inference procedure. To test how imperfect modeling of
demographic history would bias our inference, we simulated
both neutral and selected data under a demographic model
that included divergence, exponential growth in both popu-
lations, and asymmetric migration between populations (sup-
plementary fig. S2B, Supplementary Material online). We then
fit models that either lacked migration or that modeled in-
stantaneous growth and symmetric migration to the neutral
data (supplementary fig. S2C, Supplementary Material on-
line). We then used these misspecified models to infer the
DFE correlation w from the selected data. For both misspe-
cified demographic models, although the inferred l and r
were biased, we found that the inferred w was not strongly
biased, particularly for large correlations (fig. 2A).

Dominance is a potential confounding factor when infer-
ring the joint DFE, since dominance influences allele frequen-
cies differently in populations that have and have not
undergone a bottleneck (Balick et al. 2015). Typically, muta-
tion fitness effects in diploids are assumed to be additive,
corresponding to a dominance coefficient of h¼ 0.5. To
test the effects of dominance on our inference, we simulated
nonsynonymous frequency spectra with dominance coeffi-
cients of h¼ 0.25 and h¼ 0.75 and then optimized joint
DFE parameters under the assumption that h¼ 0.5. We
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FIG. 1. The joint allele frequency spectrum (AFS) and joint distribution of fitness effects (DFE). (A) We considered populations that have recently
diverged with gene flow between them. Some genetic variants will have a different effect on fitness in the diverged population (s2) than in the
ancestral population (s1). (B) The joint DFE is defined over pairs of selection coefficients (s1, s2). Insets show the joint AFS for pairs of variants that
are strongly or weakly deleterious in each population. In each spectrum, the number of segregating variants at a given pair of allele frequencies is
exponential with the color depth. (C) One potential model for the joint DFE is a bivariate lognormal distribution, illustrated here for strong
correlation. (D) We focus on a model in which the joint DFE is a mixture of components corresponding to equality (q¼ 1) and independence
(q¼ 0) of fitness effects. (E) As illustrated by these simulated allele frequency spectra, stronger correlations of mutation fitness effects lead to more
shared polymorphism. Here, w is the weight of the q¼ 1 component in the mixture model.
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found that an incorrect assumption about dominance did
not substantially bias the inferred w, although it did bias the
inferred l and r (fig. 2B).

The probability distribution assumed for the joint DFE is
another potential confounding factor. To test how this might
bias inference, we first simulated a true mixture model in
which the marginal distributions were gamma (eq. 7), rather
than lognormal (eq. 6). In this case, we found that inferred
w was not substantially biased (fig. 2C). We also considered
fitting the lognormal mixture model (fig. 1D) to data simu-
lated under a bivariate lognormal model (fig. 1C and eq. 8). In
this case, we found that the inferred mixture component
w was larger than the simulated bivariate lognormal correla-
tion coefficient q, although they were similar (fig. 2D). The
mixture model assumes symmetric marginal distributions be-
tween the two populations, but the bivariate lognormal
model is more general and permits asymmetric marginal dis-
tributions. When we simulated data under a bivariate model
with asymmetric means and variances of the marginal distri-
butions, but fit with a symmetric mixture model, we found
only slight bias, similar to the symmetric bivariate case (fig.
2D).

Finally, background selection (BGS) may also bias our joint
DFE inference. To examine the effects of BGS on our infer-
ence, we simulated data with linkage using SLiM 3 (Haller and
Messer 2019). We simulated genome-scale data for both

human- and Drosophila-like scenarios using the best fit de-
mographic models we inferred for our real data (supplemen-
tary fig. S6A and B, Supplementary Material online). For each
data set, we fit a demographic model to the simulated syn-
onymous mutations then used that demographic model to
infer the joint DFE from the simulated nonsynonyous muta-
tions. For human-like simulations, we also carried out the
analysis using simpler demographic models in the inference.
As expected, we found that BGS biased our demographic
model inferences. For example, if we used the same human
demographic model in the inference and simulation, the in-
ferred divergence time increased as the DFE correlation w de-
creased (supplementary table S7, Supplementary Material
online). As w decreased, the strength of BGS increased (sup-
plementary fig. S5 and table S8, Supplementary Material on-
line). However, we found that the joint DFE correlation
w could be robustly inferred in the presence of BGS (fig. 3).
The inferred l and r were biased if the demographic model
was misspecified (fig. 3A). But the inferred w was overesti-
mated only if w was <0.8 with misspecified demographic
models (fig. 3A). In our Drosophila-like simulations, we sim-
ulated under two different regimes to modulate the strength
of BGS (supplementary fig. S5, Supplementary Material on-
line). To make those simulations tractable, we scaled D. mel-
anogaster population sizes down by a factor of 1,000 and
scaled other parameters to attempt to compensate (see

FIG. 2. Robustness of joint DFE inference to model misspecification. Simulated neutral and selected data were generated under a demographic
model with exponential growth and migration (supplementary table S1, Supplementary Material online), and lognormal mixture DFE models were
fit to the data. The DFE parameters are: l, the mean log population-scaled selection coefficient; r, the standard deviation of those log coefficients;
and w, the correlation of the DFE. The gray lines indicate true values, and the data plotted in these figures can be found in supplementary tables S4–
S6, Supplementary Material online. (A) In this case, simpler demographic models with instantaneous growth or symmetric migration were fit to
the neutral data. The resulting misspecified model was then used when inferring the DFE. This misspecification biased l and r, but not w. (B) In this
case, selected data were simulated assuming dominant or recessive mutations, but the DFE was inferred assuming no dominance (h¼ 0.5). Again,
l and r are biased, but w is not. (C) In this case, selected data were simulated using a mixture of gamma distributions. When these data were fit
using our mixture of lognormal distributions, w was not biased. (D) In this case, selected data were simulated using bivariate lognormal models,
with either symmetric or asymmetric marginal distributions. When these data were fit using our symmetric mixture of lognormal distributions,
w was only slightly biased.
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Materials and Methods), but rescaling may distort various
genetic statistics (Uricchio and Hernandez 2014).
Nevertheless, similar to the human simulations, we found
bias in the inference of l, but inference of w was biased
only if the simulated w was<0.9. Because we observed larger
values of w in our real data analyses, these simulations suggest
that those analyses are robust to BGS.

Together, our tests on simulated data suggest that infer-
ring the DFE correlation w from the joint AFS can be done
with high precision and is robust to multiple confounding
factors, including misspecification of the demographic model
and DFE distribution as well as the presence of BGS.

Application
We applied our joint DFE inference approach to humans, D.
melanogaster, and wild tomatoes. For humans, we considered
the joint DFE between Yoruba in Ibadan (YRI) and Utah
residents (CEPH) with Northern and Western European an-
cestry (CEU) populations, because the Yoruba are a well-
studied proxy for the ancestral human population and
European populations parallel the history of French D. mela-
nogaster. For D. melanogaster, we considered the joint DFE
between Zambian and French populations, because the
Zambian population is representative of the ancestral popu-
lation (Lack et al. 2015) and France is a distinct environment.
For wild tomatoes, we considered the joint DFE between two
closely related species, Solanum chilense and Solanum

peruvianum, because they still share substantial polymor-
phism and have overlapping ranges.

We first fit demographic models to synonymous variants
in each population pair. For all the three species, we fit rela-
tively simple models of divergence with gene flow, although
for humans we also found it necessary to include prediver-
gence population growth. Broadly, these models fit the data
well (supplementary figs. S6 and S7, Supplementary Material
online).

We next estimated the joint DFE using all nonsynonymous
variants in the whole exome data from each species with our
lognormal mixture model (fig. 1D). In all the cases, the resulting
models fit the nonsynonymous joint frequency spectrum well,
with similar patterns of residuals tothe demographicmodels fit
to synonymous data (fig. 4 and supplementary fig. S7,
Supplementary Material online). For humans, we found the
highest DFE correlation w ¼ 0:99560:007 in our study (fig. 5
and supplementary table S9, Supplementary Material online),
which was statistically indistinguishable from perfect correla-
tionw¼ 1.ForD.melanogaster,wefoundthatmutationfitness
effects between Zambian and French populations were highly
correlated, with w ¼ 0:96760:017 (fig. 5 and supplementary
table S10, Supplementary Material online). For wild tomatoes,
we found the lowest DFE correlation, w ¼ 0:90560:015 (fig. 5
and supplementary table S11, Supplementary Material online).
In humans, CpG dinucleotides have elevated mutation rates,
which might affect DFE inference. To control for this effect, we
repeated our exome analysis in humans using only regions

FIG. 3. Robustness of joint DFE inference to background selection. Simulated genome-scale data were generated with background selection and
different DFE correlations. (A) Data were simulated using the best fit demographic model for humans in supplementary figure S6A, Supplementary
Material online with l ¼ 2:113 and r ¼ 4:915. Beside fitting the true model, simpler demographic models (supplementary fig. S2, Supplementary
Material online) were also fit to test robustness to model misspecification in the presence of background selection. (B) Data were simulated using
the best fit demographic model for Drosophila melanogaster in supplementary figure S6B, Supplementary Material online with l ¼ 6:174 and
r ¼ 4:056. To modulate the strength of background selection, data were simulated with different genomic chunk sizes. The larger chunk size yields
stronger background selection. Points indicate inferences from distinct data sets and colors indicate different simulation scenarios. Gray lines
indicate true values. The data plotted in these figures can be found in supplementary table S7, Supplementary Material online.
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FIG. 4. Model fits to joint allele frequency spectra (AFS) using nonsynonymous data. (A) Joint AFS for the human nonsynonymous data, the best fit
model with DFE correlation w¼ 0.995, and the residuals between model and data. (B) Joint AFS for the Drosophila melanogaster nonsynonymous
data and the best fit model with DFE correlation w¼ 0.967. (C) Joint AFS for the wild tomato nonsynonymous data and the best fit model with DFE
correlation w¼ 0.905. In all three cases, residuals are small for almost all entries in the AFS, so to increase contrast the color range has been
restricted to 63. See supplementary figure S8, Supplementary Material online for plots showing the full residual range.

FIG. 5. Exome-wide DFE correlations. (A) Plotted are maximum likelihood inferences of the DFE correlation w with 95% confidence intervals versus
genetic divergence FST of the considered population pair. (B) Plotted are maximum likelihood inferences of the DFE correlation w with 95%
confidence intervals for nonsynonymous SNPS with different predicted effects from SIFT. Colors indicate FDR adjusted P-values from two-tailed z-
tests as to whether the confidence interval overlaps w¼ 1. FST was estimated using whole-exome synonymous mutations.
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outside annotated CpG islands. We also did a similar analysis in
D. melanogaster, although their CpG dinucleotides do not have
elevated mutation rates. The resulting estimates of w (supple-
mentary fig. S12 and supplementary tables S9, S10,
Supplementary Material online) were statistically indistin-
guishable from those using the whole exome data. We further
inferred DFEcorrelation usingonlyGC-conservativemutations
(A$ T and C$G) in humans, because GC-biased gene con-
version (gBGC), which is common in mammals but not in D.
melanogaster (Zhen et al. 2021), may bias DFE inference
(Castellano et al. 2019). These GC-conservative mutations are
not affected by gBGC. Similar to the whole exome data, the
resulting w was statistically indistinguishable from 1 (supple-
mentary fig. S12 and table S9, Supplementary Material online).
Among these three population pairs, the inferred DFE correla-
tion was negatively related to genetic divergence, as measured
by FST (fig. 5A).

For simplicity, we assumed that the DFE correlation w is
constant throughout the distribution, but the correlation
may depend on how deleterious the mutation is. To test
this assumption, rather than adding complexity to the DFE
model, we instead segregated our data by applying SIFT scores
to predict whether a nonsynonymous mutation is likely to be
tolerated or deleterious based on evolutionary conservation
(Vaser et al. 2016). We then fit DFE models to the SNPs in
each class. As expected, we inferred a more negative mean
fitness effect for the deleterious class than the tolerated class
(supplementary fig. S12 and tables S9–S11, Supplementary
Material online). Moreover, we found that the DFE correla-
tion w was dramatically smaller for the deleterious class than
the value from the tolerated class in humans and D. mela-
nogaster, but not in wild tomatoes (fig. 5B). To test whether
this effect extended beyond individual mutations to whole
genes, we also separated our data by the dN/dS ratio in
humans and D. melanogaster. We found no significant differ-
ence in DFE correlations among genes with different dN/dS
ratios (supplementary fig. S12, Supplementary Material on-
line). However, we did observe that the average strength of
purifying selection increases as the dN/dS ratio decreases
(supplementary fig. S12, Supplementary Material online).

To investigate the biological basis of the joint DFE, we
considered genes of different function based on Gene
Ontology (GO) terms (Gene Ontology Consortium 2000).
For D. melanogaster, we found a wide range of inferred DFE
correlations, with the lowest maximum likelihood estimate
corresponding to mutations in genes involved in the mitotic
nuclear division at w ¼ 0:90160:048 (fig. 6 and supplemen-
tary table S10, Supplementary Material online). For wild to-
matoes, we found an even wider range of inferred DFE
correlations, with the lowest maximum likelihood estimate
being genes involved in photosynthesis at w ¼ 0:76960:106
(fig. 6 and supplementary table S11, Supplementary Material
online). For humans, we found that all GO terms yielded
values of w that were statistically indistinguishable from
one (supplementary table S9 and fig. S9, Supplementary
Material online). Among the D. melanogaster GO terms, we
found no correlation between the inferred w and the mean
and standard deviation of the marginal DFEs (supplementary

fig. S13, Supplementary Material online), suggesting that the
variation we see in w is not driven simply by variation in
overall constraint. In humans, we further explored the bio-
logical context of the joint DFE by considering genes that are
involved in disease and that interact with viral pathogens. We
found no statistically significant differences in DFE correla-
tions among these gene groups, although we did find that the
DFE for genes involved in disease or that interact with viruses
was shifted toward more negative selection (supplementary
table S9 and fig. S12, Supplementary Material online).

To test the robustness of our analyses in the real data to
various modeling choices, we used the variation among our
inferences among D. melanogaster GO terms. We fit simpler
models of demographic history with instantaneous growth in
the two diverged populations with and without symmetric
migration to the synonymous data and used those models as
the basis of joint DFE analysis. Although these demographic
models fit the data much less well than our main model
(supplementary figs. S7 and S14, Supplementary Material on-
line), the inferred values of w for the GO terms were highly
correlated with those from our main model (supplementary
fig. S15A and B, Supplementary Material online). We also
tested our approach using a DFE model with a bivariate log-
normal model instead of a lognormal mixture model. The
inferred values for q in the bivariate model were highly cor-
related with the values for the inferred w (supplementary fig.
S15C, Supplementary Material online). Together, these results
suggest that the robustness we observed in simulated data
(fig. 2) holds true for real data.

Discussion
In this study, we introduced the concept of a joint DFE be-
tween pairs of populations, and we developed and applied an
approach for inferring it. We tested our approach with sim-
ulation studies and found that inferring the DFE correlation
between populations does not require excessive data and is
robust to many forms of model misspecification (supplemen-
tary fig. S3, Supplementary Material online and figs. 2 and 3).
We then applied our approach to humans, D. melanogaster,
and wild tomatoes. Among these species, we found the low-
est exome-wide DFE correlation in wild tomatoes and the
highest in humans (fig. 5A). In humans and D. melanogaster,
we found that the DFE correlation is lower for deleterious
mutations than tolerated mutations (fig. 5B). And in D. mel-
anogaster and tomatoes, we found that the DFE correlation
varied with gene function (fig. 6). These results illustrate the
biological insights that can be gained by considering the joint
DFE between populations.

The first step of our analyses is fitting a demographic
model, although our DFE correlation inferences are robust
to details of that model (fig. 2A and supplementary fig. S14,
Supplementary Material online). Nevertheless, our inferred
demographic models (supplementary fig. S6, Supplementary
Material online) are comparable to other inferences. For D.
melanogaster, our inferred relative population sizes and diver-
gence time for African and European populations are similar
to those of Arguello et al. (2019) (supplementary table S16,
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Supplementary Material online), although we used different
populations and different models. For humans, our demo-
graphic parameters were similar to those of Gravel et al.
(2011) (supplementary table S17, Supplementary Material
online), although their model also included an East Asian
population. For wild tomatoes, we obtained a demographic
model close to the result of Beddows et al. (2017) (supple-
mentary table S18, Supplementary Material online).

The fitness effect of a mutation may differ between pop-
ulations due to differences in both environmental and genetic
context. The wild tomato species we analyzed overlap in
range and are more genetically differentiated than the D.
melanogaster or human populations we studied. In this
case, we speculate that differences in fitness effects are pri-
marily driven by differences in genetic background, although
S. chilense does exhibit adaptations for more arid habitats
(Moyle 2008). Among the species we studied, humans

exhibited the highest correlation of mutation fitness effects,
which was statistically indistinguishable from perfect correla-
tion w¼ 1, suggesting little difference in mutation fitness
effects between YRI and CEU populations. Huang et al.
(2021) also estimated the genome-wide differences of selec-
tion coefficients between Africans and Europeans were al-
most 0 with a different approach (He et al. 2015). It is
unclear whether this is caused by our relatively low genetic
differentiation or our ability to control our local environment.
Experiments suggest that stressful environments can alter
DFEs between populations (Wang et al. 2014). Previous pop-
ulation genetic studies also have found evidence for differ-
ences in marginal DFEs between populations of humans
(Boyko et al. 2008; Lopez et al. 2018) and also between pop-
ulations of other primates (Ma et al. 2013; Castellano et al.
2019; Tataru and Bataillon 2019). Although we assumed that
the mean and the variance of mutation fitness effects did not

FIG. 6. DFE correlation for different GO terms in Drosophila melanogaster and wild tomatoes. Plotted are maximum likelihood inferences with 95%
confidence intervals. Colors indicate FDR-adjusted P-values from two-tailed z-tests as to whether the confidence interval overlaps w¼ 1. The data
plotted in these figures can be found in supplementary tables S10 and S11, Supplementary Material online. (A) Inferred DFE correlation in D.
melanogaster. (B) Inferred DFE correlation in wild tomatoes.

Mutation Fitness Effects between Populations . doi:10.1093/molbev/msab162 MBE

4595



differ between the two populations in our models for the
joint DFE, those previous studies found only slight differences
and our simulation study suggests that inferences of the DFE
correlation are robust to relatively large differences in mar-
ginal DFEs (fig. 2D). Recently, Martin and Lenormand (2015)
extended Fisher’s Geometrical Model to consider the relation-
ship between mutation fitness effects in two different envi-
ronments, represented by two optima in trait space.
Unfortunately, they could not derive an analytic joint DFE
for their model, so we could not apply it here. In related work,
Keightley et al. (2000) used Caenorhabditis elegans mutation
accumulation data to infer bivariate gamma distributions of
mutation effects on pairs of life history traits, although with
low precision. Overall, our simple models of the joint DFE fit
the data well, but more complex models may be more infor-
mative. Over the long term, assessing the joint DFE between
multiple populations of multiple species may reveal the rel-
ative importance of environmental and genetic context in
determining the mutation fitness effects.

We focused on the deleterious component of the DFE in
this study, and positive selection or local adaptation may affect
joint DFE inference. However, Castellano et al. (2019) found
that including beneficial mutations or not did not affect the
DFE model for the deleterious components in humans.
Moreover, Zhen et al. (2021) estimated the proportion of
new beneficial mutations to be �1.5% in humans and close
to 0 in D. melanogaster. Therefore, we do not expect beneficial
mutations to significantly affect our inference in humans and
D. melanogaster. Further studies that include local adaptation
when inferring the joint DFE may improve our analysis of
populations with low DFE correlations, such as wild tomatoes.

Finally, the concept of a joint DFE could be widely appli-
cable. For example, we recently inferred a joint DFE between
mutations at the same protein site, using triallelic variants
(Ragsdale et al. 2016). Remarkably, we found that biochemical
experiments in a variety of organisms yielded a similar corre-
lation of pairwise fitness effects to the value we inferred from
D. melanogaster population genetic data. Other potential
applications of a joint DFE include modeling ancient DNA
data to infer DFE correlations across time and modeling link-
age to infer DFE correlations across genomic positions. We
thus anticipate that extending the concept of the DFE from
one population to two or more will significantly advance our
understanding of population evolution and have broad im-
pact in population genetics.

Materials and Methods

Inferring the Joint DFE from the Joint AFS
If we sample n1 chromosomes from population 1 and n2

chromosomes from population 2, then the joint AFS for these
two populations can be written aS

X ¼ fXi;j; 0 � i � n1; 0 � j � n2; 0 < iþ j < n1 þ n2g:
(1)

Here, Xi;j denotes the number of mutations in the sample
that have i copies of derived alleles among the n1 chromo-
somes from population 1 and j copies of derived alleles

among the n2 chromosomes from population 2. We denote
the joint spectra for neutral and selected mutations as N ¼ f
Ni;jg and S ¼ fSi;jg, respectively.

Let Fðc1; c2jHdemoÞ ¼ fFi;jðc1; c2jHdemoÞg be the
expected joint AFS for demographic parameters Hdemo,
population-scaled selection coefficients c1 in the ancestral
and first contemporary population and c2 in the second con-
temporary population, and population-scaled mutation rate
h¼ 1. The population-scaled selection coefficient c is 2Nas,
where Na is the ancestral population size. For a mutation with
selection coefficient s, a diploid individual has its fitness mul-
tiplied by 1þ 2s if homozygous and by 1þ 2hs if heterozy-
gous, where h is the dominance coefficient. The population-
scaled mutation rate h is 4Nal, where l is the mutation rate.
The vector of demographic parameters Hdemo depends on
the demographic model assumed, but it typically contains
parameters for relative population sizes, divergence times,
and rates of gene flow. Then the expected neutral joint AFS iS

EðNi;jjHdemoÞ ¼ hneuFi;jðc1 ¼ 0; c2 ¼ 0jHdemoÞ; (2)

where hneu is the population-scaled neutral mutation rate
(Gutenkunst et al. 2009). The expected selected joint AFS iS

EðSi;jjHdemo;HDFEÞ ¼ hsel

ð1
�1

ð1
�1

Fi;jðc1; c2jHdemoÞGðc1; c2jHDFEÞdc1dc2:

(3)

Here hsel is the population-scaled mutation rate for se-
lected mutations, and Gðc1; c2jHDFEÞ is the joint DFE.

In most of our analyses, we modeled the joint DFE as a
mixture of two components, G1d and G2d, where G1d is a DFE
with equal selection coefficients in the two populations, and
G2d is a DFE with statistically independent selection coeffi-
cients and marginal distributions G1d. Letting w be the mix-
ture proportion of G1d, we have

Gmix ¼ wG1d þ ð1� wÞG2d; 0 � w � 1: (4)

And considering only deleterious mutations we have

EðSi;jjHdemo;HDFEÞ ¼ whsel

Ð 0
�1 Fi;jðc; cjHdemoÞG1dðcjHDFEÞdc

þð1� wÞhsel

Ð 0
�1
Ð 0
�1 Fi;jðc1; c2jHdemoÞG2dðc1; c2jHDFEÞdc1dc2:

(5)

We typically worked with lognormal distributions, sO

G1dðcÞ ¼
1

cr
ffiffiffiffiffi
2p
p exp �

�
lnð�cÞ � l

�2

2r2

0
B@

1
CA;

G2dðc1; c2Þ ¼
1

c1c2r22p
exp �

�
lnð�c1Þ � l

�2

þ
�

lnð�c2Þ � l
�2

2r2

0
B@

1
CA:

(6)

Here,landrarethemeanandstandarddeviationofthelogs
of the population-scaled selection coefficients, respectively.

To test the robustness of our approach, we also considered
other models for the joint DFE. When using a mixture of
gamma distributions,
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G1dðcÞ ¼
1

baCðaÞ ð�cÞa�1 expðc=bÞ

G2dðc1; c2Þ ¼
1

b2aCðaÞ2
ðc1c2Þa�1 expððc1 þ c2Þ=bÞ:

(7)

Here, a is the shape parameter and b is the scale param-
eter. When using a bivariate lognormal distribution, which is
potentially asymmetric,

Gðc1; c2Þ ¼
1

2pr1r2c1c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2
p

�exp � 1

2

�
lnð�c1Þ � l1

�2

r2
1

þ

�
lnð�c2Þ � l2

�2

r2
2

�

0
B@

0
B@

2q
�

lnð�c1Þ � l1

��
lnð�c2Þ � l2

�
r1r2

ÞÞ: (8)

Here, q is the correlation coefficient.
Calculating the expected selected joint AFS (eqs. 3 and 5) is

computationally expensive, because spectra Fðc1; c2jHdemoÞ
must be calculated for many pairs of selection coefficients.
Simultaneously inferring the demographic parameters Hdemo

and the DFE parameters HDFE is thus infeasible. We thus first
inferred the demographic parameters using the putative neu-
tral data and then held those parameters constant while in-
ferring the DFE parameters.

Ancestral state misidentification creates an excess of high-
frequency derived alleles (Baudry and Depaulis 2003), which
may bias demographic history and DFE inference. To account
for this effect, when fitting demographic history and DFE
models we included separate parameters pmisid for ancestral
state misidentification (Ragsdale et al. 2016). Then, for
example,

EðNi;jjHdemo; pNmisidÞ ¼ ð1� pNmisidÞEðNi;jjHdemoÞ
þ pNmisidEðNn1�i;n2�jjHdemoÞ: (9)

when ancestral state misidentification is applied to the neu-
tral demographic history model.

We inferred the demographic parameters bHdemo by max-
imizing the composite likelihood of the neutral joint AFS,
including hneu as a free parameter (Gutenkunst et al. 2009).
To then infer the DFE parameters HDFE, we modeled the
selected joint AFS as a Poisson Random Field (Sawyer and
Hartl 1992) and maximized the composite likelihood

‘ðSjbHdemo;HDFE; pSmisidÞ ¼
Y

i;j

exp½�EðSi;jjbHdemo;HDFE; pSmisidÞ�EðSi;jjbHdemo;HDFE; pSmisidÞSi;j

Si;j!
:

(10)

Here, bHdemo represents the demographic parameters in-
ferred from the neutral data. And in this step we fixed hsel to a
multiple of hneu determined by the expected ratio of new
selected to new neutral mutations, based on base-specific
mutation rates and genome composition.

Numerically, to calculate the expected selected joint AFS,
we first cached expected spectra Fðc1; c2jbHDFEÞ for a range of
selection coefficient pairs. The cached values of c1, c2 were
from 50 points logarithmically spaced within
½�10�4;�2000�, for a total of 2,500 cached spectra (supple-
mentary fig. S1, Supplementary Material online). We then
evaluated equation (3) using the trapezoid rule over these
cached points. To test whether the accuracy of this integra-
tion affected our results, we repeated our exome-wide anal-
yses for humans and D. melanogaster using 100 cache points,
for a total of 10,000 cached spectra. The results of these
analyses were statistically indistinguishable from those using
50 cache points (supplementary table S13, Supplementary
Material online). For the mixture model (eq. 5), the G1d com-
ponent was calculated as a one-dimensional integral over a
cache of c1 ¼ c2 spectra. Probability density for the joint DFE
may extend outside the range of cached spectra. To account
for this density, we integrated outward from the sampled
domain to c¼ 0 or �1 to estimate the excluded weight
of the joint DFE. We then weighted the closest cached joint
AFS F by the result and added it to the expected joint AFS. For
the edges of the domain, this was done using the SciPy
method quad, and for the corners it was done using dblquad
(Virtanen et al. 2020).

Simulated Data
For our precision tests (supplementary fig. S3, Supplementary
Material online), we used dadi to simulate data sets without
linkage. Unless otherwise specified, for supplementary figure
S3, Supplementary Material online and figure 2, the “truth”
simulations were performed with an isolation-with-migration
(IM) demographic model (supplementary fig. S2B,
Supplementary Material online) with parameters as in sup-
plementary table S1, Supplementary Material online, a joint
lognormal mixture DFE model with marginal mean l ¼ 3:6
and standard deviation r ¼ 5:1, and with sample sizes of 216
for population 1 and 198 for population 2. For supplementary
figure S3, Supplementary Material online, data were simulated
with w¼ 0.9 and the nonsynonymous population-scaled mu-
tation rate hNS ¼ 13842:5 by Poisson sampling from the
expected joint AFS. For supplementary figure S3A,
Supplementary Material online, the resulting average number
of segregating polymorphisms varied with sample size, rang-
ing from 6,953 for sampling two chromosomes to 45,691 for
sampling 100 chromosomes. For supplementary figure S3B
and C, Supplementary Material online, the sample size was
fixed at 20 chromosomes per population.

For our robustness tests (fig. 2), we were interested in bias
rather than variance, so misspecified models were fit directly
to the expected frequency spectrum under the true model
without Poisson sampling noise. For figure 2A, the best fit
model with no migration had s¼ 0.937,
�1 ¼ 3:025; �2 ¼ 3:219, T¼ 0.0639, m¼ 0, and the best fit
model with instantaneous growth and symmetric migration
had �1 ¼ 2:4; �2 ¼ 0:92, T¼ 0.23, m¼ 0.42. For figure 2C,
the true joint DFE was a mixture model with marginal gamma
distributions with a ¼ 0:4, b¼ 1400. For figure 2D, the true
joint DFE was a symmetric bivariate lognormal distribution
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with l ¼ 3:6 and r ¼ 5:1, and for the asymmetric case in
figure 2D, l1 ¼ 3:6; r1 ¼ 5:1; l2 ¼ 4:5; r2 ¼ 6:8. We
then simulated data with different correlation coefficients q
to examine the relationship between q and the DFE correla-
tion w.

To examine the effects of BGS, we used SLiM 3 (Haller and
Messer 2019) to simulate data with linkage. We replicated our
simulation and inference three times for each w with different
demographic models in the human simulations and an IM
model in the D. melanogaster simulations (supplementary fig.
S2, Supplementary Material online). For humans, we simu-
lated the exome in chromosome 21 using the demographic
parameters in supplementary figure S6A, Supplementary
Material online, the joint DFE parameters l and r from the
whole human exome in supplementary table S9,
Supplementary Material online with
w ¼ 0:75; 0:8; 0:85; 0:9; 0:95; 1, and sample sizes of 216 for
population 1 and 198 for population 2. We assumed the
mutation rate was 1:5� 10�8 per nucleotide per generation
( S�egurel et al. 2014) and an ancestral population size of 8,000.
We further assumed the ratio of the nonsynonymous to syn-
onymous mutations in humans was 2.31 (Huber et al. 2017).
In our simulation, we used the human exome based on the
reference genome hg19 from UCSC Genome Browser and the
deCODE human genetic map (Kong et al. 2010). For each w,
we first simulated human chromosome 21 twenty times, then
obtained 20 synonymous frequency spectra and 20 nonsy-
nonymous frequency spectra from these sequences. We com-
bined these 20 synonymous frequency spectra into a single
one and inferred the demographic models. We then com-
bined the 20 nonsynoymous frequency spectra into one spec-
trum and inferred the joint DFEs. We inferred the joint DFEs
using both the true (IM_pre model) and wrong (IM model
with asymmetric migration & split_mig model without mi-
gration) demographic models (supplementary fig. S2,
Supplementary Material online). For D. melanogaster, we sim-
ulated small sequences instead of a whole chromosome, be-
cause the large population size of D. melanogaster made our
simulation extremely slow. We used the demographic param-
eters for the IM model in supplementary figure S6B,
Supplementary Material online, the joint DFE parameters l
and r from the whole D. melanogaster exome in supplemen-
tary table S10, Supplementary Material online with
w ¼ 0:75; 0:8; 0:85; 0:9; 0:95; 1, and sample sizes of 178 for
population 1 and 30 for population 2. For each w, we simu-
lated 2000 small sequences with a length of 10,000 bp, then
obtained 2,000 synonymous frequency spectra and 2,000
nonsynonymous frequency spectra. We combined these
2,000 synonymous frequency spectra into a single one and
inferred the demographic models. We then combined the
2,000 nonsynonymous frequency spectra into one spectrum
and inferred the joint DFEs. This was equivalent to a total
sequence size of 20 Mb. We also replicated the above simu-
lation with 200 small sequences with a length of 100,000 bp.
We inferred the demographic and DFE parameters from the
combined synonymous frequency spectrum and nonsynon-
ymous frequency spectrum of these 200 small sequences. We
assumed that the mutation rate was 2:8� 10�9 per

nucleotide per generation, that the recombination rate was
5� 10�9 per nucleotide per generation (Keightley et al.
2014), and that the ancestral population size was 1.38 million.
We also assumed the ratio of the nonsynonymous to synon-
ymous mutations in D. melanogaster was 2.85 (Huber et al.
2017). For D. melanogaster, to accelerate our simulation, we
used a factor of 1,000 to rescale the population size, mutation
rate, and recombination rate (Hoggart et al. 2007). To quan-
tify the strength of BGS in our simulations, we simulated data
under neutral models and compared the expected number of
pairwise differences between two chromosomes in the non-
neutral scenarios with the neutral ones (Hudson and Kaplan
1995). The strength of BGS (supplementary fig. S5,
Supplementary Material online) in the simulated data for
both humans and D. melanogaster was comparable to or
stronger than the estimated strength from the empirical stud-
ies (Charlesworth 2013).

Genomic Data
In all analyses, we only considered biallelic SNPs from auto-
mosomes. For humans, we obtained 108 and 99 unrelated
individuals (216 and 198 haplotypes) from YRI and CEU pop-
ulations in the 1000 Genomes Project Phase 3 genotype data
(1000 Genomes Project Consortium 2015). We removed
those regions that were not in the 1000 Genomes Project
phase 3 strict mask file. We only considered biallelic exonic
SNPs that were annotated as synonymous_variant or missen-
se_variant by the 1000 Genomes Project. We further excluded
SNPs without reported ancestral alleles. We also used the
CpG table from the UCSC Genome Browser to distinguish
SNPs in CpG regions. We further used mutations unaffected
by gBGC (only A$ T and C$ G mutations) to repeat our
analysis.

For D. melanogaster, we obtained Zambian and French D.
melanogaster genomic data from the Drosophila Genome
Nexus (Lack et al. 2016). The Zambian sequences were 197
haploids from the DPGP3 and the French were 87 inbred
individuals. We removed those SNPs in the IBD and/or ad-
mixture masks. In these data, many SNPs were not called in all
individuals. We thus projected downward to obtain a con-
sensus AFS with maximal genome coverage. For these data,
that was to a sample size of 178 Zambian and 30 French
haplotypes (supplementary fig. S16, Supplementary Material
online). We used Drosophila simulans as the outgroup and
downloaded the alignment between the reference genome
for D. simulans (drosim1) and the reference genome for D.
melanogaster (dm3) from UCSC Genome Browser to deter-
mine the ancestral allele of each SNP. We then used GATK
(version: 4.1.4.1) (McKenna et al. 2010) to liftover the genomic
coordinates from dm3 to dm6 with the liftover chain file from
the UCSC Genome Browser. To annotate SNPs to their cor-
responding genes and as synonymous or nonsynonymous
mutations, we used ANNOVAR (version: 20191024) (Wang
et al. 2010) with default settings and the dm6 genome build.
We downloaded the CpG table from the UCSC Genome
Browser to distinguish SNPs in CpG regions.

For wild tomatoes, we obtained S. chilense and S. peruvia-
num DNA sequencing data from Beddows et al. (2017) and
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followed their scheme for assigning individuals to species. We
only analyzed 17 S. chilense and 17 S. peruvianum individuals
sequenced by Beddows et al. (2017) because of their high
quality. We used an Solanum lycopersicoides individual se-
quenced by Beddows et al. (2017) to determine the ancestral
allele of each SNP. We further removed variants with hetero-
zygous genotype in this S. lycopersicoides individual. To more
easily apply SIFT, we used the NCBI genome remapping ser-
vice to convert the data from SL2.50 coordinates to SL2.40.

Fitting Demographic Models to Genomic Data
We used dadi to fit models for demography to spectra for
synonymous mutations (Gutenkunst et al. 2009), including a
parameter for ancestral state misidentification (Ragsdale et al.
2016). For the human analysis, we used dadi with grid points
of [226,236,246], and we found that an IM model with an
instantaneous growth in the ancestral population (IM_pre)
fit the data well (supplementary fig. S6A, Supplementary
Material online). For the D. melanogaster analysis, we used
dadi with grid points of [188,198,208], and we found that an
IM model fit the data well (supplementary fig. S6B,
Supplementary Material online). For the wild tomato analysis,
we used dadi with grid points of [44,54,64] and fit a split-
migration model with asymmetric migration (supplementary
fig. S6C, Supplementary Material online), as Beddows et al.
(2017) did.

Fitting Joint DFEs to Genomic Data
Cached allele frequency spectra were created for the corre-
sponding demographic models. For humans and D. mela-
nogaster, we used the same grid points settings as the grid
points used when inferring demographic models. For wild
tomatoes, we used dadi with grid points of ½300; 400; 500�
to generate caches with selection. Models of the joint DFE
were then fit to nonsynonymous data by maximizing the
likelihood of the data, assuming a Poisson Random Field
(Sawyer and Hartl 1992). In these fits, the population-scaled
mutation rate for nonsynonymous mutations hNS was held
fixed at a given ratio to the rate for synonymous mutations hS

in the same subset of genes, as inferred from our demographic
history model. For D. melanogaster this ratio was 2.85 and for
humans it was 2.31 (Huber et al. 2017). This ratio was 5.21 for
the gBGC unaffected mutations in humans (Zhen et al. 2021).
For wild tomatoes, this ratio was assumed to be 2.5, which
was between the ratios in humans and D. melanogaster. For
the lognormal mixture model, the three parameters of inter-
est are the DFE correlation w as well as the mean l and
standard deviation r of the marginal distributions. In addi-
tion, we included a separate parameter for ancestral state
misidentification for each subset of the data tested, because
the rate of misidentification depends on the strength of se-
lection acting on the sites of interest. To mitigate the effect of
BGS, we separately inferred demographic parameters for each
subset of the data (supplementary tables S9–S11,
Supplementary Material online) with the best fit demo-
graphic model inferred from the whole exome data (supple-
mentary fig. S6, Supplementary Material online).

We separately analyzed SNPs from genes associated with
different GO terms. We downloaded the Generic GO subset
from http://geneontology.org/docs/download-ontology/ on
August 12, 2020. This is a set of curated terms that are appli-
cable to a range of species (Gene Ontology Consortium 2000).
We considered the direct children of GO: 0008510 “Biological
Process,” and any gene annotated with a child of a given term
was assumed to also be annotated by the parent term. Thus, a
given gene may be present in multiple GO terms in our anal-
ysis. We used Ensembl Biomart (Cunningham et al. 2019) to
retrieve the annotated GO terms for each gene. For humans,
we downloaded the GO annotation from https://grch37.
ensembl.org/biomart/martview/ with Ensembl Genes 101
database and Human genes (GRCh37.p13) on August 19,
2020. For D. melanogaster, we downloaded the GO annotation
from https://www.ensembl.org/biomart/martview/ with
Ensembl Genes 101 database and D. melanogaster genes
(BDGP6.28) on September 10, 2020. For tomatoes, we down-
loaded the GO annotation from https://jul2018-plants.
ensembl.org/biomart/martview/ with Ensembl Plants Genes
40 database and Solanum lycopersicum genes (SL2.50) on
September 26, 2020. To ensure convergence in our inference,
we removed those GO terms with<2,000 either synonymous
or nonsynonymous mutations (supplementary tables S9–S11,
Supplementary Material online).

We also separately analyzed SNPs classified by SIFT as del-
eterious (SIFT score � 0.05) or tolerated (SIFT score > 0.05)
(Vaser et al. 2016). We downloaded SIFT predictions from
https://sift.bii.a-star.edu.sg/sift4g/ on October 2, 2020. We
used the SIFT prediction data with GRCH37.74 for humans,
with BDGP6.83 for D. melanogaster, and with SL2.40.26 for
tomatoes. To carry out our DFE analysis, we needed to esti-
mate an appropriate population-scaled nonsynonymous mu-
tation rate hNS for deleterious and tolerated mutations. To do
so, we estimated the proportions of deleterious and tolerated
mutations in the downloaded SIFT prediction data sets. This
is because all the possible mutations and their SIFT scores
were predicted in the downloaded data sets. We then
obtained the population-scaled mutation rates for deleteri-
ous and tolerated mutations by multiplying hNS from the
whole exome data with the proportions of deleterious and
tolerated mutations, respectively. More specifically, if we as-
sumed the mutation rate for the ith type nucleotide muta-
tion to be ui, the count for deleterious mutations from the ith
type nucleotide mutation to be di in the SIFT data sets, and
the count for tolerated mutations from the ith type nucleo-
tide mutation to be ti in the SIFT data sets, then the propor-
tions for deleterious and tolerated mutations wereP

iuidi=½
P

iui

P
iðdi þ tiÞ� and

P
iuiti=½

P
iui

P
iðdi þ tiÞ�,

respectively. In total, we have 12 different types of nucleotide
mutations: A fi T, T fi A, C fi G, G fi C, A fi C, C fi A, C
fi T, T fi C, A fi G, G fi A, G fi T, and T fi G. We
obtained the mutation rates for different types of mutations
from J�onsson et al. (2017) for humans and Singh et al. (2007)
for drosophila. For wild tomatoes, we used the Arabidopsis
thaliana nucleotide mutation rates from Ossowski et al.
(2010), because these mutation rates have not been directly
measured in wild tomatoes.
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We further considered differences between regions of
the genome that experience different levels of evolutionary
conservation, as estimated from the ratio of nonsynony-
mous to synonymous divergence dN/dS. For humans, we
separated SNPs into categories based on the estimated dN/
dS values of the gene in which they are found from a pre-
vious study (Gay�a-Vidal and Alb�a 2014). For D. mela-
nogaster, we separated SNPs based on the dN/dS
estimate of the surrounding 10 kb genomic region from
PopFly (Hervas et al. 2017).

For humans, we also divided genes into classes based on
their role in disease and interactions with viruses. Following
Struck et al. (2018), we classified genes as associated with
Mendelian disease, complex disease, or no disease using
Online Mendelian Inheritance in Man (OMIM, Amberger et
al. 2015) and the European Bioinformatics Institute’s genome-
wide association studies (GWAS) catalog (MacArthur et al.
2017). We used the data of Enard and Petrov (2018) to an-
notate 4,534 genes as encoding virus-interacting proteins
(VIPs). We defined the set of non-VIP genes as the 17,603
Ensembl genes that were not annotated as encoding VIPs. We
identified 1,728 genes as known to interact with 2 or more
viruses, leaving 2,806 genes known to interact with only a
single virus.

To estimate the uncertainty of our inferences, we used an
approach based on the Godambe Information Matrix
(Coffman et al. 2016), which is computationally more efficient
than conventional bootstrap parameter optimization. To
generate the requisite bootstrap data sets, we divided the
reference genomes into 1 Mb chunks. Because gene content
varied among bootstraps, hNS also needed to vary. To esti-
mate the appropriate hNS for each bootstrap, we scaled cor-
responding hNS from the real data by the ratio of the number
of segregating sites in the AFS of the bootstrap versus real
data. We found good agreement between the uncertainties
estimated by the Godambe approach and those from directly
fitting the bootstrap data sets (supplementary fig. S17,
Supplementary Material online). Note that this process
does not propagate uncertainty in the demographic param-
eter inference, so our uncertainties are somewhat
underestimated.

To estimate P-values for inferred DFE correlation w, we
used the two-tailed z-test by assuming w¼ 1 under the null
hypothesis and using the standard deviation estimated from
the Godambe approach. To compare inferred DFE correla-
tions between tolerated and deleterious mutations, we used
two-tailed z-tests to calculate P-values by assuming no differ-
ence under the null hypothesis and using the standard devia-
tions estimated from the Godambe approach. For multiple
testing correction, we estimated false discovery rate (FDR)
adjusted P-values by the Benjamini–Hochberg procedure
(Benjamini and Hochberg 1995). These multiple hypothesis
tests are from different types of data, including whole-exome
data, whole-exome data without CpG regions, different GO
terms, genes with different dN/dS values, genes with different
SIFT scores, genes associated with no/simple/complex dis-
eases, and genes associated with no/single/multiple VIPs (sup-
plementary tables S9–S11, Supplementary Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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