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Abstract: Robust infrared (IR) small target detection is critical for infrared search and track (IRST)
systems and is a challenging task for complicated backgrounds. Current algorithms have poor
performance on complex backgrounds, and there is a high false alarm rate or even missed detection.
To address this problem, a weighted local coefficient of variation (WLCV) is proposed for IR small
target detection. This method consists of three stages. First, the preprocessing stage can enhance the
original IR image and extract potential targets. Second, the detection stage consists of a background
suppression module (BSM) and a local coefficient of variation (LCV) module. BSM uses a special
three-layer window that combines the anisotropy of the target and differences in the grayscale
distribution. LCV exploits the discrete statistical properties of the target grayscale. The weighted
advantages of the two modules complement each other and greatly improve the effect of small
target enhancement and background suppression. Finally, the weighted saliency map is subjected to
adaptive threshold segmentation to extract the true target for detection. The experimental results
show that the proposed method is more robust to different target sizes and background types than
other methods and has a higher detection accuracy.

Keywords: IR small target detection; robust; intricate backgrounds; weighted local coefficient of
variation (WLCV)

1. Introduction

Robust infrared target detection plays a key role in infrared search and tracking
applications, such as space surveillance, remote sensing, object tracking, etc. [1,2]. Due
to remote imaging, small IR targets generally occupy fewer pixels in each image and do
not have obvious texture features and shape information [3]. When the background is
complex, small IR targets can easily be obscured by background clutter (e.g., cloud edges,
waves) and noise. Moreover, under the influence of the intrinsic noise of the detector and a
poor physical environment, the IR target is blurry, with low contrast and low resolution.
Consequently, detecting small IR targets with low signal-to-clutter ratios in various complex
scenes is still problematic and difficult.

In recent years, many researchers have presented various IR small target detection al-
gorithms, divided into two categories: single-frame detection and multi-frame detection [4].
The multi-frame detection algorithm has drawbacks such as high computational cost and
poor adaptation to the scene. It relies on the correlation between adjacent frames, and the
process of scene change can easily lead to the loss of the target. Compared with multi-frame
detection algorithms, single-frame detection algorithms are more adaptable to the changes
of complex scenes and the mobility of target movements, so their applications are more
widespread and have led many researchers to study them.
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Typical single-frame detection algorithms generally fall into three distinct categories.
The first category is methods based on the spatial consistency of the background, such
as top-hat transform [5,6] and max-mean/max-median filtering [7]. These algorithms are
all based on the assumption of a consistent spatial background, i.e., that the background
is continuous and that the pixels in the local background are highly correlated. These
methods generally have good performance with a simple and uniform background, but
they are sensitive to noise. For example, mean-pass filtering is more effective at suppressing
Gaussian noise but less effective at suppressing impulse noise such as pretzel noise. In
contrast, the high-pass filter effectively suppresses the background, but is also susceptible
to noise and cannot detect the actual target.

The second category is the low-rank sparse recovery-based method. Gao et al. [8]
proposed the Infrared Patch-Image (IPI) model, which assumes that the background and
target patches satisfy the low-rank and sparse properties. In this way, detecting IR small
targets becomes a recovery problem based on a low-rank and sparse matrix. However, the
IPI model uses the L1 norm to describe the sparse metric for small targets, and the low-rank
regularization term leads to excessive target shrinkage and noisy residuals. Therefore,
many improved algorithms have been proposed, such as weighted infrared patch image
(WIPI) [9], reweighted infrared patch-tensor model (RIPT) [10], and so on. These algorithms
can detect targets of different sizes effectively. However, they are sensitive to strong edges
in the background, so targets with low contrast are easily missed and false alarms are
frequently triggered.

The third category is target detection based on the contrast mechanism of the Human
Visual System (HVS), which is based on local differences between the target and back-
ground. Chen et al. [11] introduced the local contrast measure (LCM) for the problem of
target detection in IR images. Subsequent researchers have various proposed improve-
ments for constructing local contrast measures. Han et al. [12]. proposed an improved local
contrast measure (ILCM), a ratio-based contrast design. Han et al. used the Gabor kernel
to construct the improved difference of Gabor (IDoGb) [13], a difference-based contrast
design. The authors in [14] proposed the Multiscale Relative Local Contrast Measure
(MRLCM), a ratio-difference-based joint contrast design. These algorithms usually use
sliding windows with different sizes to traverse the image to detect targets with different
sizes, but the algorithm is not efficient due to the repetitive computation of multiscale
operations. Moreover, this multiple scaling can destroy the original size of the target,
which is called the “expansion effect” in the literature. To overcome this phenomenon, the
Double-Neighborhood Gradient Method (DNGM) [15] has been proposed. The DNGM
algorithm uses a fixed-size three-layer sliding window to detect targets of different sizes. It
effectively avoids the expansion effect and reduces the complexity of the algorithm due
to multiscale operations. However, the algorithm only achieves background suppression,
with a high false alarm rate for complex backgrounds. The DLCM algorithm was proposed
by Pan et al. [16]. The DLCM algorithm achieves background suppression by computing
the diagonal grey-level difference. This algorithm has better background suppression but
suffers from the same shortcomings as DNGM. In contrast, the target detection algorithm
of variance difference (VARD) [17] proposed by Nasiri et al. has good performance in target
enhancement. However, the variance is sensitive to noise since the variance is related to the
mean, and targets with low SCR cannot be enhanced effectively, resulting in a high false
alarm rate.

This paper proposes a weighted local coefficient of variation (WLCV) method con-
sisting of three stages. At the preprocessing stage, a two-dimensional Wiener filtering is
applied to the original image to suppress Gaussian noise and preserve the details of the
target. Then, high-pass filtering is performed based on the previously processed image, and
the suspicious target regions are obtained. At the detection phase, the system is divided
into two modules: the background suppression module (BSM) and the local coefficient of
variation (LCV) module. BSM combined with the anisotropy of the target and the difference
of gray distribution can effectively suppress most of the background. The background
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suppression module effectively avoids the expansion effect. LCV introduces the coefficient
of variation to the target detection of IR images. It has discrete statistical properties by
using the distribution of gray levels of the target and the surrounding background. Unlike
discrete statistical properties such as variance and standard difference, the advantage of the
coefficient of variation is that it does not require the average value of the reference data and
reduces the effect of noise on the average value. The combined advantages of these two
modules complement each other, reducing the false alarm rate for complex backgrounds
and improving target detection performance. At the target extraction stage, an adaptive
threshold operation will be used to extract the true target. Experiments with a large amount
of real data show that the algorithm detects small targets in a variety of complex scenes
and has a higher detection rate and a lower false alarm rate than existing algorithms.

The organizational framework of this paper is as follows. In Section 2, the proposed
method and its various parts are detailed. In Section 3, experimental results are presented.
Finally, some concluding remarks are given in Section 4.

2. Proposed Methods

The flowchart of the proposed method is shown in Figure 1. The proposed algorithm
consists of three important parts. First, the original IR image is preprocessed to extract
potential target regions. Second, background suppression and target enhancement are
applied to the preprocessed images to obtain saliency maps of the two modules. Finally, an
adaptive threshold segmentation mechanism is applied to extract the detected true target
from the final weighted saliency map.
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Figure 1. (a) The framework of our proposed method. (b) Three-dimensional surface after
each processing.

2.1. Preprocessing Stage

The original IR images are characterized by poor resolution, low contrast, and low
signal-to-clutter ratio. If the difference between the gray levels of the target and the
background is not obvious, many algorithms directly process the original IR image so that
the targets cannot be distinguished from clutter, and even fail to detect targets. Since the
spatial distribution of the small targets is approximated by a 2D Gaussian function, the
high-pass filter is designed to enhance the targets. However, high-pass filters are sensitive
to Gaussian noise. To reduce the effects of noise on target detection and improve the target
extraction of the original image, we introduce a preprocessing stage for the original image.
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At the preprocessing stage, the original IR image is smoothed and denoised to suppress
Gaussian noise, improve the details of the target edges, and increase the target extraction
capability. Then, the suspect target regions are identified by high-pass filtering based on
the previously processed image.

1. Image smoothing and denoising operations are performed to reduce the influence
of background clutter on the target detection results. Before high-pass filtering, the
image must be able to better preserve the detailed information of the target, such as
preserving the edge information of the target and smoothing the noise. The classical
methods of image denoising include Wiener filtering algorithms, wavelet algorithms,
total variable image denoising algorithms, etc. Wiener filtering can better preserve the
detailed features and high-frequency signals of the image, but it can cause blurring
effects in the pixel area. The wavelet algorithm can suppress the noise well, but the
image details are lost greatly. The total variation algorithm can remove the Gaussian
noise and preserve the image details, but it tends to blur the edge details. To preserve
the detailed features of the image with the high-frequency signal as much as possible,
in this work, a two-dimensional Wiener filter with adaptive characteristics is used to
smooth the image for denoising.

2. In the high-pass filtering operation, the smoothed and denoised image is subjected to
high-pass filtering. The high-pass filtered image IH is expressed as:

IH = I × G, G =

 −1 −1 −1
−1 8 −1
−1 −1 −1

. (1)

where I represents the image after the smoothing and denoising operation. As IR small
targets generally contain only a few pixels, a common 3 × 3 high-pass filter kernel G is
used in this paper.

Figure 2a shows a typical sample of a real IR image containing the target (denoted
by T), constant background (denoted by CB), clutter noise (denoted by CN), strong edges
(denoted by SE), and pixel-sized noise with high brightness (denoted by PNHB). Figure 2b
is an image showing the effects of processing the image with the two-dimensional Wiener
filter. The edge and high-frequency detail information of the image are better preserved,
and the Gaussian noise is suppressed. From Figure 2c, it can be seen that after high-pass
filtering, the image is effectively cleared of the low-frequency part of the background
and the CB is very cleanly suppressed. However, the CN, SE, and PNHB cannot be
filtered effectively. To improve the detection efficiency, this work focuses on two aspects:
suppressing complex backgrounds (e.g., CN, SE, PNHB, and other noise) to reduce false
alarms, and enhancing targets to improve target detection performance.
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2.2. Detection Stage

The detection stage consists of two modules, the background suppression module and
the local coefficient of the variation enhancement module. The final saliency map (FSM) is
created by merging the BSM and LCV. They share the information in the sliding window
so that the entire sliding window of the image needs to be traversed only once. The sliding
window is from top to bottom and from left to right.

2.2.1. Background Suppression Module (BSM)

The complex background is one of the most important factors affecting the detection
performance of the method. In an IR image, there is a grayscale difference between the
target and the surrounding background, and the target corresponds to a singularity within
a local area with a large grayscale gradient in all directions. The orientation is anisotropic.
After the IR image passes through the high-pass filter, the edge features of the background
are also enhanced and extracted. The edge features of the background have a strong
gradient only in a certain direction and are not anisotropic in all directions like the small
target. Therefore, in this work, the small target is extracted based on the difference between
the target and the background in terms of grayscale and direction, and the background
clutter is further attenuated.

The small target in the IR image often has a small area, less than 9 × 9 according to the
Society of Photo-Optical Instrumentation Engineers (SPIE) [11]. Conventional multiscale
algorithms, such as LCM, MRLCM, MPCM [18], and DLCM use the maximum local
contrast measure in different scales to strengthen the target. When the size of the small
target in the IR image is smaller than the sub-window, the multiscale algorithm strengthens
the background area around the target, increasing the detected target to the size of the
sub-window. We call this the “expansion effect”. The key to solving this effect is to find a
non-multiscale method that can adaptively detect targets of different sizes [15].

In order to detect small targets ranging from 2 × 1 to 9 × 9 pixels (a target larger
than 80 pixels is no longer considered a small target, which is beyond the scope of this
study), a new three-layer window is designed, as shown in Figure 3a. The entire window
is divided into three regions, where the innermost region I expresses the reference cell
(representing the region where the target might appear). The middle region is protected
region PBi, which is around I with eight sub-windows. The outermost region OB expresses
the background region. When the target is located in the center of the three-layer window,
the differences in orientation and grayscale of the target are reflected in all three regions,
regardless of the size of the target, and these differences can be used to detect targets of
different sizes.
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To extract the background information, the background coefficient (BC) is defined
using the grayscale difference between the target and the background, which can be defined
as follows:

BC = H[(MI −MPB)× (MI −MOB)]× H[(MI −MPB) + (MI −MOB)] (2)

M =
1
N

N

∑
n=1

gn(x, y) (3)

H(x) =

{
x, x > 0
0, else

(4)

where, MI , MPB, and MOB are the mean value of the reference area, the mean value of
the protected area, and the mean value of the background area, respectively; (x, y) is the
coordinate of each pixel in the region; N is the total number of pixels in a region; gn is the
gray value of the nth pixel, and H(·) is the Heaviside step function.

BC averages the local grayscale, which can effectively suppress PNHB. However, it
cannot effectively suppress clutter with similar grayscale differences to the target. Therefore,
this article introduces directional information (DI [18,19]) to improve background suppres-
sion. The nested structure of Figure 3a shows that the central part I is the reference area
(targets may appear here), and the protected area is divided into 8 patches PBi(i = 1, 2, ...8).
The difference between reference area I and protected area PBi is defined as follows:

d(I, PBi) = MI −MPBi , (i = 1, 2, ...8) (5)

Unlike structured background clutter, small targets have positive contrast in all direc-

tions. To characterize this property, the directional measure
∼
di is defined:

∼
di = d(I, PBi)× d(I, PBi+4) , (i = 1, 2, . . . , 4) (6)

where
∼
di measures the difference between the reference area and the peripheral protected

sub-windows along the i−th direction. The i−th directions represent the diagonal, vertical,
diagonal, and horizontal directions, respectively. When d(I, PBi) and d(I, PBi+4) have the

same sign,
∼
di > 0, indicating that the intensity of the reference area is higher (lower) than

that of protected area in the i−th direction, and candidate bright (dim) targets may appear
in the reference area. On the contrary, when d(I, PBi) and d(I, PBi+4) have different signs,
∼
di < 0, indicating that the reference area is the background area.

As mentioned above, small targets have positive contrast in all directions, while
structural background clutter has negative contrast in some directions. Therefore, the
minimum value of contrast is chosen to measure the reference area’s directional information
(DI). Therefore, in this paper, the DI is defined by

DI = min
i=1,2,...,4

∼
di (7)

Based on the previous preparation, the BSM is defined as follows:

BSM = BC× DI (8)

where BSM consists of BC weighted by DI. BC measures the probability that the reference
area is background. The closer BC is to zero, the more likely it is background. DI measures
the directional information of the reference area.

From Figure 4b, we will discuss the BSM results for different types of pixels.
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1. When the CB appears in the reference area, since the background is usually continuous,
we can easily obtain

MI ≈ MPB ≈ MOB, BC ≈ 0. (9)

BC ≈ 0, DI ≈ 0, BSM ≈ 0. (10)

2. When the SE appears in the reference area, since strong edges have directionality, we
can easily determine that

BC >= 0, DI < 0, BSM <= 0. (11)

3. When the PNHB, CN, and T appear in the reference area, since PNHB is averaged,
both the grayscale difference and the directional gradient difference in the reference
area are limited, so we can obtain a BSM that is greater than 0 but has a limited value.
However, CN and T are relatively similar in some cases, and after being averaged,
it is difficult to distinguish between them simply by the grayscale variability and
directionality of the reference area. We can easily get

MI > MPB, MI > MOB, BC > 0. (12)

BC > 0, DI > 0, BSM > 0. (13)

The BSM value of CN and T is much larger than the BSM value of PNHB. Therefore, it
can suppress PNHB noise better.

From the above discussion, we can conclude that after the BSM calculation, T and CN
will be the most prominent, and other types of clutter will be suppressed. The next step is
to use the enhancement module to distinguish between T and CN.

2.2.2. Local Coefficient of Variation (LCV)

BSM exploits the grayscale variability of different regions while taking into account the
orientation properties of the target. BSM is excellent at suppressing complex backgrounds,
but its effect on target enhancement is mediocre. To solve this problem, inspired by VARD,
the target is enhanced by the difference in the discrete degree of the local grayscale between
the target and the background. However, VARD has weaknesses in detection performance
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and background suppression. Its detection performance depends on the size of the sliding
window. In addition, the variance is affected by the mean, and if noise is present, variations
in the mean will affect the detection performance. Unlike the characteristic variance of the
degree of dispersion, the coefficient of variation can eliminate the influence of the mean.
The coefficient of variation removes the effects of inconsistent ranges of grayscale variation
in different areas of the image (e.g., background areas and reference areas) and better reflect
the degree of dispersion [20].

In statistics, the coefficient of variation (CV) is defined as:

CV =
S
M

(14)

where S is the standard deviation. It is defined by

S =

√√√√√
(

N
∑

n=1
(gn(x, y)−M)2

)
N − 1

(15)

Using Equation (16), a local coefficient of variation (LCV) model for the degree
of dispersion of the targeted local grayscale is proposed. The proposed model is the
following equation.

LCV =
(2× SI+PB − SOB)

MOB + τ
(16)

where SI+PB is the standard deviation of all the grayscale in the protected area and the
reference area; SOB is the standard deviation of the grayscale of the background area; and
MOB is the mean value of the background area. In statistics, the CV cannot be calculated
when the mean of a variable is zero. Therefore, we introduce a hyper-parameter, τ, which
is set to be 1× 10−5 in this article.

From Figure 4c, the different results of LCV enhancement for different types of pixels
are discussed as follows:

(1) When the CB appears in the reference area, since the background is usually continuous,
we can easily obtain

SI+PB = SOB, LCVCB =
(2× SOB − SOB)

MOB + τ
=

SOB
MOB + τ

. (17)

The CB dispersion is small. Therefore, the LCVCB is also small.

(2) When PNHB and T appear in the reference area, the background means of PNHB and
T are similar. The standard deviation refers to the mean value of all the grayscale in
the protected area and the reference area. The standard deviations of both PNHB and
T are larger than the background standard deviation. Since the target is more discrete
than PNHB, the LCV of the target is much larger than that of PNHB. Therefore, we
can easily determine that

SI+PB > SOB, LCVT > LCVPNHB (18)

(3) When SE or CN appear in the reference area, the standard deviations of SE and CN
are similar to the target case. However, they have a high probability of bright clutter
in the background, which will cause the background mean to be large. Therefore, the
LCV of the target is much larger than that of both. We can easily get

MT
OB < MSE

OB, MT
OB < MCN

OB , LCVT > LCVSE, LCVT > LCVCN (19)

where MT
OB, MSE

OB, and MCN
OB represent the mean value of the background area in the case

where the reference area is T, SE, and CN, respectively.
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From the above analysis, the LCV enhancement to the target is obvious, but the
background suppression aspect is not adequate.

Finally, the FSM is created by weighting the saliency map based on the two modules.
It combines the complementary advantages of the two modules to suppress false alarms
and improve the detection rate.

FSM = BSM× LCV (20)

Figure 5a,b are the 3D surface of the preprocessing result and the 3D surface of the
final saliency map, respectively. With sufficient background attenuation, the objects in
Figure 5b can be clearly distinguished.
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2.3. Target Extraction Stage

From the 3D surface, the target area of the final saliency map is significantly enhanced,
and the complex background is sufficiently suppressed. To segment the target from the
FSM, an adaptive threshold is used. In this letter, the adaptive threshold Th is denoted by

Th =µ + λ× σ (21)

where µ and σ are the mean value and the standard deviation of the FSM map, respectively.
λ is an adjustable parameter, which ranges from 10 to 30.

3. Experiment Results

In this section, experiments on real IR datasets to measure the performance of the pro-
posed method in detecting small targets are described. The dataset adopted the single-frame
IR small target detection dataset (SIRST) [21]. The SIRST contains a total of 427 images
with 480 small targets. The scenes are diverse and include various complex scenes of sea,
ground, and air. All experiments were conducted on a laptop with 2.6-GHz Intel Core i7
CPU and 16.0 GB RAM, and the code was implemented in MATLAB 2018b of MathWorks,
Massachusetts, USA.

We selected three widely used quantitative evaluation criteria. Quantitative evaluation
criteria included signal-to-clutter ratio gain (SCRG), background suppression factor (BSF),
receiver operating characteristic (ROC), etc. SCRG was used to evaluate the ability of the
algorithm to enhance the target and its expression is:

SCRG =
SCRout

SCRin
(22)
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where SCRin and SCRout represent the signal-to-clutter ratio of the image before and after
processing by the algorithm, respectively. SCR is denoted by

SCR =
|ut − ub|

σb
(23)

where ut is the mean value of the reference region, ub is the average gray of the neighboring
background, and σb is the standard deviation of the local background.

The BSF was applied to assess the ability of the algorithm to suppress the background
and is expressed as

BSF =
σin

σout
(24)

where σin and σout are the standard deviations of the background in the image before and
after processing by the algorithm, respectively.

The receiver operating characteristic (ROC) reflects the algorithm’s detection perfor-
mance. ROC describes the relationship between detection probability Pd and the false
alarm rate Fa, which is defined as follows [22–24]:

Pd =
number of true detections
number of actual targets

(25)

Fa =
number of false detections

number of images
(26)

Because the proposed method uses a three-layer window, it is theoretically possible
to detect targets of different sizes for a fixed window size. Parameter K is the size of the
window cells, which is odd. To test the influence of different K parameters on algorithm
performance, we used the SIRST dataset. The ROC curves are shown in Figure 6a. It is easy
to see that three is the best value. Therefore, in the following experiments, K was set to 3.
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3.1. Ablation Experiment

We performed ablation experiments with different settings to verify the necessity of
each part of the algorithm. The ROC curves are shown in Figure 6b. The results of the
ROC curves demonstrate that the use of the preprocessing stage greatly improves the
performance of small target detection. The proposed method ensures a higher detection
rate with a lower false alarm rate than the method without the LCV weighting module.

3.2. Comparison to Baseline Methods and Qualitative Analysis

To illustrate the detection performance of the proposed method, it was compared
with various types of methods, including the similar algorithms MRLCM [14], MPCM [18],
DLCM [16], TLLCM [22], and VARD [17], which are based on the human visual system
(HVS) method, New Top-Hat (NWTH) [6], which is based on spatial filtering, and RIPT [10],
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which is based on sparse representation methods. The detailed parameter settings for each
algorithm are given in Table 1. The parameter settings for all compared methods are
consistent with the authors’ recommendations.

Table 1. Parameter values used in the algorithms.

No. Methods Acronyms Parameter Settings

1 New Top-Hat NWTH [6] S(Bb) = S(∆B) = 21, M(∆B) = 5

2 Reweighted Infrared Patch-Tensor Model RIPT [10] Patch size: 50 × 50, sliding step 10,
λ = L√

min(I,J,P)
, L = 1, h = 1, ε = 0.01, ε = 10−7

3 Multiscale Relative Local Contrast Measure MRLCM [14] Cell size : 9 × 9, K1 ∈ {2, 5, 9}, K2 ∈ {4, 9, 16}
4 Multiscale Patch-Based Contrast Measure MPCM [18] Cell size: 3 × 3, 5 × 5, 7 × 7, 9 × 9
5 Double-Layer Local Contrast Measure DLCM [16] N = 3, Local window size: 15 × 15
6 Tri-Layer Local Contrast Measure TLLCM [22] c = 3, K = 9, R ∈ {5, 7, 9}
7 Variance Difference VARD [17] D = 3, Local window size: 15 × 15
8 Weighted Local Coefficient of Variation Proposed K = 3, Local window size: 15 × 15

In this paper, six typical scenarios are selected to qualitatively analyze the performance
difference between the proposed algorithm and the comparison algorithm. Figure 7 con-
tains different complex backgrounds, such as sky, ground, and sea, with a variety of clutter
types. Scenarios 1 to 5 are from experimental images of different detection algorithms, and
scenario 6 is from the dataset [25]. The detailed information of the scenarios is listed in
Table 2.

Figure 8a–f shows the results of comparison algorithms for detecting small IR targets
with different complex backgrounds. Figure 8h represents the result of direct detection
of the original image without the preprocessing stage. Figure 8i shows the results of
the proposed algorithm. The true targets are marked with rectangles. The red rectangle
indicates that the target can be detected, and the yellow rectangle indicates that the target
cannot be detected.

The following are the results of the analysis of the proposed algorithm and the com-
parison algorithm in six scenarios.

1. The NWTH algorithm is unable to suppress strong clutter in the background. There is
a high false alarm rate when the background is very complex, as in scenarios 1, 3, 4, 5,
and 6.

2. The RIPT algorithm is sensitive to the irregular strong edge and highlight noise,
cannot effectively suppress false alarms, and has poor detection performance. There
are many false alarms in all scenes and scenario 6 does not effectively distinguish
between targets and clutter.

3. The MRLCM algorithm enhances the target but fails to suppress the background,
is sensitive to highlight clutter, and has a significant expansion effect. Targets and
clutter will be enhanced and will be produced simultaneously, and the target cannot
be detected effectively or may even be lost, as in scenario 3.

4. The MPCM algorithm can effectively suppress edges in the background. However,
it is sensitive to noise and clutter. Interference noise is amplified and output, as in
scenario 1 and scenario 3.

5. The DLCM can only suppress the background but cannot amplify the target. It is
sensitive to clutter in complex backgrounds and may result in target misdetection, as
in scenario 3.

6. The TLLCM is sensitive to grainy noise in the background and can cause the target
to be missed if there is highlight clutter in the background, as in scenario 3 and
scenario 6.

7. The VARD algorithm has good performance in target enhancement, but poor back-
ground suppression. It enhances the target while amplifying the clutter, which
significantly degrades detection performance. Except for scenario 2, VARD caused a
large number of false alarms, which severely degraded the detection performance.
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8. The proposed algorithm without a preprocessing stage has good detection. However,
it is insufficient in suppressing large areas highlighting clutter suppression, as in
scenario 1 and scenario 6.

9. The proposed algorithm has excellent background suppression ability and can adapt
to various complex backgrounds (e.g., strong edge clutter, point noise, highlight
clutter, etc.) and effectively improve the target. The final saliency map has a clean
background, and the target is effectively enhanced.
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Table 2. Information of the six scenarios.

Scenario Resolution Target Size Background Details

1 127 × 127 4 × 3 Mountain-Forest background Heavy clutter. Strong edge clutter. Random noise.
2 127 × 126 5 × 5 Sky-Cloud background. Strong edge clutter.
3 127 × 126 2 × 3 Sea-Sky background Heavy clutter.
4 250 × 200 3 × 4 Sky-Cloud background Strong edge clutter.
5 127 × 126 3 × 2 Sky Strong edge clutter. Random noise. Low SCR.

6 256 × 256 2 × 2 Ground Heavy clutter. Strong edge clutter.
Random noise. Bad pixels.
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3.3. Quantitative Comparisons

Table 3 lists the statistics of SCRG and BSF obtained from the SIRST dataset after pro-
cessing by different algorithms. SCRG and BSF indicate that the strength of the algorithm
can improve targets and suppress complex backgrounds, with larger values being better.
Note that the Inf in BSF and SCRG causes the grayscale value of the adjacent background
area to be very close to zero after processing. NWTH, MRLCM, MPCM, and TTLCM
achieve the goal of simultaneously enhancing the target and suppressing the background.
However, the ability to enhance the target and suppress the background is limited. DLCM
provides great background suppression but insufficient enhancement of the target. Con-
versely, VARD is strong in target enhancement but inadequate in background suppression.
The RIPT algorithm is a sparsely expressed single-frame detection algorithm, and its calcu-
lation results in a target map and a background map, respectively. The SCRG and BSF of
the algorithm are calculated from the target map and the value of Inf is obtained, which
indicates that the local background region of the target is completely suppressed in the
algorithm’s target map. However, RIPT cannot eliminate the interference caused by strong
edge clutter. The proposed algorithm takes advantage of the different characteristics of the
targets to achieve not only superior background suppression for the BSM module, but also
excellent target enhancement for the LCV module.
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Table 3. The statistics of SCRG and BSF of different algorithms.

Data Evaluation Metrics NWTH RIPT MRLCM MPCM DLCM TTLCM VARD Proposed

SIRST
SCRG 4.84 Inf 6.42 2.95 0.99 32.42 453.42 Inf
BSF 9.02 Inf 13.90 28.02 94.18 38.58 544.97 Inf

In this paper, the detection and false alarm rates of each algorithm were calculated on
the SIRST dataset, and the ROC curves were plotted, as shown in Figure 6c. The ROC curve
of this algorithm is on the top left of the other curves, which means that the detection rate
of this algorithm demonstrates the best performance compared to other existing algorithms
for the dataset. The AUC is the region enclosed by the ROC curve, which also directly
indicates the detection performance. The proposed algorithm also achieves the best results
on the dataset.

3.4. Discussion

IR small target detection based on contrast mechanism has good prospects for applica-
tion. The existing algorithms have some drawbacks, such as the expansion effect caused by
multi-scale algorithms, and some algorithms are sensitive to window size and noise. This
study utilized a non-multiscale three-layer window design to avoid the expansion effect
effectively. WLCV fully utilizes the target and various background grayscale characteristics
to suppress the complex background while enhancing the target. In addition, to reduce
the enhancement effect of clutter, we designed a new measure of LCV weighting, which
can better clutter the reduction. The coefficient of variation differs from variance and the
standard in that it is more robust to noise and window size. We found that the space-based
IR target was characterized by a much stronger clutter intensity than that of the airborne
target. This characteristic poses a significant challenge to airborne target detection because
existing IR target detection methods enhance the clutter and ignore the real target, leading
to missed detections and false alarms [1]. We want to investigate further the detection of
small IR targets in different backgrounds in the future.

4. Conclusions

In this paper, an effective and robust IR target detection method is proposed. Real
targets in complex scenes are easily swamped and disturbed by clutter. Therefore, this
method employs preprocessing to improve the robustness of the target in complex scenes.
Based on the features of the target and the background, i.e., the local spatial grayscale
discrepancy and the gradient direction information, the BSM improves the adaptation to
complex backgrounds. Therefore, the target can be detected with a low false alarm rate.
The LCV eliminates the influence of the mean fluctuation caused by the size of the sliding
window, effectively highlights the target, and reduces false alarms. Experimental results on
a dataset containing IR images with complex backgrounds show that the proposed method
performs relatively well in both background suppression and detection performance.
Compared to other state-of-the-art methods, it has obvious advantages in quantitative
parameters such as SCRG and BSF and visual quality.
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