
cancers

Review

A New Look into Cancer—A Review on the Contribution of
Vibrational Spectroscopy on Early Diagnosis and
Surgery Guidance

Adriana P. Mamede 1 , Inês P. Santos 1 , Ana L. M. Batista de Carvalho 1 , Paulo Figueiredo 2, Maria C. Silva 3,
Mariana V. Tavares 1,4, Maria P. M. Marques 1,5,* and Luís A. E. Batista de Carvalho 1

����������
�������

Citation: Mamede, A.P.; Santos, I.P.;

Batista de Carvalho, A.L.M.;

Figueiredo, P.; Silva, M.C.; Tavares,

M.V.; Marques, M.P.M.; Batista de

Carvalho, L.A.E. A New Look into

Cancer—A Review on the

Contribution of Vibrational

Spectroscopy on Early Diagnosis and

Surgery Guidance. Cancers 2021, 13,

5336. https://doi.org/10.3390/

cancers13215336

Academic Editor: Fiona Lyng

Received: 17 September 2021

Accepted: 18 October 2021

Published: 24 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 “Unidade de I&D Química-Física Molecular” (QFM-UC), Departament of Chemistry, University of Coimbra,
3004-504 Coimbra, Portugal; apm@uc.pt (A.P.M.); ips@uc.pt (I.P.S.); almbc@uc.pt (A.L.M.B.d.C.);
mariana.vide.tavares@ipoporto.min-saude.pt (M.V.T.); labc@ci.uc.pt (L.A.E.B.d.C.)

2 Pathology Department, Portuguese Institute of Oncology Francisco Gentil (IPOFG),
3000-075 Coimbra, Portugal; pbsf@ipocoimbra.min-saude.pt

3 Surgery Department, Portuguese Institute of Oncology Francisco Gentil (IPOFG),
3000-075 Coimbra, Portugal; 3483@ipocoimbra.min-saude.pt

4 Gynaecology Department, Portuguese Institute of Oncology Francisco Gentil (IPOFG),
4200-072 Porto, Portugal

5 Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
* Correspondence: pmc@ci.uc.pt

Simple Summary: Cancer is a leading cause of death worldwide, with the detection of the disease
in its early stages, as well as a correct assessment of the tumour margins, being paramount for a
successful recovery. While breast cancer is one of most common types of cancer, head and neck
cancer is one of the types of cancer with a lower prognosis and poor aesthetic results. Vibrational
spectroscopy detects molecular vibrations, being sensitive to different sample compositions, even
when the difference was slight. The use of spectroscopy in biomedicine has been extensively explored,
since it allows a broader assessment of the biochemical fingerprint of several diseases. This literature
review covers the most recent advances in breast and head and neck cancer early diagnosis and
intraoperative margin assessment, through Raman and Fourier transform infrared spectroscopies.
The rising field of spectral histopathology was also approached. The authors aimed at expounding in
a more concise and simple way the challenges faced by clinicians and how vibrational spectroscopy
has evolved to respond to those needs for the two types of cancer with the highest potential for
improvement regarding an early diagnosis, surgical margin assessment and histopathology.

Abstract: In 2020, approximately 10 million people died of cancer, rendering this disease the second
leading cause of death worldwide. Detecting cancer in its early stages is paramount for patients’
prognosis and survival. Hence, the scientific and medical communities are engaged in improving
both therapeutic strategies and diagnostic methodologies, beyond prevention. Optical vibrational
spectroscopy has been shown to be an ideal diagnostic method for early cancer diagnosis and
surgical margins assessment, as a complement to histopathological analysis. Being highly sensitive,
non-invasive and capable of real-time molecular imaging, Raman and Fourier transform infrared
(FTIR) spectroscopies give information on the biochemical profile of the tissue under analysis,
detecting the metabolic differences between healthy and cancerous portions of the same sample. This
constitutes tremendous progress in the field, since the cancer-prompted morphological alterations
often occur after the biochemical imbalances in the oncogenic process. Therefore, the early cancer-
associated metabolic changes are unnoticed by the histopathologist. Additionally, Raman and FTIR
spectroscopies significantly reduce the subjectivity linked to cancer diagnosis. This review focuses
on breast and head and neck cancers, their clinical needs and the progress made to date using
vibrational spectroscopy as a diagnostic technique prior to surgical intervention and intraoperative
margin assessment.
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1. Introduction

Cancer is a leading cause of death worldwide, it being estimated that approximately
10 million people died of this disease in 2020 [1]. Cancer incidence has increased over the
years, and this trend is expected to continue, since cancer is an age-related disease—with
an increasing life expectancy, the number of cancer cases is foreseen to increase over time.

Cancer diagnosis requires the expertise from several fields of knowledge, from bio-
chemical/chemical to clinical. Histopathological analysis, performed on biopsy-collected
samples, is the gold standard methodology for cancer diagnosis, and relies on the contribu-
tion of molecular pathology and bioengineering.

A wide range of molecular biology methods have been applied in order to accurately
identify features associated with malignancy, as a complement to anatomopathological anal-
ysis: reverse transcription polymerase chain reaction (RT-PCR) for the detection of active
oncogenes (also known as next-generation sequencing, NGS); immunohistochemistry (IHC)
for the detection of the expression of cancer-related proteins/glycoproteins; transcriptomic
studies to assess the presence of proliferation markers; epithelial-to-mesenchymal transi-
tion and stem cell-like markers, as well as overexpressed or mutated cell cycle regulator
proteins [2–6].

Imaging techniques, such as ultrasound, resonance magnetic imaging (MRI), positron
emission tomography (PET), computed tomography (CT) and X-rays, among others,
were substantial in the cancer diagnostic field, delivering physiological, anatomical, and
metabolic information of tumours, sometimes simultaneously.

Final diagnosis and staging characterise tumours according to the American Joint
Committee on Cancer (AJCC) based on the morphological alterations of the tissue, tumour
size, grade and location [7]. Although the current practice is functional, the cancer diagnosis
process is still time-consuming and subjective, which carries risks for the patients as
further discussed.

The combined use of histopathology, IHC, molecular pathology and imaging tech-
niques, rather than their sole use, reduces some of the limitations and errors associated
with cancer diagnosis [8,9]. However, it is important to be aware that this is not a static
disease. Instead, it is a very complex, dynamic and multifactorial pathology. Tumours
evolve over time inside the body and respond to changes in their microenvironment [10,11],
leading to varied and often unknown molecular alterations which subsequently prompt
morphological changes. Hence, it is impossible to cover all the relevant metabolic and
genetic variations undergone during the oncogenic cascade, accounting for the multi-clonal
morphological heterogenicity of the tissues.

In an attempt to improve the currently used tools, the scientific community has looked
for highly sensitive alternative technologies that can lead to cancer diagnosis at an early
stage in a fast and non-invasive way, providing broader and more accurate information.

Raman and Fourier transform infrared (FTIR) spectroscopy are optical-based vibra-
tional techniques with high sensitivity, non-invasiveness and real-time molecular imaging
capability, without the need for dyes or external probes, providing extremely accurate
chemical information. Molecules vibrate at specific energies according to the chemical
bonds that constitute them and their chemical environment, meaning that it is possible
to identify and quantify each component of a mixture, as well as minor differences be-
tween samples, using vibrational spectroscopy, even for inhomogeneous biospecimens and
conditions (including in vivo/in situ).

To date, Raman and FTIR have provided the biochemical fingerprint of the genome,
metabolome and proteome of biological samples under distinct conditions, delivering bio-
chemical images and allowing researchers to detect molecular pathological changes with
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high accuracy. Their use has been successful for diagnosing diseases such as Alzheimer’s,
dementia [12,13], diabetes [14,15], viral infections [16–19], and cancer [20–23], or for iden-
tifying bacteria and fungi infecting patients (guiding physicians regarding treatment
choices) [24–27].

The present literature review addresses the use of vibrational spectroscopy techniques
to diagnose breast, and head and neck cancers at an early stage, and its potential to achieve
the adequate surgical treatment, as a complement to the histopathological analysis. The
choice of these two types of cancer was based on the imperative need for an early diagnosis
and accurate surgical margin assessment in their treatment.

2. Methods

The literature search was carried out using Scopus and PubMed.
The search of the clinical needs was performed for the period from 2015 to 2021,

based on the current practices and guidelines. The keywords used for the search were
“breast cancer” OR “head and neck cancer” AND “screening” OR “diagnosis” OR “surgical
margins assessment” OR “surgical recurrence” AND “histopathological analysis” AND
“inaccuracy” OR “subjectivity”.

The search concerning early diagnosis and surgery guidance using vibrational spec-
troscopy addressed the period from January 2011 to June 2021. The filtering process
included at least three of the following keywords: “breast cancer” OR “head and neck
cancer” AND “vibrational spectroscopy” OR “Raman” OR “FTIR” AND “early diagnosis”
OR “biopsy” OR “spectral cytology” OR “saliva” OR “urine” OR “surgery guidance” OR
“surgical margins assessment” OR “FFPE samples” OR “spectral histopathology”.

The inclusion criteria were the use of human samples and the potentiality for a
successful application in the clinics. In vitro and animal models were excluded, except
those analysed by SESORS on account of their innovative content and promising inclusion
in the clinical flow due to the specific use of handheld probes. The research articles
comparing sampling and sample handling methodologies were also excluded.

The sections that cover the early diagnosis of cancer included the analysis of samples
that might be integrated in the clinical screening process, namely: blood, saliva and
cytological biospecimens. Among these, the research articles with an exclusively qualitative
analysis of the spectral data, i.e., with no statistical analysis, were not considered. New
methodologies supporting biopsy-guided research were also included in these sections.

The surgical margins assessment sections included the studies performed in both fresh
and frozen human samples, focusing on new methodologies that will affect less negatively
the current clinical routine. In turn, surgical guidance was tackled in an innovative way,
searching for newly developed technologies that may provide a fast and accurate screening
of the excised biospecimens’ surface.

3. Results
3.1. Which Are the Clinical Challenges?
3.1.1. Histopathology

Histopathology is the standard methodology for cancer diagnosis. After tumour
surgical biopsy, the samples are formalin-fixed and paraffin-embedded (FFPE) in order
to keep the tridimensional features of the tissue and its viability for observation [28]. The
specimens are then sectioned, coated on glass slides and stained with haematoxylin and
eosin (H&E) for histopathological analysis, which is performed by well-trained experienced
medical pathologists [28]. Additionally, molecular pathology studies are performed with
the same biopsy material. Apart from being a fairly slow process, it encompasses a high
degree of subjectivity, which constitutes its main drawback.

The anatomopathologists’ interpretations of the biospecimens assist tumour boards
(oncologists, surgeons, radiologists, and other specialist) together with the patients’ options
in determining the treatment of choice regarding patients’ prognosis. However, due to
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tumours’ morphological heterogeneity, misidentification and/or misinterpretation are
possible, leading to diagnostic errors.

Aiming at assessing the diagnostic accuracy and reproducibility obtained with histopathol-
ogy for different types of cancer, Brunyé et al. [29], Elmore et al. [30–32], Gilks et al. [33], San-
goi et al. [34] and Thunnissen et al. [35] evaluated the inter-observer and/or intra-observer
variability of the diagnosis determined for breast cancer, melanocytic lesions, endometrial
carcinoma, micropapillary carcinoma of the urinary tract and pulmonary adenocarcinoma.
All these studies found high rates of disagreement when diagnosing the intermediate
cancer stages between the healthy and invasive categories. The search/observation process,
the individual features of the samples, the different thresholds set by each anatomopathol-
ogist and personal experience were some of the factors found to be the source for the lack
of accuracy and reproducibility associated with histopathology. When identifying tumour
markers, the diagnosis accuracy was increased. In sum, diagnostic errors are more prone to
occur when examining the ‘grey’ areas of cancer, the development of new methodologies to
successfully accomplish this task being paramount to assist histopathology on increasing
the diagnosis accuracy.

3.1.2. Breast Cancer

Breast cancer (BC) is the most common cancer worldwide [36], affecting both females
and males [37]. The emergence of BC may be the result several factors: the accumulation
of genetic mutations throughout the lifetime, family inheritance, environmental factors
(e.g., pollution, exposure to heavy metals), hormone exposure (namely to oestrogen), obe-
sity, alcohol consumption and sedentary lifestyle [2,37–41].

BC mortality has decreased over the years owing to national screening programs
leading to an early cancer detection, thus leading to fast therapeutic intervention, but the
medical community still faces numerous challenges regarding its diagnosis and surgical
margin assessment.

Breast Cancer Diagnosis

In countries with developed health systems, BC screening consists of a first clinical
examination of the breasts and a bilateral mammogram which can yield a significant per-
centage of false positives [37]. Thus, ultrasonography is the second preferred imaging
technique to assist BC screening, followed by biopsy collection in cases where abnormal-
ities are found [37]. Still, mammography and ultrasonography of highly dense breasts
may provide dubious or inconclusive results, urging for more complex imaging diagnostic
methods such as MRI or tomosynthesis (a digital 3D mammography). The latter provides
images with less tissue overlap, thus revealing hidden tumours, especially in highly dense
breasts [37,42], but it is not yet used in routine clinical practice. Apart from the limita-
tions already discussed, these methodologies are expensive, do not provide biochemical
information on the tumours, and patients are exposed to hazardous ionizing radiation. In
fact, the tumour biochemical signature is a critical factor for diagnosis, since it allows one
to predict the best treatment approach as well as the patients’ response to treatment and
consequent prognosis.

Endocrine receptors for oestrogen (ER), progesterone (PR) and human epidermal
growth factor 2 (HER2) with or without the proliferation protein marker Ki67 are the
standard biomarkers assessed for BC through IHC methods. ER- and PR-positive cancers
suggest a good response to hormone receptor-targeted therapy. In turn, HER2-positive
cancers and ER-, PR- and HER2-negative cancers (triple-negative) usually require stronger
chemotherapeutic approaches [5,37,43]. In addition, the assessment of Ki67 (an indicator
for proliferation) is highly relevant in ER- and PR- positive cancers, since it determines
chemosensitivity [37,43].

According to Tang et al., 20% of IHC testing for ER, PR and HER2 biomarkers is
inaccurate worldwide [5]. This low reliability may be due to the huge variability of IHC
assays, in addition to the standardised protocols, as a consequence of: (i) different protocol
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procedures regarding fixation; (ii) distinct choices of antibodies; and (iii) thresholds for
positivity [3,5]. Hence, alternative BC biomarkers have been developed, such as microR-
NAs [44–47] and exosomes [48–50], as well as new non-invasive diagnostic methodologies,
discussed in Sections 3.2 and 3.3.

Breast Cancer Surgical Treatment

Adequate surgical intervention is considered a curative procedure, sine qua non, in
BC treatment. Surgery may be the first step in the treatment or after neoadjuvant therapy
(chemotherapy/hormone therapy and radiotherapy) [37]. Although mastectomy is a
lifesaving procedure, it is often perceived as a mutilation [51], and it carries a tremendous
psychological impact for women, strongly affecting the perception of their body and their
self-image [51–53]. Therefore, breast conserving surgery (BCS) became preferable in cases
where the excision of the malignant lesion with adequate margins is possible, as it has good
aesthetic outcomes and, when followed by radiation therapy, leads to similar or even better
survival rates than mastectomy [54,55]. The drawback with BCS is the identification of the
tumour safe margins intraoperatively, which may require re-resection of the tumour if the
margins are positive.

Prior to or during surgery, there is an attempt to predict the tumour location and
respective margins through imaging techniques and dye marking. Especially in the pres-
ence of non-palpable tumours, image-guided breast surgery is the chosen methodology,
resorting to techniques such as wire localization and magnetic seed localization [55,56].
For BC, the margins are considered adequate when they are >2 mm away from the tumour,
and for invasive carcinoma (IC), the guideline for clear margins is “no ink on tumour” [57].

In order to ensure that all of the tumour is removed, frozen sections and cytological
analysis of the surroundings of the resected tissue can be performed intraoperatively in
order to avoid a second surgery in the case of positive margins [56]. Cavity shave margin
resection is another procedure performed during surgery which, according to Dupont and
co-workers [58], reduces the probability of positive margins from 36% (“no shave” group)
to 9.7% (“shave” group) in a randomised group of 296 patients diagnosed with stage 0-III
BC. The volume of the tissue removed in the “shave” group was also considerably larger
than that removed from the “no shave” group [55,58], which obviously carries additional
effort regarding oncoplastic surgery.

Intraoperative assessment of the sentinel lymph nodes in BC is another major challenge
faced by clinicians. The current practice includes examination through lymphoscintigraphy
associated, or not, with the use of a blue dye and subsequent cytological or histopathologi-
cal analysis of frozen sections [37,59]. Magnetic sentinel lymph node (Sentimag) has also
emerged over the last few years as a good alternative intraoperative imaging technique for
intraoperative lymph node detection [60]. One-step nucleic acid amplification (OSNA) is
another method for lymph node metastasis assessment, that is progressively being applied
intraoperatively, detecting and quantifying the cytokeratin-19 (CK-19) mRNA, providing
accurate and consistent results [61].

Despite the efforts made to decrease the need for tumour re-resection, the rates of BC-
positive margins are still high (ca. 23%) particularly in DCIS and invasive lobular carcinoma
(ILC) [55,62,63], the numbers varying among surgeons (15–40%) and institutions [64–66]. In
addition to the economic impact, the physical and psychological burden of re-resection for
the patient is dramatic, along with a higher probability of postoperative complications and
poorer aesthetic results. Hence, improving BC surgical margin assessment is a compelling
clinical need.

3.1.3. Head and Neck Cancer

Head and neck cancer (HNC) refers to epithelial malignancies that develop in the
nasal or oral cavities, larynx, pharynx, and paranasal sinuses. The malignant lesions
occurred in the head and neck are mainly squamous cell carcinomas and can be related
to human papillomavirus (HPV) infection, alcohol consumption or tobacco use [67–69].
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It is estimated that more than 930,000 people were diagnosed with HNC worldwide in
2020 [70]. Roughly 50% of the diagnosed cases have died [70]. HNC is not a very common
type of cancer but has poor prognosis, making it important to develop new strategies to
improve its diagnosis and treatment.

Head and Neck Cancer Diagnosis

Since there is no screening for HNC (unlike for BC), an early diagnosis depends on
identifying and detecting symptoms. A fast medical intervention may be limited by socio-
economic and health care access factors [71]. Hence, HNC diagnosis relies on physical
examination, imaging techniques such as MRI, CT, X-ray, PET, head and neck endoscopy
and biopsy collection [69,72]. As discussed previously, these diagnostic technologies (apart
from endoscopy) expose the patients to ionizing radiation, are expensive and lack accuracy,
along with being unable to provide biochemical information on the tumours.

Narrow band imaging (NBI) endoscopy has emerged over the years as an alternative
to conventional endoscopy, which lacks resolution and contrast, often leading to misiden-
tification and undersampling of malignant lesions. NBI increases the contrast between
tissue vasculature and the remaining mucosa thus, allowing clinicians to better visualise
small lesions [73]. According to a report by Zhou and colleagues, NBI was shown to be a
valuable diagnostic tool, since it was able to diagnose HNC with an overall accuracy of
96% based on 25 previous studies and 6187 lesions [74].

Complementary diagnostic tools for HNC, in particular for oropharyngeal cancer,
may include the detection of HPV infected cells through in situ hybridization, by IHC
targeting the cell cycle regulator protein p16, PCR for detecting viral DNA and, mRNA
coding for the viral oncogenes E6 and E7, in selected cases [69,75,76]. Similarly to BC
immunohistochemical biomarkers, HNC biomarking has limitations regarding its repro-
ducibility, sensitivity and accuracy. In turn, in contrast to BC, testing for HPV positivity
does not have a prognostic objective, as it is known that HPV-positive HNC patients have
a long-term survival rate [51], but it remains unclear whether different treatment strategies
for HPV-positive and HPV-negative patients are appropriate [67,77].

Head and Neck Cancer Surgical Treatment

Adequate HNC surgery is a curative procedure in the early stages of the disease but
faces major challenges regarding surgical margin assessment.

For this type of cancer, a clear margin is obtained when the surface of the resected
tissue is > 5 mm from the tumour, depending on the location of the primary tumour,
although smaller distances were recently recommended [78]. Intraoperatively, this assess-
ment is performed by visual examination of the resected specimen, and palpation and
histopathological analysis of frozen sections [79,80], which is not an easy task when bone
margins are to be considered [81]. Buchakjian and co-workers evaluated the prognosis
and local recurrence of 406 patients with oral cancer undergoing surgery and found that
intraoperative margin assessment from frozen sections from the wound-bed was not an
ideal margin predictor [82].

According to Williams, the currently used methods during HNC surgery have sev-
eral limitations regarding tumour localization, namely: after positive margins following
resection; tissue shrinkage, affecting the 5 mm margin of clearance; and when sampling the
wound-bed, the collected samples may not represent the true tumour area [81].

Head and neck surgery has a tremendous impact on patients’ lives regarding its
aesthetic and lifestyle changing outcomes, since the anatomy of oral/nasal cavities and
the throat region may be extensively altered. Considerable reconstruction work is usually
needed, involving bone and skin autografts [83], which increases the risks for infections
and wound-related complications. Hence, an accurate margin assessment is of the utmost
importance in order to avoid relapse and reoperation, since the concern regarding loss of
function is particularly significant in HNC surgical treatment.
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3.2. Raman Spectroscopy

The Raman effect is the consequence of a light-scattering phenomenon caused by the
interaction between the electrical component of the light wave and electrical charges inside
atoms, that are moving (vibrating) from their equilibrium position through stretching,
deformation and torsion motions. When this vibration causes a change in the polarizability
of the molecule, the corresponding vibrational mode is detected by Raman techniques.

A monochromatic laser is used as an exciting source to increase the probability of
photon scattering (since the Raman scattering is a weak effect). The energies of the vi-
brational states are specific for each type of chemical bond or functional group: as an
example, the chemical entity CH2 from lipids, proteins and nucleic acids gives rise to
unique Raman signals at 1450, 2850–2875 and 2900–2935 cm−1 [84] (each representing a
specific vibrational mode). These same signals are environment-sensitive and may undergo
slight shifts according to different chemical settings around the CH2 moieties. The same
principle is applicable for the chemical bonds in DNA, RNA, carbohydrates and all other
cellular biochemical components. Therefore, it is possible to assess with high sensitivity
the biochemical signature of a tissue, any changes being suggestive of different chemical
environments. By coupling Raman and infrared spectroscopies to optical microscopy, it
is possible to obtain biochemical information associated with the spatial distribution of
the different components within the system, thus allowing one to build combined images
representative of chemical composition and structure/morphology (Figure 1) [85].

Figure 1. Typical spectra and biochemical images obtained by Raman and infrared microspectroscopy of biological samples:
(a) Raman microspectroscopy of a human breast tissue section (Material not intended for publication: Mamede, A. P.,
Santos, I. P., Batista de Carvalho, L. A. E., QFM-UC, Coimbra, Portugal. Biochemical image of amide I and CH2 stretching
distribution in a human breast section, 2021); (b) infrared microspectroscopy (with synchrotron radiation) of a human
osteosarcoma cancer cell (MG-63) [85].

Several modifications of the Raman technique and its spectrometers were implemented
with a view to obtain enhanced signals, which is particularly useful when studying highly
heterogeneous biological samples:

• Surface-enhanced Raman scattering (SERS) takes advantage of the interaction between
the sample and a rough nanostructured metal surface to which the molecules are
adsorbed, which leads to an enhanced Raman intensity. Both nanotags and metallic
surfaces can be used (Figure 2a) [86,87].

• Spatially offset Raman spectroscopy (SORS), developed in 2005 by Matousek and
co-workers [88], allows the detection of penetrating photons into the sample by
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biasing laterally the detection point from the laser incidence point (Figure 2a) [24,89].
Thus, this methodology provides biochemical information from several layers of
tissue. Numerous improvements have been developed, with a view to increase its
sensitivity, namely: surface-enhanced spatially offset Raman spectroscopy (SESORS)
which couples the signal enhancement of SERS to the depth probing ability of SORS
(Figure 2a) [90]; and surface-enhanced spatially offset resonance Raman spectroscopy
(SESORRS), that combines resonance Raman (RR) [91] and SORS. These surface-
enhanced approaches require the use of functionalised nanoparticles (NPs).

• Coherent Raman scattering (CRS) microscopy takes advantage of two exciting laser
beams. Their energy of excitation is chosen according to specific vibrational modes of
the sample that the user wishes to highlight (Figure 2b) [92]. In this way, particular
biological components may be probed. Taking the example of the CH2 moieties of
lipid constituents in tissues, the spatial distribution of CH2 is obtained.

Figure 2. Schematic representation of several Raman configurations: (a) conventional Raman, SORS, SERS and SESORS;
(b) coherent Raman scattering (CRS).

3.2.1. Early Diagnosis of Breast Cancer by Raman Spectroscopy

Attending to its outstanding abilities regarding specificity and non-invasiveness, Ra-
man spectroscopy has been recognised in the last few decades as a very suitable technique
for BC screening. The analysis of blood serum by microRaman is an emerging option for
non-invasive diagnosis of breast cancer. Cervo et al. took advantage of the SERS technol-
ogy to diagnose luminal A BC at different stages (localised malignant lesions and locally
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advanced cancers with lymph node involvement) using blood serum from 20 healthy
individuals, 20 luminal A localised BC patients (pT1N0) and 20 locally advanced luminal A
BC patients (pTxN+) [93]. Besides demonstrating the capability to distinguish normal from
diseased samples with 90% accuracy, 92% sensitivity and 85% specificity, these authors
evaluated the ability of SERS to distinguish localised BC from locally advanced BC, having
achieved differentiation with 84% accuracy. Additionally, it was observed that spectra from
healthy and locally advanced cancer were more similar, suggesting an identical immune
responses. Nargis and co-workers reported the study of blood serum from 18 patients di-
agnosed with BC, and eight healthy females [94]. The healthy samples were distinguished
from the tumourigenic ones with 100% specificity and 99% sensitivity. Additionally, stage 2,
3 and 4 cancers were discriminated with >80% specificity and 90% sensitivity. More recently,
these researchers compared the accuracy obtained through microRaman and SERS analysis
of 29 serum specimens, collected from 17 BC patients and 12 healthy individuals, aiming at
discriminating between stage 2, 3 and 4 [95]. Despite the limited number of samples, both
methodologies achieved a successful discrimination between cancer stages, with SERS
attaining 90% sensitivity and 98.4% specificity, while microRaman yielded 88.2% sensitivity
and 97.7% specificity. Moisoiu et al. tested the possibility to differentiate different types
of cancers (breast, lung, colorectal, oral and ovarian) through the analysis of blood serum
by SERS [96]. A total of 253 individuals were included in this research: 39 healthy volun-
teers, 42 BC patients, 109 colorectal cancer patients, 33 lung cancer patients, 17 oral cancer
patients and 13 ovarian cancer patients. Breast cancer was discriminated from healthy
samples with 93.7% sensitivity and 93.6% specificity, with an accuracy of 76% regarding
differentiation from other types of cancer.

Analysing urine through SERS, Moisoiu and colleagues gathered 53 female BC pa-
tients undergoing mastectomy/lumpectomy and 22 healthy subjects, having attained 95%
specificity, 81% sensitivity and 88% overall accuracy [97]. Lin et al. combined affinity
chromatography with SERS for the analysis of urine in order to distinguish BC from other
cancer types (namely gastric cancer): breast cancer was differentiated from gastric cancer
with 82% sensitivity and 90.7% specificity, while breast cancer was distinguished from
healthy individuals with 76.5% sensitivity and 87.5% specificity [98].

Beyond the application of microRaman spectroscopy to discriminate between healthy
and diseased tissue, two main goals are envisaged: (1) to develop instrumentation that
will allow researchers to acquire in depth spectral data—through the skin, mammary
glands and adipose tissue—until the suspicious mass is reached by the laser beam, al-
lowing data collection; or (2) to integrate the Raman spectral acquisition with the biopsy
procedure, e.g., with the use of a thin needle coupled to a fibre-optic probe, thus allowing
researchers to instantly reach a diagnosis, or ensuring that a significant amount of tissue
with cancer-related biochemical changes is collected for diagnosis. Regarding the first
objective, Nicolson and collaborators applied SESORRS to multicellular tumour spheroids
of human breast, using three different nanotags, either isolated or combined, having been
able to detect 3D tumours through a 10 mm barrier of porcine tissue [99]. In a similar
study, Nicolson et al. successfully detected breast tumour models at 15 mm depth in
porcine tissue using one nanotag at a time [100]. In both studies, colour 2D heatmaps
were obtained and the precise location of the tumours was attained [99,100]. Regarding
in vivo studies, the same authors used an identical methodology to analyse glioblastoma
multiforme (GBM) tumours, through the skull, in animal models, using integrin-targeted
nanoparticles to induce the SERS effect (Figure 3) [101]. These results were validated
through both histopathology and MRI, evidencing the great potential of SESORRS as a
non-invasive BC diagnosis technique.
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Figure 3. (a) SORS setup used by Nicolson et al. in the study of glioblastoma multiforme tumours;
(b) conceptual scheme outlining the integrin-based detection of GBM through the use of cRGDyK-
conjugated SERRS nanostars and in vivo SESORRS imaging of GBM performed in a custom-built
SORS system depicted in (a) [101].

At present, the main disadvantage of these subsurface Raman approaches is their short
penetration depth into the sample (e.g., tissue). The largest depth reported to date was
50 mm in porcine muscle [102], achieved with a transmission geometry using a benchtop
Raman spectrometer and not a handheld and back-scattering instrument (in contrast to the
studies performed by Nicolson et al. [99–101]). There are several possible instrumentation
modifications able to enhance the Raman signal and increase the maximum probing depth
into the tissue, such as: using higher laser powers; lowering the spectral resolution (in
applications where resolution is not essential); or improving the collection efficiency of
the spectrograph [24]. In addition, some other issues must be taken into account: (i) the
use of nanoparticles (in both SESORS and SESORRS) needs further research, in order to
ensure its safe use in humans; (ii) the laser power must be tested in order to avoid tissue
damage; and (iii) the instrumentation suitable for in situ application in a clinical setting
should be developed, which may be a challenging and expensive task. Nonetheless, the
results obtained so far are quite promising and represent a step further for faster and more
precise cancer diagnosis.
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Regarding the second goal—incorporation of Raman analysis into core needle
biopsies—the depth of the analysis can reach 1–2 mm. Desroches et al. developed this
technology for brain core needle biopsies, having adapted a commercial core needle to
a set of optical fibres that collected the Raman signal (in the high wavenumber region,
2800–3050 cm−1) in the tissue surrounding the needle before the sample was collected
(Figure 4) [103]. This methodology allowed researchers to perform an in situ intraoperative
diagnosis of glioma in 19 patients displaying >60% density of cancer cells, with 84% accu-
racy, 90% specificity and 80% sensitivity. Such a device is expected to have similar good
results in BC, leading to a virtually instantaneous diagnosis when the data are analysed by
dedicated classification models. Using a different methodological approach, but aiming at
the same purpose, Saha and co-workers used an optical fibre probe connected to a portable
Raman spectrometer to monitor 159 samples of breast microcalcifications, from 33 patients,
within 30 min after excision through needle biopsy [104]. These authors developed a
classification algorithm which allowed them to distinguish calcium oxalate rich micro-
calcifications (type I, associated with benign lesions) from calcium hydroxyapatite rich
ones (type II, associated with proliferative lesions) microcalcifications with 77% sensitivity
and 97% specificity. Applying an identical approach, Barman et al. developed a new
classification algorithm for simultaneously detecting microcalcifications and diagnosing
the underlying breast lesions (BC, benign lesions, fibrocystic changes (FCC) or fibroadeno-
mas), with an overall accuracy of 82% [105]. This approach enabled the diagnosis of DCIS,
which had never been achieved with previous classification algorithms, thus meeting a
long-standing issue in breast cancer management—a reliable diagnosis of DCIS.

Figure 4. Schematic representation of (a) the acquisition steps of the Raman core needle biopsy instrument developed by
Desroches et al.: (1) needle insertion, (2) Raman data acquisition, (3) 180◦ rotation of the needle, and (4) sample collection.
(b) In vivo Raman measurements performed in the surgical cavity during glioma resection in dense cancer (red), infiltrated
brain (yellow) and surrounding normal brain. (c) Normalised average Raman spectra of dense cancer, infiltrated and normal
brain. (d) Representative H&E micrographs for each tissue type [103].

3.2.2. Surgical Margins Assessment in Breast Cancer by Raman Spectroscopy

An accurate assessment of tumour margins intraoperatively is still an unmet clinical
need. Several studies have been performed aiming at the development of a reliable method-
ology to achieve this goal, mainly through ex vivo analysis of the tissues after surgical
excision. The most important feature of Raman spectroscopy for intraoperative use is its
ability for providing label-free and fast results, since long periods of time increase anaes-
thesia exposure and the risk of infection for the patients. At present, histological evaluation
of tumour margins during surgery can take up to 60 min and carries a high degree of sub-
jectivity and inaccuracy (discussed in Section 3.1.1, regarding histopathology challenges).

Taking advantage of the current practice of intraoperative analysis of frozen sections,
Koya and collaborators studied 88 samples of healthy breast tissue, luminal and basal
BC through microRaman spectroscopy, having achieved (upon application of a deep
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learning algorithm) a reliable differentiation between normal and cancerous tissue, with
90% accuracy, 88.8% sensitivity, and 90.8% specificity [106]. Based on the signals with
the highest contribution discriminating normal from cancerous samples, biochemical
maps (false-coloured RGB images) were generated and were found to agree with the
hematoxylin and eosin (H&E) stained slides prepared for histopathological evaluation.
Kong et al., in turn, reported the study of frozen breast tissue sections collected during BCS
in 60 patients, being able to diagnose ductal carcinoma (DC) with 95.6% sensitivity and
96.2% specificity [107].

One of the emerging approaches for BC intraoperative margins assessment is multi-
modal spectral histopathology (MSH) which is the combined use of autofluorescence (AF)
and Raman confocal microscopies. The concept behind MSH is to enable the selection of
the areas to be measured with the Raman according to the absence of fluorescence (i.e., the
areas of tissue with less fluorescence are the ones to be analysed by Raman spectroscopy).
Using this approach, Kong and co-workers successfully diagnosed BC in large areas of
resected tissue (5 × 5 mm2) in ca. 17 min, a feasible time for the application of this tech-
nique in the operation theatre [107]. Similarly, Shipp et al. were able to identify positive
margins of whole breast specimens with 4 × 6.5 cm2 surfaces, immediately after excision, in
12–24 min, with 95% sensitivity and 82% specificity [108]. Furthermore, invasive carcinoma
was discriminated from DCIS on 1 mm2 tissue surfaces. Autofluorescence imaging in total
internal reflection (TIR-AF) mode was combined with Raman microspectroscopy by Lizio
and co-workers, in order to assess the surgical margins of fresh local excisions of large
dimensions (up to 10 × 10 cm2) obtained from BCS and previously diagnosed as invasive
carcinomas (Figure 5) [109]. The authors were able to locate the tumours in the resected
specimens in 45 min. This time was reduced by half through the use of a more automated
setup (approximately 30 min of the experiments were spent on manually switching the
sample between equipment and uploading the images to an in-house-developed algorithm).
Although this study was performed solely for invasive carcinomas, the promising results
thus obtained may render TIR-AF coupled to microRaman a suitable method for assessing
tumour margins within a surgical timespan.

A similar measurement selection methodology was developed by Liao et al., who used
a modified Raman microspectrometer to rapidly screen the adipose tissue in the margins of
breast tissue sections from mastectomies (ranging from 4 × 6 mm2 to 20 × 20 mm2), which
hardly contain cancerous alterations, therefore largely reducing the spectral acquisition
time [110]. The areas identified to be adipose tissue through Raman were in agreement
with the analysis of the H&E slides, which validates microRaman as a feasible and suitable
methodology for the selection of the sampling points when evaluating the specimen
margins. Additionally, it is estimated that the analysis of large specimens (5 × 5 cm2) will
take 20 to 25 min to be completed, well within the surgical timespan.

In a very different approach, Thomas and collaborators developed a 3D scanner with a
Raman probe (Marginbot), in which the samples horizontally rotate while the probe rotates
alongside, collecting spectral data from the surfaces of the specimens, reaching 2 mm in
depth (Figure 6) [111]. Depth-averaged Raman spectra (based on the SORS concept but
with less depth resolution) were collected from five patients undergoing prophylactic
mastectomies. Tridimensional images were obtained from a ca. 56 cm2 specimen in
7–15 min, achieving a discrimination of fibroadenomatoid from adipose tissue with 93%
sensitivity and 85% specificity.
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Figure 5. Combined TIR-AF and Raman spectroscopy analysis of a human specimen containing a phyllodes tumour.
(a) optical image; (b) ratiometric TIR-AF image; (c) H&E-stained tissue section; (d) threshold image (0.8 < T < 2), showing
the sampling locations for the Raman acquisition, dotted in yellow; (e) average Raman spectra of stroma (blue), tumour
(red) and adipose tissue (green) and corresponding standard deviation (shaded in grey) [109].

Figure 6. (a) Photograph of the automated 3D margin scanner prototype (Marginbot), developed by Thomas et al.:
1© motor A rotates the specimen in the horizontal axis, while 2© motor B moves the 3© optical probe along the specimen’s

surface; 4© servomotor A enables the contact mode and non-contact mode of the optical probe 1©with the specimen placed
on the 7© specimen holder; 5©, 6© servomotor B moves the specimen holder 7© upwards, pushing the specimen towards
the probe during the contact mode and downwards in the non-contact mode. The ( 8©) compact camera enables image
reconstruction of the specimen. (b–g) Automated 3D margin assessment of human breast specimens. (b) Photograph of
the breast specimen with fatty margins; (c) margins of the specimen rendered by the scanner; (d) 10× magnification of
an H&E human breast section; (e–g) corresponding figures for a breast specimen with fibroadenomatoid margins (color
code for margin classification in (c) and (f): green—>50% fat composition, blue—>50% fibroepithelial/fibro-glandular
composition) [111].

A SORS probe was designed by Keller et al. to assess the surgical margins of partial
mastectomies in 35 frozen samples comprising invasive ductal carcinoma (IDC), invasive
lobular carcinoma (ILC) and benign tissue [112]. The measurements were performed on
sites with healthy as well as tumour-apparent features (later confirmed by pathology), with
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95% sensitivity and 100% specificity. Positive margins were detected at 2 mm from the
surface in 100% of the malignant cases.

Although less common, the SERS effect was also tested for surgical margin assessment
by Wang and co-workers, who targeted the epidermal growth factor (EGF) receptors,
HER2, ER, as well as the cell surface glycoprotein CD44 with antibody-functionalised
nanoparticles [113]. The NPs were topically applied on fresh specimens collected from
57 patients undergoing either BCS or mastectomy. Raman acquisition took 10–15 min
for each sample (scanning 3 cm2 per min), yielding images evidencing the distribution
of EGFR, HER2, ER and CD44 at the tissue surface, with 89.3% sensitivity and 92.1%
specificity. This approach was also able to identify triple-negative BC. However, there are
still concerns regarding the use of antibody-targeted nanoparticles, regarding fixation and
washing protocols that can lead to false positives.

One of the biggest challenges faced by surgeons is, as mentioned above, the detection
of positive lymph nodes. The potential of Raman microspectroscopy to assess metastasis in
sentinel lymph nodes was evaluated by Horsnell and collaborators in surgically removed
breast tissue samples, which were frozen-cut prior to analysis [114]. Two data acquisition
methodologies were applied, differing in the number of measured points—either 5 or 10.
For the latter (10 points), healthy lymph nodes were differentiated from cancerous lymph
nodes with 81% sensitivity and 97% specificity, upon application of a support vector ma-
chine (SVM) algorithm. More recently, Petterson et al. developed an innovative multifibre
Raman probe integrated in a hypodermic needle, which was tested in one human lymph
node, providing very good signal-to-noise spectra in just a few seconds [115]. With the
proper classification algorithm, this is a promising equipment for intraoperative use aiming
at the assessment of sentinel lymph nodes (not only in BC but in other types of cancers as
well, namely HNC).

Zúñiga and co-workers approached surgical margin assessment from a very different
point of view, proving that widespread Raman spectroscopy for clinical purposes may be
faster implemented [116]. Two affordable and portable commercially available Raman de-
vices (for non-medical applications) were tested. The authors claim that over 90% accuracy
may be achieved with both devices when differentiating healthy from malignant surgically
removed frozen breast sections [116]. Although a limited amount of data were reported,
this study shows that the combined knowledge from clinicians, researchers, engineers and
the industry will allow the development of good quality and affordable equipment in the
near future.

3.2.3. Head and Neck Cancer Early Diagnosis by Raman Spectroscopy

Since there is no screening for HNC, as well as the death rate associated with this
type of cancer being high, added to the limitations faced by HNC survivors undergoing
extensive reconstruction surgeries, the development of non-invasive and fast diagnostic
methodologies is paramount.

Regarding non-invasive diagnosis, Connolly and co-workers reported the study of
both saliva and oral cells, collected concomitantly, from 18 healthy people and from
18 oropharyngeal cancer patients, using SERS, attaining 89% sensitivity and 57% specificity
when using saliva, and 68% sensitivity and 52% specificity when using oral cells to diagnose
oropharyngeal cancer [117]. Falamas and collaborators used the conventional microRaman
approach and lyophilised saliva, collected from 19 HNC patients and 13 healthy individuals,
in order to determine the spectral biomarkers able to distinguish the healthy from the
cancerous samples, finding seven Raman signals with discrimination potential, attaining
83% accuracy [118]. Aiming at the same goal, Sahu et al. collected sera samples from
40 patients with squamous cell carcinoma (SCC) of the tongue and 14 of the buccal mucosa,
and from 16 healthy participants, achieving 78% efficiency in discriminating normal from
tumour samples [119]. The sensitivity and specificity values obtained in some of these
studies were lower than desired for a clinical application, suggesting that serum and
saliva do not have enough discriminatory properties for a diagnosis of HNC. Xue and
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colleagues, in turn, used sera samples from 135 OSCC patients to assess the capability
of SERS to classify different stages (T1 to T4) and lymph node involvement (N0 to N2),
correctly classifying T1 and T3 with 80% accuracy, T2 with 71.7% accuracy and T4 with
77.8% accuracy. Regarding lymph node involvement accuracies of 75.5%, 93.8% and 92%
were achieved for N0, N1 and N2, respectively [120].

Brindha et al. used urine to determine whether an early diagnosis of oral cancer
using Raman spectrometry was possible. Collecting urine from 93 oral cancer patients and
74 healthy subjects, the authors were able to discriminate the healthy samples from the
cancerous ones with 98.6% sensitivity, 87.1% specificity and 93.7% overall accuracy [121].
In another study, the same group used the high wavenumber region of the Raman spectra
to probe urine from 80 healthy volunteers, 57 patients with pre-malignant lesions and
60 patients with oral cancer, having achieved 98.7% specificity and 91.9% sensitivity when
discriminating healthy from malignant and pre-malignant samples [122]. Comparing the
accuracy attained with the fingerprint range and that reached with the high wavenumber
region, the latter showed a higher discriminant capability. Jaychandra and co-workers
concomitantly tested urine, blood plasma, and saliva from 94 patients diagnosed with
leucoplakia and oral submucous fibrosis, 63 oral SCC patients and 48 healthy individuals,
reaching a correct classification of normal, malignant and premalignant samples with
90.5% accuracy using urine, 93.1% accuracy using saliva and 78% using blood plasma [123].
Eighty-nine samples of oral biopsy-collected tissues were also monitored (normal, prema-
lignant and malignant), yielding 97.4% accuracy for discrimination based on these three
groups of samples.

In a totally different approach, Singh and co-workers coupled a fibre-optic probe
to a commercial Raman spectrometer to analyse in vivo 104 subjects with oral cancer,
pre-malignant lesions on cancer patients, healthy individuals with and without smoking
habits, correctly predicting tumour cases with 86% efficiency, pre-malignant lesions with
72% efficiency and contralateral normal samples with an efficiency of 74% [124]. The test
data of healthy controls, healthy tobacco users and pre-malignant samples were correctly
predicted with 94%, 86% and 55% efficiency, respectively, higher rates of misclassifications
being found between pre-malignant lesions and healthy tobacco users. Later, Krishna and
colleagues, using an in-built portable Raman device, performed in vivo measurements
on 113 OSCC patients, 25 oral submucous fibrosis patients, 33 patients with leukoplakia
(a high-risk dysplasia) and 23 healthy subjects. Healthy individuals were distinguished
from the cancer and high-risk patients with 94% sensitivity and specificity, pre-malignant
lesions being correctly classified in 88% of the measured sites and malignant lesions in
84% of the sites [125]. More recently, Guze et al. used an existing Raman probe and
performed in vivo measurements in 18 patients, mimicking a clinical setting [126]. Oral
SCC, inflammation, fungal, mild to severe dysplasia and hyperkeratosis were under study,
with data collection taking 5 min and achieving 100% sensitivity and 77% specificity when
discriminating benign lesions and healthy tissue from SCC and mild or severe dysplasia.
Using a similar approach, Bergholt and colleagues used a previously developed Raman
probe—designed for upper gastrointestinal endoscopy [127]—that could be integrated into
transnasal endoscopes, creating an image-guided Raman endoscopy [128]. In this study,
the spectra from different areas of the head and neck of 23 healthy patients were obtained
and characterised.

Aiming at an analysis of samples obtained through biopsy, Vohra and co-workers
took advantage of the SERS effect using DNA-functionalised nanorattles, targeting the
cytokeratin biomarker RNA, CK14, specific for head and neck squamous cell carcinomas
(HNSCC) and micrometastases in lymph nodes [129]. Intraoperatively collected samples
from 25 HNSCC, thyroid papillary carcinoma, tonsillar disease, benign lymphoid or lym-
phoma patients were used for RNA extraction, providing results with 100% sensitivity and
89% specificity. It is important to note that the use of SERS for clinical applications has
some limitations. In fact, the use of functionalised antibodies, RNA or DNA carries some
degree of inaccuracy and irreproducibility regarding fixation and washing protocols.
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Cytological Raman analysis has proved to be a promising option for oral cancer
screening. However, the use of cell pellets involves a higher sample heterogeneity due to the
collection of several types of cells without a spatial reference, thus requiring spectrum- and
patient-wise data analysis. Sahu and co-workers have been working on these approaches
for the last few years [130–133]. In an exploratory work, exfoliated cells from healthy
controls (10 smokers and 20 non-smokers), 12 diagnosed with leukoplakia and 9 with
tobacco pouch keratosis, were collected from the lesions and contralateral sites [130].
Higher rates of misclassifications were found for the tobacco, leukoplakia, contralateral and
tobacco pouch keratosis, due to tobacco use and high heterogeneity of the dysplastic lesions.
Later, using the same methodological approach, healthy vs. oral cancer patients were
assessed, this time performing patient- and spectrum-wise data analysis, with patient-wise
analysis providing a higher true classification [131]. Then, oral premalignant lesions were
tested against healthy individuals’ oral cells exfoliations, allowing the authors to conclude
that with patient-wise analysis, a sensitivity of 70% was achievable when classifying healthy
non-smoker individuals, healthy smokers and patients with premalignant lesions, whereas
spectrum-wise analysis provided a sensitivity of 77% [132]. More recently, using the same
approach, these authors confirmed previous results hypothesising the misclassifications
between tumour and contralateral samples as being attributable to malignancy recurrence
in treated patients [133].

Hole and collaborators also collected oral exfoliated cells from 29 oral cancer patients
and 15 healthy individuals, with no smoking habits, and found that the patient-wise
data analysis approach yielded a classification efficiency of 86% [134]. In a similar study,
Ghosh et al. collected cells from the oral mucosa from healthy individuals, with and
without smoking habits (n = 11), and from patients diagnosed with leukoplakia (n = 13)
and OSCC (n = 10), having obtained an accuracy of 82% and 80% from spectra- and
patient-wise analysis, respectively [135].

Behl et al. were able to distinguish healthy donors from oral cancer patients with
94% sensitivity through the analysis of the cells’ nuclei and 86% through the analysis of
the cytoplasm [136]. Additionally, the authors assessed the confounding factors associated
with misclassifications obtained with Raman analysis of exfoliative cytology, concluding
that, unlike in previous works, smoking, alcohol consumption, age and gender do not
appear to contribute for classification errors, while the site of sampling was found to
be determinant.

3.2.4. Head and Neck Cancer Surgical Margins Assessment by Raman Spectroscopy

In Section 3.1.3, the urgent need for an adequate assessment of the surgical margins in
HNC treatment was discussed. Barroso and colleagues have developed extensive work
under this objective [137–139]. Using a confocal Raman microscope built by the team to
acquire spectral information in the high wavenumber region (>2500 cm−1), Barroso et al.
reported the study of normal and tongue SCC collected through surgery, from 14 patients,
finding that tumour areas had a higher water content than the surrounding tissue, being
able to distinguish SCC from benign regions with 99% sensitivity and a specificity of
92% [137]. Analyses were performed on fresh specimens, within 30 min after excision,
without compromising the sample or the routine of the pathology analysis. In a follow-up
study, the same authors were able to identify the tumour borders of 25 specimens, based
on the increase in the standard deviation of the water concentration in the vicinity of clear
margins (approximately 4 to 6 mm from the tumour)—in the tumour, water concentration
was found to be 76% ± 8%, and 56% ± 24% in the surrounding healthy tissue [138]. Later,
Barroso et al. assessed the fresh bone resection margins, from the mandible of 22 patients
diagnosed with oral SCC, reaching a depth resolution of 40 µm, in <30 min, reaching
95% accuracy, 87% specificity and 95% sensitivity in discriminating bone with a tumour
from bone without a tumour based on water concentration calculation (Figure 7) [139].
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Figure 7. Examples of the results obtained when testing the tissue classification model developed by Barroso et al.
(a) Photographs of fresh bone cross sections from the centre of a resection specimen with tumour invasion (based on
radiologic examination) from which Raman spectra were obtained. (b) Raman classification maps (orange: tumour, green:
healthy bone) tumour border indicated in red. Black pixels correspond to the absence of tissue or to spectra with low Raman
signal quality. (c) H&E-stained sections obtained from the measured bone surface, with tumour border (red), tumour (T)
and healthy surrounding bone (H) indicated by the pathologist, obtained from 3 bone slices from 3 patients (1 to 3) [139].

Using an image-guided diagnostic approach, Cals and co-workers reported the study
of 25 samples, 11 of which were diagnosed as oral squamous cell carcinoma (OSCC), col-
lected from 10 patients undergoing surgery, using an inverted Raman microscope designed
to analyse bacterial samples [140]. Fresh-frozen sections were obtained within 60 min
after resection, yielding false-coloured heat maps identifying OSCC over healthy adipose
tissue, muscle, and nerves with 97% accuracy. Although connective tissue, glands and the
squamous epithelium were most frequently misidentified as tumour structures, connective
tissue was correctly identified over OSCC in 93% of the cases, squamous epithelium in
75% and glands in 94%. Using the same equipment, Cals et al. later reported the study
of 44 samples of SCC of the tongue, collected through surgery from 21 patients [141]. As
in their previous work, colour heatmaps were generated using two different data analy-
sis approaches to discriminate healthy from tumour structures: those obtained with the
two-step PCA-hierarchical LDA provided 91% accuracy (100% sensitivity, 78% specificity)
over the PCA-LDA with 86% accuracy (100% sensitivity, 66% specificity). Although the
acquisition times were too long to be compatible with the operating room, the coloured
heatmaps were in agreement with the H&E sections obtained for the pathology analysis.

Likewise, Hoesli and co-workers used CRS microscopy (Section 3.2, Figure 1b) to
observe 42 HNC samples and 42 healthy sections adjacent to the tumour, two-coloured
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images being generated, highlighting the stretching mode of CH2 from lipids in the cyto-
plasm and the CH3 stretching mode from proteins and lipids [142]. Sample preparation
and acquisition was claimed to have taken 30 s, and the analysis of the CRS images was
performed by a trained pathologist: the correspondence between the CRS and H&E images
being 88% sensitivity and 95% specificity (Figure 8). This study was presented as a faster
alternative to H&E staining of frozen sections for intraoperative margin assessment, since
CRS imaging allows the observation of atypical nuclei and hypercellularity. However, this
methodology would still depend on the pathologist’s opinion and expertise.

Figure 8. (a) CRS microscopy image generated through the contrast between CH2 and CH3 stretching
vibrations at 2845 cm−1 and 2940 cm−1, respectively, demonstrating hypercellu-larity and atypical
nuclei, obtained by Hoesli et al. [121] and (b) Corresponding H&E stained specimen [142].

3.3. FTIR Spectroscopy

Infrared spectroscopy, as with Raman, provides information on the molecular vibra-
tions, but these two techniques are complementary due to the distinct physical processes un-
derlying each, namely: an infrared signal appears when there is a change in the molecule’s
dipole moment during the vibration, while a Raman signal is dependent on the variation
of polarizability that occurs during this same vibration. The physical phenomenon of FTIR
is light absorption rather than scattering, to which Raman spectroscopy is sensitive. As a
consequence, some vibrational modes are seen with FTIR and not with Raman and vice
versa. Biological tissues are 70% water, and O-H bonds provide strong signals in infrared
spectra, overriding the bands of other biochemical constituents. Therefore, the use of FTIR
in fresh tissue samples is not as wide as Raman spectroscopy, because it usually demands
more complex equipment or additional sampling and data processing steps. Nonetheless,
different equipment geometries have been developed in order to overcome some of the
challenges faced by using FTIR in biological samples, such as (Figure 9):

• The transmission mode, the infrared light travels through the sample, being detected
after the interaction with the sample.

• In the reflection mode, in contrast to transmission, the detected infrared light is that
reflected by the sample.

• In attenuated total reflectance (ATR) mode, a crystal with a high refractive index is
placed in close contact with the sample. The infrared light passing through the crystal
is totally reflected by the crystal walls after interacting with the sample through an
evanescent wave.

3.3.1. Early Diagnosis of Breast Cancer by FTIR Spectroscopy

The approaches for BC early diagnosis based on FTIR, similarly to those under devel-
opment using Raman spectroscopy, include both non-invasive methods probing saliva or
blood serum and the integration of FTIR into existing diagnostic methodologies.

Regarding the former, Ferreira and colleagues reported the analysis of saliva samples
from 30 patients by means of FTIR-ATR: 10 were diagnosed with breast malignancy, 10 with
breast benign lesions and 10 with no breast findings. Despite the limited number of samples,
discrimination between BC and benign lesions was achieved with 90% sensitivity and
70% specificity. When distinguishing BC from healthy patients, 90% sensitivity and 80%
specificity was reached [143]. Since saliva has a high water content, sample preparation



Cancers 2021, 13, 5336 19 of 38

included freezing and lyophilization in order to remove as much water as possible prior
to analysis.

Figure 9. Schematic representation of the energetic transition occurred during infrared absorption
and FTIR modes of acquisition: transmission, reflection and microATR.

Zelig and coworkers collected blood plasma and peripheral mononuclear cells from
24 BC patients and 26 healthy individuals (15 of them with benign breast lesions), and
microFTIR measurements were performed on ZnSe slides, yielding 87% sensitivity and
78% specificity [144]. Blood serum was also tested by Elmi et al., who left 43 BC and 43 healthy
samples to dry, at room temperature, on zinc selenide crystal disks (IR-transparent) and
then measured through FTIR in transmission mode. Using this method, 92% sensitivity,
85% specificity and 90% accuracy were achieved when discriminating BC from healthy
specimens [145]. Sitnikova and co-workers also used blood serum for the diagnosis of
66 BC patients and 80 healthy donors through FTIR-ATR, letting the sera samples to dry
directly on the ATR crystal. Using this technique, 92.3% sensitivity and 87.1% specificity
were obtained when differentiating healthy from cancerous samples [146].

Concerning the integration of FTIR into conventional diagnostic methods, MRI-guided
near-infrared spectroscopy (NIRS, which is a combination of MRI with optical imaging),
was reported by Mastanduno and colleagues. This approach allowed the authors to gener-
ate MRI-NIRS breast scans, from 44 patients, by quantifying: oxy vs. deoxy-hemoglobin,
the scattering parameters of different tissues (tissue optical index (TOI) for, e.g., adipose vs.
fribroglandular), and water vs. lipids content [147]. Although some limitations arose from
an heterogenous optical coverage of the breasts and the fact that the participants were still
exposed to high doses of ionizing radiation, the use of NIRS allowed us to discriminate
malignant from benign lesions.

3.3.2. Surgical Margins Assessment of Breast Cancer by FTIR Spectroscopy

The use of FTIR spectroscopy in fresh tissues carries additional challenges regarding
the water content. In order to overcome this drawback, Zhao and co-workers developed a
handheld ATR-hollow optical fibre (ATR-HOF) and connected it to a FTIR spectrometer,
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which was then applied to the study of articular cartilage, postoperatively (Figure 10) [148].
This device was later used by Lu et al. to study fresh breast samples, collected from
12 patients undergoing BCS, reaching >90% accuracy when discriminating healthy from
cancerous areas [149]. The use of an ATR configuration decreased the contribution of water
in the lower wavenumber region, with the water effect becoming neglectable. Likewise,
Tian and colleagues used a similar ATR hollow fibre probe connected to a FTIR spectrom-
eter in the operating room, to analyse 149 sentinel lymph nodes, collected from 49 BC
patients, spending 2 to 3 min per measurement [150]. Normal nodes were successfully
distinguished from malignant nodes with 94.7% sensitivity and 90.1% specificity. Moreover,
38 of the analysed lymph nodes contained metastasis, which was confirmed by histopatho-
logical analysis. Using the same equipment, Tian et al. probed 100 fresh breast resections
collected from 100 patients, particularly in the centre of the lesions (not the margins),
having achieved 90% sensitivity and 98% specificity when discriminating normal from
cancerous sections [151].

Figure 10. (a) Photo of the ATR-HOF probe developed by Zhao et al.; (b) fixing-coupling equipment used to attach the
probe to the spectrometer and (c) end of the ATR-HOF crystal probe [148].

In sum, with proper instrumentation and suitable methodologies for intraoperative
use, the analysis of fresh tissues through FTIR is feasible and suitable for clinical applica-
tions, as it provides accurate results with great discrimination potential.

3.3.3. Early Diagnosis of Head and Neck Cancer by FTIR Spectroscopy

The potential of saliva was also tested for the early diagnosis of HNC with FTIR
spectroscopy by Zlotogorski-Hurvitz and co-workers who isolated exosomes from the
saliva from 13 healthy individuals and 21 patients with oral cancer, reaching 100% sensi-
tivity, 89% specificity and 95% accuracy discrimination [152]. As performed in previous
studies, the samples were left to dry onto the ATR equipment for further analysis. Similarly,
Falamas et al. used transmission FTIR, on KBr tablets, to study the saliva of 19 HNC
patients and 13 healthy individuals and determine the spectral biomarkers capable of
distinguishing healthy from cancerous samples [118]. Three main signals were identified,
with the classification for oral SCC achieving an accuracy of 82%.

Rai and colleagues, in turn, analysed blood sera from 30 healthy individuals and
30 patients with oral submucous fibrosis (OSF, a benign lesion with the highest malignant
potentiality among all dysplastic lesions). The predictive capability estimated for the
PLS-DA model was higher than 90%, providing good discrimination between healthy and
OSF samples [153].

As previously mentioned in Section 3.2.3, in addition to head and neck early diagnosis
through Raman spectroscopy, exfoliative cytology analysis using FTIR has also been per-
formed, although less frequently. Townsend and co-workers collected oesophageal cells,
using a standard cytological brush attached to an endoscope, from 9 normal squamous
tissue, 12 Barrett’s oesophagus and 5 dysplastic lesions [154]. The analyses were performed
using microFTIR, reaching >90% sensitivity, specificity and accuracy when discriminat-
ing normal squamous cells from Barrett’s oesophagus and dysplasia. Concomitantly to
their Raman cytological analysis, Ghosh et al. tested the discriminatory potential of FTIR
exfoliative cytology of oral cancer, and concluded that this methodology was able to differ-
entiate healthy from premalignant and malignant lesions with 84.8% accuracy through a
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spectrum-wise approach, and 82.3% accuracy via a patient-wise approach [135]. A com-
bined application of Raman and FTIR provided an overall accuracy of 97.7%. Although this
study was performed with few samples, it shows that the complementary use of Raman
and FTIR delivers a higher discriminatory capacity.

3.3.4. Surgical Margins Assessment of Head and Neck Cancer by FTIR Spectroscopy

As previously discussed, FTIR analysis of fresh specimens is extremely difficult due to
the strong contribution of the O-H vibrational modes of the water molecule, which hinders
the FTIR spectra of samples with higher contents of water. According to Barroso et al.,
healthy areas of the oral cavity have 56% water, whereas tumours have 76% [138], and
therefore the use of FTIR in HNC intraoperative margin assessment is highly restricted.
However, it has provided good discriminatory potential in saliva exosomes and blood
serum, being a good option for early non-invasive diagnosis of HNC.

Regarding the early diagnosis of BC and HNC, a lot of work has been done in order to
obtain faster and more accurate results along with the development of non-invasive diag-
nostic methodologies. So far, different approaches using FTIR and Raman spectroscopies
were successfully developed and applied, providing highly accurate results.

Surgical margins assessment requires special equipment so that the spectral analysis
can be performed in loco—in the operation room—and rapidly, in a way that is compatible
with the operation timespan without additional danger for the patient. To date, the
technology has been successfully developed and there are several computed classification
algorithms, providing highly accurate, sensitive, and specific results.

Upon improvement of the spectrometers and the automation of the entire process,
both surgical margins assessment and diagnosis using vibrational spectroscopy would be
possible in the near future.

3.4. Spectral Histopathology

Spectral histopathology is of utmost importance to assist anatomopathologists and in-
crease the precision of the diagnoses obtained through histopathological analysis. Confocal
spectral microscopes are used in order to obtain false-coloured maps depicting the distribu-
tion of the different biochemical components of the samples. FFPE unstained histological
sections are used; although this approach is less common for Raman spectroscopy, it is the
preferable methodology for FTIR analysis, since the sectioned tissues are dehydrated, and
thus there is no water contamination of the FTIR spectra. The major challenges of FTIR
histopathology are the substrates, that must be compatible with the FTIR analysis. For a
complete spectral acquisition, in the transmission mode, the samples must be mounted on
CaF2 or BaF2 slides, which are very fragile and expensive for routine use. In fact, the use of
standard histological slides hinders the acquisition of the spectra below 2200 cm−1, since
glass absorbs infrared light. Furthermore, in reflection mode, the quality of the spectra is
highly dependent on a perfect focus on the sample, which may be problematic due to the
irregularity of the tissue sections, and a point-by-point focus would considerably increase
acquisition times.

Finally, the use of FFPE samples carries additional work regarding sample manipula-
tion and data processing, since paraffin has a strong spectral contribution, overriding the
tissue signals. Hence, chemical [155–158] and digital dewaxing [159–161] are frequently
needed prior to data processing and analysis.

3.4.1. Spectral Histopathology of the Breast

Raman histopathology, performed in confocal Raman microscopes, was used by Vanna
and co-workers, who reported the study of breast microcalcifications from 56 patients
undergoing core biopsy, having attained 93.5% sensitivity and 80.6% specificity when dis-
criminating malignant from healthy samples (including those out of the lesion area) [162].
Similarly, Lyng and collaborators analysed breast tissue samples, from 20 patients, rep-
resentative of benign (fibroadenoma and fibrocystic lesions, intraductal papilloma) and
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cancerous (IDC and lobular carcinoma) lesions, being able to differentiate the benign from
the malignant areas using a combination of different chemometric methods, with the best
classifier having achieved >90% sensitivity and specificity [163].

Verdonck and co-workers investigated 19 breast sections from 13 patients, through
FTIR microspectroscopy (on BaF2 slides), achieving good discrimination between lym-
phocytes, connective tissue, epithelial cells, erythrocytes and vascular tissue. In addition,
different stroma biochemical compositions surrounding the tumour were characterised,
which enabled the authors to identify the tumour margins with >90% specificity and >80%
sensitivity (except for the vascular tissue, for which a 74% sensitivity was obtained) [164].

Using breast tissue microarrays (TMA) mounted on CaF2, Lazaro-Pacheco and col-
leagues reported the FTIR analysis of 245 human breast tumours and 37 healthy sections,
reaching 92% sensitivity and 86% specificity when differentiating these two types of sam-
ples [165]. Using a similar approach, Pounder et al. successfully probed 34 healthy sections,
one ILC and 30 IDC breast TMA cores (on BaF2 slides) [166]. Different classification models
were built, able to identify both tumour vs. non-tumour and stroma against epithelium.
This strategy allowed the authors to quantify the epithelium content and distribution along
its histological category—healthy or tumourigenic. False-coloured images were generated
upon robust classification of normal vs. cancerous structures (area under the ROC (receiver
operating characteristic) curve >0.9 for both transmission and reflection acquisition modes).

Additionally, using breast TMA samples coated on standard histological glass slides,
Bassan et al. were able to successfully acquire microFTIR spectra in transmission mode
(solely accessing the high wavenumber region) and identify epithelium, stroma, blood
and necrosis based on specific spectral biomarkers, with a correct classification of 98.25%,
99.94%, 100% and 97.22%, respectively [21]. False-coloured images were obtained and
malignant vs. non-malignant spectral features were identified, thus providing a faster and
reliable alternative to histopathological analysis of TMAs. More recently, Tang and co-
workers applied a similar approach to 120 H&E-stained breast TMA cores [167]. Cancerous
vs. healthy stroma and epithelium were the tissue type categories under study for which
the classifier achieved >90% accuracy for cancerous and healthy stroma, while 73% and
88% accuracy was attained for the cancerous and healthy epithelium, respectively. The final
diagnosis of each core was then determined based on the number of spectra corresponding
to healthy or cancerous pixels, providing accurate results in >95.8% of the cores (Figure 11).

3.4.2. Spectral Histopathology of the Head and Neck

The study of 72 oral cancer FFPE samples from 57 patients was conducted by Ibrahim
and co-workers on a microRaman spectrometer. After the single use of digital dewaxing,
the samples were processed and categorised according to the classes benign, mild, moderate
or severe dysplasia and SCC [168]. Good sensitivity values were attained for benign and
SCC, but poor specificity was reached. Inflammation and smoking were also evaluated,
achieving an accuracy of 94% and 76%, respectively. Likewise, the analysis of 17 FFPE
tongue samples (chemically dewaxed prior the spectroscopic analysis), belonging to eight
patients, diagnosed as normal, carcinoma in situ and invasive squamous cell carcinoma was
reported by Devpura et al. [169]. Carcinoma in situ and normal tissue were identified with
91% success rate, and invasive squamous cell carcinoma was classified with 89% accuracy.

The use of oral squamous cell carcinoma TMAs from 14 patients was reported by
Pallua and collaborators, who mounted the samples on CaF2 slides for FTIR imaging
acquisition [170]. Biochemical images were generated by the integration of some IR bands
assigned to phosphate, phospholipids and nucleic acids, as well as through k-means
clustering and hierarchical cluster analysis. Although the images matched the H&E cuts,
the authors did not study the discriminatory potential of their methodology to assess
normal vs. cancerous spectral features.
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Figure 11. (a) False-coloured images of 120 grade II breast cancer cores: red—cancerous epithelium, purple—cancerous
stroma, green—normal associated epithelium and yellow—normal associated stroma; (b–e) false-coloured images of
120 grade II breast cancer cores using a traffic light system with a threshold of: (b) 0.5, (c) 0.3, (d) 0.2, (e) 0.1, where red
represents cancerous cores, green represents normal cores and amber represents cores that could not be classified as either
cancerous or normal, and therefore should be looked at by a pathologist. The yellow boxes indicate cores which were
wrongly classified [167]. Alterations made to original Figure 5: (c,d) placed parallel to (a,b).

The simultaneous use of spectral histopathology and standard histopathology reduces
the subjectivity of the diagnoses, decreasing the occurrence of diagnostic errors. Further-
more, since it is possible to clearly distinguish benign from malignant lesions, vibrational
spectroscopy can significantly reduce the pathologists’ workflow, allowing these profession-
als to focus on clinically relevant cases (the malignant ones). Ideally, spectral histopathology
should be performed on stained samples in order to fully integrate this technology in the
pathology laboratory routine, which Tang et al. [167] did with breast TMAs, as mentioned
in Section 3.4.1, following successful work from Pilling and colleagues, who diagnosed
prostate cancer in H&E slides with over 95% accuracy using infrared spectroscopy [171].

Tables 1–3 summarise the research studies included in this review for Raman, FTIR
and spectral histopathology, respectively.
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Table 1. Summary of the research studies included in this review article, performed with Raman spectroscopy, according to the type of sample, sample preparation, methodology and
specifications used.

Early Diagnosis

Reference Sample Sample Preparation Methodology Depth Specificity (%) Sensitivity (%) Accuracy
(%) Observations

Cervo et al. [93] Human blood serum
(BC patients) - SERS 85 92 90

Localised and locally advanced
breast cancer distinguished with

84% accuracy

Nargis et al. [94] Human blood serum
(BC patients) - SERS - 100 99 -

-

Nargis et al. [95] Human blood serum
(BC patients)

- SERS - 98.4 90 -
microRamn 97.7 88.2

Moisoiu et al. [96] Human blood serum
(cancer patients) - SERS - 93.6 93.7 -

BC was differentiated from lung,
colorectal, oral and ovarian
cancer with 76% accuracy

Moisoiu et al. [97] Human urine
(BC patients) - SERS - 95 81 88 -

Lin et al. [98] Human urine
(cancer patients)

Filtration
through affinity
chromatography

SERS - 87.5 76.5 -

BC was distinguished from
gastric cancer with
82% sensitivity and

90.7% specificity

Nicolson et al. [99] Breast cells Incubation
with nanotags SESORRS 10 mm - - - 3D multicellular cell

spheroids

Nicolson et al. [100] Breast cells Incubation with
nanotags SESORRS 15 mm - - - 3D multicellular cell

spheroids

Nicolson et al. [101] Mice brain
Injection of

Functionalised
nanoparticles

SESORS Through the mice skull - - - Animal models, in vivo

Desroches et al. [103] Human brain Intraoperatively
Adaptation of

core-needle
instrument

- 90 80 84 Clinical trial, in vivo

Saha et al. [104] Human breast Fresh Portable
spectroscopy system - 97 77 -

-
Barman et al. [106] Human breast Fresh Portable

spectroscopy system - - - 82
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Table 1. Cont.

Early Diagnosis

Reference Sample Sample Preparation Methodology Depth Specificity (%) Sensitivity (%) Accuracy
(%) Observations

Connolly et al. [117]

Saliva from
HNC patients

-
SERS

-

57 89 -

-
Oral cells from HNC

patients 52 68 -

Falamas et al. [118] Saliva from
HNC patients Liophilised microRaman - -

Seven bands with
discriminatorypotential were
identified with 83% accuracy.

Sahu et al. [119] Blood serum (HNC
patients) - microRaman - - 78% efficiency

Xue et al. [120] Blood serum (HNC
patients) - SERS - -

T1 and T3 OSCC distinguished
with 80% accuracy, T2 and T4

with 71.1% and 77.8% accuracy,
respectively. N0, N1 and N2

distinguished with 75.5%, 93.8%
and 92%, respectively.

Brindha et al. [121] Human urine (HNC
patients) - microRaman - 87.1 98.6 93.7 -

Brindha et al. [122] Human urine (HNC
patients) - microRaman - 98.7 91.9 -

Only the high wavenumber
region was used. Achieving

higher classification accuracies.

Jaychandra et al.
[123]

Human urine (HNC
patients)

-

microRaman

- - - 90.5

Malignant, pre-malignant and
healthy samples were tested

Human saliva (HNC
patients) - - 93.1

Blood serum (HNC
patients) - - - 78

Biopsy-collected
tissue - - - 97.4

Singh et al. [124] HNC
patients In vivo

Fire-optic probe
coupled to a
spectrometer

-

Healthy controls, healthy tobacco
users and pre-malignant samples

were correctly predicted with
94%, 86% and 55% efficiency,

respectively
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Table 1. Cont.

Early Diagnosis

Reference Sample Sample Preparation Methodology Depth Specificity (%) Sensitivity (%) Accuracy
(%) Observations

Krishna et al. [125] HNC
patients In vivo Portable Raman

device - 94 94 -

Pre-malignant lesions were
correctly classified in 88% of the
measured sites and malignant

lesions in 84% of the sites.

Guze et al. [126] Oral
abnormalities

In vivo–
mimicking a

clinical setting
Raman probe - 77 100 - -

Bergholt et al. [128] Transnasal
tissues In vivo

Raman
probe–possible
integration with

endoscopes

- -
The spectra from different areas
of the head and neck obtained

and characterised.

Vohra et al. [129]
RNA from HNSCC

Fresh SERS - 89 100 - -
RNA from Lymph

nodes

Sahu et al. [130–133]
Exfoliated cells

(HNC
patients)

Cell pellets, placed
on CaF2

Fibre optic Raman
microprobe - - 70 -

A spectra-wise analysis of the
data provided a sensitivity

of 77%

Hole et al. [134]
Exfoliated cells

(HNC
patients)

Cell pellets, placed
on CaF2

Fibre optic Raman
microprobe - - - - Classification efficiency of 86%

Ghosh et al. [135]
Exfoliated cells

(HNC
patients)

Suspension of cells microRaman - - - 80
A spectra-wise analysis of the

data provided a sensitivity
of 82%

Behl et al. [136]
Exfoliated cells

(HNC
patients)

Monolayer of cells
placed on glass

slides

microRaman
- - 94 - Analysing the cells’ nuclei

- - 86 - Analysing the cells’ cytoplasm

Surgical Margins Assessment

Reference Sample Sample preparation Methodology Acquisition time Specificity (%) Sensitivity (%) Accuracy
(%) Observations

Koya et al. [106] Human breast Frozen sections microRaman - 90.8 88.8 90

-
Kong et al. [107] Human breast Frozen sections

microRaman -
96.2 95.6 -

MSH 17 min

Shipp et al. [108] Human breast Fresh MSH 12–24 min 82 95 - -



Cancers 2021, 13, 5336 27 of 38

Table 1. Cont.

Surgical Margins Assessment

Reference Sample Sample preparation Methodology Acquisition time Specificity (%) Sensitivity (%) Accuracy
(%) Observations

Lizio et al. [109] Human breast Fresh MSH
(using TIR-AF)

45 min (possible
reduction to 20 min) - H&E in agreement with

Raman heatmaps.

Liao et al. [110] Human breast Fresh Altered Raman
spectrometer 20–25 min - H&E in agreement with

Raman heatmaps.

Thomas et al. [111] Human breast Fresh Raman 3D scanner 7–15 min 85 93 -

-
Keller et al. [112] Human breast Frozen SORS probe - 100 95 -

Wang et al. [113] Human breast Fresh SERS 10–15 min 92.1 89.3 -

Horsnell et al. [114] Human lymph nodes
(breast surgery) Frozen microRaman - 97 81 -

Petterson et al. [115] Human lymph node Fresh
Multifibre

Raman probe in a
hypodermic needle

Some seconds - Spectra with good signal to noise
obtained.

Zúñiga et al. [116] Human breast Frozen

Portable and
commercially

available Raman
devices

- - - > 90

-

Barroso et al. [137] SCC of the tongue Fresh Built in Raman
equipment

Within 30 min after
excision 92 99 -

Barroso et al. [138] Oral SCC Fresh Built in Raman
equipment

Within 30 min after
excision -

Water concentration in the
tumour was found to be 76% ±

8% and, 56% ± 24% in the
surrounding healthy tissue

Barroso et al. [139] Oral SCC—bone Fresh Built in Raman
equipment <30 min 87 95 95

-Cals et al. [140] Oral SCC Frozen Inverted
microRaman

Within 60 min after
excision - - 97

Cals et al. [141] SCC of the tongue Frozen Inverted
microRaman

Too long for clinical
application

78 100 91

66 100 86

Hoesli et al. [142] Human head and
neck Frozen CRS - - H&E in agreement with

Raman heatmaps
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Table 2. Summary of the research studies included in this review article, performed with FTIR spectroscopy, according to the type of sample, sample preparation, methodology and
specifications used.

Early Diagnosis

Reference Sample Sample
Preparation Methodology Specificity (%) Sensitivity (%) Accuracy (%) Observations

Ferreira et al. [143] Saliva
(BC patients) Lyophilised ATR 70 90 - -

Zelig et al. [144]

Blood serum and
peripheral mononuclear

cells
(BC patients)

Air dried on ZnSe slides microFTIR 78 87

Elmi et al. [145] Blood serum
(BC patients)

Dry at room
temperature ATR 85 92 90

Sitnikova et al. [146] Blood serum
(BC patients)

Dry at room
temperature ATR 87.1 92.3 -

Mastanduno et al. [147] BC patients In vivo MRI-NIRS - Successful identification of
malignant apart from benign lesions.

Zlotogorski-Hurvitz et al.
[152]

Exossomes from the saliva
of HNC
patients

Dry at room
temperature ATR 89 100 95 -

Falamas et al. [118] Saliva from HNC patients Dry on KBr tablets FTIR, transmission
mode - Three main signals found to be

biomarkers with 82% accuracy.

Rai et al. [153] Bold serum from OSF
patients

Dried under
vacuum TR-FTIR - Predictive capability and explained

variance higher than 0.9.

Townsend et al. [154] Exfoliated cells (HNC
patients)

Cell pellets, placed on
low-e slides

microFTIR, in reflection
mode >90

Ghosh et al. [135] Exfoliated cells (HNC
patients) Suspension of cells ATR >80

The integrated approach of both
Raman and FTIR provided an

overall accuracy of 97.7%

Surgical Margins Assessment

Reference Sample Sample
preparation Methodology Specificity (%) Sensitivity (%) Accuracy (%) Observations

Lu et al. [149] Human breast Fresh ATR-HOF - - >90

-Tian et al. [150]
Sentinel lymph nodes

from BC
patients

Fresh ATR-HOF 90.1 94.7 -

Tian et al. [151] Human breast Fresh ATR-HOF 98 90 -
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Table 3. Summary of the research studies included in this review article, performed with Raman and FTIR spectroscopy regarding spectral histopathology, according to the type of sample,
sample preparation, methodology and specifications used.

Spectral Histopathology

Reference Sample Sample
Preparation Methodology Specificity (%) Sensitivity (%) Accuracy (%) Observations

Vanna et al. [162] Human breast Chemical dewax microRaman 80.6 93.5 -

-

Lyng et al. [163] Human breast Chemical dewax microRaman >90 >90 -

Verdonck et al. [164] Human breast Chemical dewax,
on BaF2 slides microFTIR >90 >80 -

Lazaro-Pacheco et al. [165] Human breast Chemical dewax,
on CaF2 slides microFTIR 86 92 -

Pounder et al. [166] Human breast Chemical dewax,
on BaF2 slides microFTIR -

Area under the ROC curve >0.9 for
both

transmission and reflection
acquisition modes

Tang et al. [167] Human breast
H&E stained, on

standard
histological glass

microFTIR - - 95.8

Cancerous vs. healthy stroma
classified with >90% accuracy; healthy

epithelium and cancerous
epithelium classified with 73% and

88% accuracy, respectively.

Bassan et al. [21] Human breast
Chemical dewax,

on standard
histological slides

microFTIR -

Epithelium, stroma, blood and
necrosis correctly classified in 98.25%,

99.94%, 100% and 97.22%,
respectively, of the cases

Ibrahim et al. [168] Human head and
neck

FFPE samples,
digitally dewaxed microRaman -

Inflammation and smoking factors
successfully classified with 94% and

76% accuracy,
respectively.

Devpura et al. [169] Human head and
neck Chemical dewax microRaman - - 89 -

Pallua et al. [170] Oral SCC Chemical dewax,
on CaF2 slides microFTIR - H&E in agreement with FTIR

heatmaps
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4. Discussion

Breast, and head and neck cancers are the types of neoplasias for which early diagnosis
and surgical margin assessment can be largely improved. As discussed in this review paper,
great research effort has been dedicated to the development of vibrational spectroscopy
techniques to successfully answer these urgent clinical needs.

Raman spectroscopy, in its several configurations, has been extensively used in cancer
research. Technical improvements regarding the Raman signal intensity over tissue fluores-
cence, the detector’s efficiency and the development of suitable accessories (e.g., optical
fibre probes) enabled the successful use of Raman for a fast, accurate and non-invasive in
situ diagnosis, applicable both during screening and intraoperatively. The combined effort
of research facilities, clinical centres and the industry will hopefully allow the translation
of Raman spectroscopy to clinics in the near future, based on leading-edge technology
successfully developed in the past few years.

FTIR spectroscopy, in turn, faces some other challenges regarding fresh tissue analysis
due to water content. The use of ATR configurations may be the solution to overcome
water spectra “contamination”. Additionally, very accurate data were obtained envisaging
an early diagnosis from dried blood serum, saliva and cell pellet samples. The use of these
types of samples is especially advantageous, since their collection is easy, non-invasive and
fast, rendering FTIR-ATR an excellent candidate as a routine cancer screening methodology,
particularly for some types of SCC (e.g., HNC).

It is presently widely recognised that spectral histopathology is able to distinguish
benign from cancerous tissue features. In an early stage, spectral histopathology could be
used as a screening method to assist anatomopathologists by allowing them to focus only
on the suspicious samples without the need to observe those classified spectroscopically
as benign. Secondly, spectral histopathology may complement the anatomopathologists’
interpretation of the specimens by accurately distinguishing the pre-malignant lesions, thus
overcoming the subjectivity associated with histopathology practice. In order to attain this
goal, extensive work is still needed, mainly regarding the identification of the intermediate
stages between benign and malignant features. Hopefully, when this lacuna is finally
fulfilled, spectral histopathology will become an invaluable clinical tool for early cancer
diagnosis and intraoperative margin assessment, greatly contributing to an improved
prognosis of oncology patients.

It is important to note that vibrational data need extensive data pre-processing and
processing work prior to analysis and subsequent final diagnosis, which may be more
time-consuming than the acquisition of the data themselves. Spectral data need to be
background subtracted, baseline corrected, signal-to-noise checked, smoothed, artifact
and interferent cleaned (e.g., glass, paraffin, light-scattering corrections), and normalised
prior data selection, for subsequent outlier detection and modelling. Modelling can be
developed with PCA, discriminant analysis (e.g., linear, quadratic), PLS, SVM, random
forest, hierarchical cluster analysis, k-nearest neighbour or a combination of two or more of
these statistical and deep-learning algorithms, which are some examples of the most used
approaches for the data analysis with diagnostic purposes. Afterwards, validation of the
developed model is needed. Additionally, there is a lack of a recognised universal protocol
for vibrational data acquisition, pre-processing, processing and analysis, so these technolo-
gies can be finally applied in a clinical setting. However, some review works have been
published aiming at the standardisation of the protocols for vibrational diagnosis [172–175].

5. Conclusions

In this literature review, Raman and FTIR research works aiming at breast and head
and neck cancer early diagnosis, surgical margin assessment and spectral histopathological
diagnosis were covered. Highly innovative, accurate, sensitive and specific methodologies
were included, confirming the promising potential of vibrational spectroscopy in the
clinical workflow.
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