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Structural plasticity occurs physiologically or after brain damage to adapt or re-establish
proper synaptic connections. This capacity depends on several intrinsic and extrinsic
determinants that differ between neuron types. We reviewed the significant endogenous
regenerative potential of the neurons of the inferior olive (IO) in the adult rodent brain
and the structural remodeling of the terminal arbor of their axons, the climbing fiber (CF),
under various experimental conditions, focusing on the growth-associated protein GAP-43.
CFs undergo remarkable collateral sprouting in the presence of denervated Purkinje cells
(PCs) that are available for new innervation. In addition, severed olivo-cerebellar axons
regenerate across the white matter through a graft of embryonic Schwann cells. In
contrast, CFs undergo a regressive modification when their target is deleted. In vivo
knockdown of GAP-43 in olivary neurons, leads to the atrophy of their CFs and a reduction
in the ability to sprout toward surrounding denervated PCs. These findings demonstrate
that GAP-43 is essential for promoting denervation-induced sprouting and maintaining
normal CF architecture.
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INTRODUCTION
Structural plasticity is limited in the central nervous system
(CNS) of adult mammals, constituting a significant impediment
to recovery from injuries such as those caused by trauma, stroke,
and neurodegenerative and demyelinating diseases (Duffau,
2006; Wieloch and Nikolich, 2006; Landi and Rossini, 2010).
Nevertheless, a relatively high degree of structural plasticity is
retained by certain areas of brain, such as the cerebellum (Carulli
et al., 2004; Cesa and Strata, 2009).

The cerebellar climbing fiber (CF), the terminal arbor of the
olivo-cerebellar axons, has provided the first example, in the
mammalian CNS, of individually observed fibers undergoing
sprouting after brain injury (Rossi et al., 1991a,b). In 6-weeks-old
Wistar rats, CFs normally encompass approximately 1000 µm of
dendritic length and bear an average of 544 ± 23 varicosities that
express the vesicular glutamate transporter VGLUT2 (Grasselli
et al., 2011).

CFs constitute a suitable model that can be used to investi-
gate axonal structural plasticity, based on their significant plastic
potential and morphological hallmarks. In fact, they have a one-
to-one relationship with their target Purkinje cell (PC). CFs
undergo lesion-induced sprouting, activity-dependent remodel-
ing, expansion of their area of innervation in response to an
enlarged target territory, and regressive modifications after elim-
ination of their target (Rossi and Strata, 1995; Strata and Rossi,
1998; Cesa and Strata, 2009).

STRUCTURAL PLASTICITY OF CLIMBING FIBERS
Neurons differ widely in regard to their response to axonal
injuries (Carulli et al., 2004; Dusart et al., 2005). For example,

in the cerebellum, PCs respond to injury with little upregulation
of plasticity-related genes in the cell body, no axonal regeneration
after axotomy, and weak sprouting; most PCs survive, but they
usually do not increase the expression of plasticity-related genes,
except when the axotomy occurs near the cell body (Rossi et al.,
1995; Bravin et al., 1997; Zagrebelsky et al., 1998; Wehrle et al.,
2001; Morel et al., 2002; Gianola and Rossi, 2004). Further, axonal
sprouting is limited and might be induced only following proper
manipulation of intrinsic and environmental factors (Buffo et al.,
1997, 2000; Zagrebelsky et al., 1998; Zhang et al., 2005, 2007).

In contrast, neurons in the inferior olive (IO) respond dra-
matically to axonal injury. The resection of olivo-cerebellar axons
leads to the regression of the remaining stump and the death of
many axotomized neurons in the IO during the first few weeks
after injury (Buffo et al., 1998). Concurrently, olivary neurons
upregulate several intrinsic factors, including nitric oxide syn-
thase (NOS), c-Jun, JunD, the early growth response protein
EGR1/Krox-24 (Rossi and Strata, 1995; Bravin et al., 1997; Buffo
et al., 1998, 2003; Wehrle et al., 2001).

As a result of this upregulation and the high constitutive
levels of growth-associated factors in olivary neurons, such as
GAP-43, MARCKS, EGR-1/KROX-24, L1CAM, and PSA-NCAM
in the olivary neurons (Kruger et al., 1993; Herdegen et al.,
1995; McNamara and Lenox, 1997; Fernandez et al., 1999;
Horinouchi et al., 2005), lesioned olivo-cerebellar axons can
elongate and innervate their target PCs when an appropriate per-
missive environment is provided, such as neonatal Schwann cells
that have been inserted at the site of axotomy (Bravin et al.,
1997). Lesioned olivo-cerebellar fibers can also elongate into a
transplant of embryonic cerebellum, where they innervate the
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grafted PCs, forming new CFs (Gardette et al., 1988; Rossi et al.,
1995).

The constitutive regenerative properties of olivo-cerebellar
fibers render them responsive to axotomy and to the expan-
sion or deletion of their target PC territory in the absence of
direct cellular lesions. Grafting embryonic cerebellar tissue onto
the surface of a non-lesioned host cerebellum leads to the for-
mation of a minicerebellum whose PCs become innervated by
collateral sprouting of intact host CFs that elongate across the
pial barrier, likely under the influence of target diffusible factors.
Consequently, they form new CF-like structures in the minicere-
bellum (Figure 1A) and on PCs that have migrated inside the host
cerebellar parenchyma (Rossi et al., 1992) and establish functional
synapses (Tempia et al., 1996).

Moreover, CFs can innervate and establish new functional
synapses with additional nearby PCs, if the latter are deprived
of their original CF innervation due to the neuronal degenera-
tion of part of olivary neurons, selectively among pre-cerebellar
nuclei, induced by intraperitoneal administration of the niaci-
namide analog 3-acetylpyridine (3-AP; Figure 1B) (Desclin and
Escubi, 1974; Benedetti et al., 1983; Rossi et al., 1991a,b). Further,
in neonatal rats (to 7–10 days after birth), olivo-cerebellar axons
sprout and form long transcommissural branches to reinner-
vate the opposite hemicerebellum if it is denervated by tran-
section of its peduncle (Sherrard et al., 1986). This form of

transcommissural growth can be induced experimentally after
development (30 days after birth) by infusion of exogenous BDNF
(Dixon and Sherrard, 2006) or IGF-I (Sherrard and Bower, 2003)
into the denervated hemicerebellum.

Conversely, if the target PC is deleted by neurotoxins, the
CF arbor becomes atrophic, shrinking, and altering the shape of
the varicosities (Figure 1C) (Rossi et al., 1993, 1995). Also, on
blockade of electrical activity by tetrodotoxin or on inhibition
of AMPA glutamate receptors with an infusing NBQX into the
cerebellar parenchyma for 7 days, the varicosities of CFs decrease
significantly in size, and fewer synaptic contacts are made with
the spines of the proximal dendritic domain of PCs (Bravin
et al., 1999; Cesa et al., 2007). These changes are attributed to
findings that electrical activity mediates in the ongoing compe-
tition between the CF and parallel fibers (Cesa and Strata, 2009).
Electrical activity of IO neurons also impedes the motility of the
transverse branches of the CF that extend perpendicularly to the
plane of the major structure of the fiber (Nishiyama et al., 2007).

EXTRINSIC AND INTRINSIC FACTORS IN CF PLASTICITY: THE
FUNCTION OF GAP-43
The molecular determinants that induce, guide, and regulate CF
elongation and innervation of PCs are only partially clarified.
Like most mature CNS neurons, CFs can grow only in limited
space that is devoid of extrinsic inhibitory influences, such as the

FIGURE 1 | Target-dependent structural plasticity of CFs. (A) Sprouting of
adult CFs 7 days following transplantation of embryonic cerebellum on to the
surface of the adult cerebellar cortex. The sprouts (arrows) innervate PCs in
the graft (arrowheads). Dotted line: host-graft border (Rossi et al., 1994,
unpublished). (B) CF sprouting and innervation of adjacent PCs previously
denervated by a partial lesion of the IO, shown 1 year after the lesion on a
sagittal plane. From 1 olivo-cerebellar axon (crossed arrow), a CFs is formed

with collateral branches (arrows) giving rise to new CF-like structures
(arrowheads) innervating the adjacent PCs (Rossi et al., 1991b). (C) A control
CF and atrophic modification induced in CFs 7 and 35 days after deletion of
PCs. CFs were reconstructed using a camera lucida. GL, granular layer; ML,
molecular layer. Scale bar: 30 µm, 25 µm, and 25 µm, respectively, for
control, 7 and 35 days (Rossi et al., 1993). CFs were labeled by PHA-l axon
tracing, PCs by anti-calbindin immunostaining.
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cerebellar molecular layer, which lacks inhibitory myelin growth
factors.

More is known about the intrinsic factors that confer highly
plastic properties to CFs. The well-characterized plasticity of
mature IO neurons is associated with high, constitutive expres-
sion of the growth-associated proteins GAP-43, EGR-1/KROX-24,
MARCKS, L1CAM, and PSA-NCAM, and with the upregulation
of c-Jun, JunD, Krox-24, and NOS in response to axonal lesions.
However, the contribution of each factor is still not clear.

GAP-43 was one of the first of these proteins to be studied
extensively and described for its abundance in axonal growth
cones (Zwiers et al., 1976; Skene and Willard, 1981); thus it is
used widely as a marker of axonal sprouting (Oestreicher et al.,
1997). GAP-43 (also known as neuromodulin and B-50) mediates
axonal growth, branching, and pathfinding during development.
Mice that lack this protein have a low survival rate in the early
postnatal period (Strittmatter et al., 1995; Maier et al., 1999).
In humans, heterozygous chromosomal deletions comprising the
locus for Gap-43 gene (3q13.10–3q13.21) are linked to agenesis
of the corpus callosum and severe mental retardation (Genuardi
et al., 1994; Mackie Ogilvie et al., 1998).

GAP-43 plays a pivotal role not only during development
but also in axonal remodeling in the adult brain. Its expression
rises in several conditions that induce neuronal rewiring, such
as the disruption of the neuronal networks due to pathological
or traumatic lesions (Benowitz et al., 1990; Oestreicher et al.,
1997; Buffo et al., 2003): it is upregulated in the motoneurons of
dystrophin-deficient mice (mdx mice), a model of human mus-
cular dystrophy, in which degeneration-regeneration events in
muscle fibers are accompanied by remodeling of intramuscular
terminal nerve fibers (Verzè et al., 1996), and after the induction
of robust neuronal activity, for example due to seizure or electrical
stimulation (McNamara and Routtenberg, 1995; Cantallops and
Routtenberg, 1996; Miyake et al., 2002; Sharma et al., 2010).

Complex alterations in GAP-43 expression are frequently
observed in human neuropathologies and their animal mod-
els, suggesting axonal damage or attempts of regenerative axonal
sprouting. For instance GAP-43 expression declines in the frontal
cortex and certain areas of the hippocampus in Alzheimer
patients but is robust in association with senile-like plaques
(Bogdanovic et al., 2000). Moreover, GAP-43 levels decrease in
most lesions in the white matter of patients with multiple sclerosis
and increase in some remyelinated white matter tracts (Teunissen
et al., 2006).

In several experimental conditions, GAP-43 overexpression
in vivo increases axonal sprouting. In transgenic mice that over-
express GAP-43, motoneurons undergo axonal sprouting, even
spontaneously in the absence of injuries, and increased sprout-
ing after lesion. These mice experience prominent, spontaneous
sprouting of mossy fibers in the dentate gyrus (Aigner et al.,
1995). As discussed, when GAP-43 was overexpressed in PCs,
their axons sprout profusely along their length and at their stump
even at sites that are covered by myelin demonstrating that its
overexpression is sufficient to induce sprouting in the absence of
any injury and promote lesion-induced sprouting in PCs (Buffo
et al., 1997; Gianola and Rossi, 2004). In a recent report, after
silencing the expression of GAP-43 in IO neurons of juvenile

wild-type rats using shRNA-expressing lentiviral vectors, their
CFs were virtually unable to sprout in response to 3-AP-induced
denervation of PCs (Figure 2A) (Grasselli et al., 2011). The few
CFs that were, however, still able to sprout were significantly
smaller than control fibers (Figures 2B,C). Because IO neurons
are heterogeneous with regards to sprouting and gene expression
after axotomy (Buffo et al., 2003), a more in-depth examina-
tion of the differences in CF morphology and their relation-
ship to gene expression profiles of their neurons should provide
greater insight into the function of the factors that regulate CF
morphology.

GAP-43 is not only necessary for CF sprouting but plays also
a crucial role for normal neuronal morphology in non-traumatic
conditions. The mere silencing of GAP-43 destabilizes CF struc-
ture in the absence of any insult (Figures 2D–G) (Grasselli et al.,
2011). Control CFs normally comprises a thick axonal stalk from
which many thin collaterals emerge (namely tendrils), forming a
net-like structure around the PC dendrite and bearing varicosi-
ties (Rossi et al., 1991b; Sugihara et al., 1999). Their structure
has been examined quantitatively and a recent complete digital
reconstruction shows that tendrils and distal branches are richer
in varicosities (Brown et al., 2012).

On silencing GAP-43, CFs alter their structure, extend-
ing fewer tendrils along their proximal and distal portions
(Figures 2D–G), quantified as a significant 17% reduction in
the density of varicosities, as defined by their morphology and
VGLUT2 expression. Further, the most distal portions of CFs,
which have fewer tendrils and a thinner stalk, are affected by GAP-
43 silencing, which shortens CF length by 33%. These data have
been confirmed in 2–3-months-old mice (Grasselli et al., 2011).

Several lines of evidence support a model in which GAP-43
is needed for proper interaction of the axon with its target neu-
ron and organization of the molecular machinery that supports
axonal structures during axonal growth. In GAP-43 knockout
mice, the axons of retinal ganglion cells fail to cross the optic
chiasm properly (Strittmatter et al., 1995), instead assuming
abnormal trajectories in the chiasm (Sretavan and Kruger, 1998).
Moreover, these mice fail to form the anterior commissure, hip-
pocampal commissure, and corpus callosum (Shen et al., 2002),
consistently with the agenesis of the corpus callosum observed in
patients who bear heterozygous chromosomal deletions compris-
ing the Gap-43 locus (Genuardi et al., 1994; Mackie Ogilvie et al.,
1998).

In the hippocampus of transgenic mice that overexpress an
inactive mutant form of GAP-43 that cannot be phosphory-
lated (with an amino acid substitution S42A), mossy fibers grow
ectopically to their normal target layer, innervating the distal
stratum oriens (Holahan et al., 2010). Notably, similar ectopic
growth was observed in mice lacking the neuronal cell adhe-
sion molecule NCAM (Cremer et al., 1997; Bukalo et al., 2004).
L1CAM, another adhesion molecule that mediates commissural
axon guidance (Kamiguchi et al., 1998; Demyanenko et al., 1999),
regulates GAP-43 pathway, acting synergistically with it promot-
ing axon growth and regeneration when overexpressed in PCs
in vivo (Zhang et al., 2005).

L1CAM and NCAM are expressed at constitutively high lev-
els in the IO (Horinouchi et al., 2005; Quartu et al., 2010), and
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FIGURE 2 | Silencing of GAP-43 in CFs prevents its sprouting and

induces atrophy. (A) Sprouting in GFP-positive CFs, induced by a
sub-total lesion of the IO, is dramatically reduced to nearly null levels
in rats treated with GAP-43-silencing vectors (siGAP) 3 weeks before
the lesion compared with controls as observed on coronal sections
(N = 3 and 5 animals, respectively; ∗p < 0.05; mean ± SEM). (B,C) The
total extension of CFs that are still able to grow sprouts following
GAP-43 silencing was also significantly reduced as assessed on coronal

sections. (D,E) Representative confocal images of rat CFs in sagittal
sections under normal conditions 3 weeks after treatment with control
or silencing vectors. (F,G) Details of the most distal segment and first
main branching point of CFs shown in (D,E), showing a reduction in
number and length of tendrils and consequent decrease in the density
of varicosities. Arrows: thick axonal stalks; arrowheads: examples of
tendrils [GFP, green; VGLUT2, red; calbindin, blue; modified from
Grasselli et al. (2011)].

GAP-43 responds to the NCAM pathway by being phosphorylated
by protein kinase C (PKC), ultimately binding the actin fila-
ments and other scaffolding proteins stabilizing their cytoskeletal
complexes (Oestreicher et al., 1997; Riederer and Routtenberg,
1999; Mosevitsky, 2005; Denny, 2006; Chakravarthy et al., 2008;
Ditlevsen et al., 2008). These findings suggests that, in CFs,
GAP-43 synergizes with cell adhesion molecules to transduce
target-dependent signals and stabilize the cytoskeleton.

In addition to maintaining of CF structure, GAP-43 might also
govern the organization of the presynaptic terminal and, conse-
quently, neurotransmitter release. When GAP-43 is silenced, CF
varicosities undergo alteration in morphology, becoming rounder
and larger compared with control varicosities (Grasselli et al.,
2011), which are often irregularly shaped and smaller, mirroring
the phenotype observed after blockade of AMPA receptor (Cesa
et al., 2007). These changes might be related to GAP-43 calcium-
and PKC-dependent control of the cytoskeleton.

Several studies have also established the involvement of GAP-
43 in neurotransmitter release and synaptic plasticity (Dekker
et al., 1989; Gianotti et al., 1992; Ramakers et al., 1995, 1999,

2000; Biewenga et al., 1996; Kantor and Gnegy, 1998; Routtenberg
et al., 2000; Hulo et al., 2002; Denny, 2006; Powell, 2006; Holahan
and Routtenberg, 2008; Holahan et al., 2010), reporting direct
calcium-dependent interactions with components of the synap-
tic machinery, such as SNAP-25, syntaxin, and VAMP (Haruta
et al., 1997), and with rabaptin-5, which regulate the recycling of
synaptic vesicle (Neve et al., 1998).

Thus, increasing evidence suggest that GAP-43 has a double
role in mature CFs in sustaining both injury-induced sprouting
and the maintaining their structure under normal conditions,
possibly by mediating cytoskeletal reorganization that is triggered
by cell adhesion molecules and CFs interactions with their target.
In addition GAP-43 appears to regulate the organization of CF
presynaptic terminal and neurotransmitter release.

Emerging technologies, such as 2-photon microscopy and laser
axotomy, will allow us to monitor cells during injury and repair in
live mammalian brains and induce microscopic lesions, enabling
us to determine the sequence of structural remodeling events that
occur in single fibers after axotomy (Holtmaat and Svoboda, 2009;
Allegra Mascaro et al., 2010).
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