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Abstract 
Objectives: To develop and externally validate machine learning models using structured and unstructured electronic health record data to pre-
dict postoperative acute kidney injury (AKI) across inpatient settings.
Materials and Methods: Data for adult postoperative admissions to the Loyola University Medical Center (2009-2017) were used for model 
development and admissions to the University of Wisconsin-Madison (2009-2020) were used for validation. Structured features included demo-
graphics, vital signs, laboratory results, and nurse-documented scores. Unstructured text from clinical notes were converted into concept 
unique identifiers (CUIs) using the clinical Text Analysis and Knowledge Extraction System. The primary outcome was the development of Kid-
ney Disease Improvement Global Outcomes stage 2 AKI within 7 days after leaving the operating room. We derived unimodal extreme gradient 
boosting machines (XGBoost) and elastic net logistic regression (GLMNET) models using structured-only data and multimodal models combin-
ing structured data with CUI features. Model comparison was performed using the receiver operating characteristic curve (AUROC), with 
Delong’s test for statistical differences.
Results: The study cohort included 138 389 adult patient admissions (mean [SD] age 58 [16] years; 11 506 [8%] African-American; and 70 826 
[51%] female) across the 2 sites. Of those, 2959 (2.1%) developed stage 2 AKI or higher. Across all data types, XGBoost outperformed 
GLMNET (mean AUROC 0.81 [95% confidence interval (CI), 0.80-0.82] vs 0.78 [95% CI, 0.77-0.79]). The multimodal XGBoost model incorporat-
ing CUIs parameterized as term frequency-inverse document frequency (TF-IDF) showed the highest discrimination performance (AUROC 0.82 
[95% CI, 0.81-0.83]) over unimodal models (AUROC 0.79 [95% CI, 0.78-0.80]).
Discussion: A multimodality approach with structured data and TF-IDF weighting of CUIs increased model performance over structured data- 
only models.
Conclusion: These findings highlight the predictive power of CUIs when merged with structured data for clinical prediction models, which may 
improve the detection of postoperative AKI.

Lay Summary 
Acute kidney injury (AKI) after an operation, called postoperative AKI, is common in hospitalized patients and associated with increased morbid-
ity and mortality. Early detection of high-risk patients could facilitate timely treatment and improve outcomes. Although a few studies have 
developed machine learning (ML) models to identify patients with postoperative AKI, these are primarily limited to structured data (eg, labora-
tory values) and ignore predictors from clinical notes. Further, models built from clinical notes are often not externally validated because doing 
so risks leaking protected health information.

Given these limitations in the field, we developed and externally validated ML models to predict postoperative AKI using structured data and 
information from clinical notes. To preserve patient privacy, we used concept unique identifiers (CUIs), which are de-identified medical terms 
from clinical notes. We compared unimodal models with structured data to multimodal models with CUIs plus structured data, as well as differ-
ent approaches to modeling the CUI data. We found that multimodal models significantly improved model performance compared to unimodal 
models. We also found that normalizing CUI data based on term frequency had the highest performance. In conclusion, using CUIs to account 
for information in clinical notes adds significant value for predicting postoperative AKI.
Key words: multimodal models; artificial intelligence; intensive care unit; machine learning; acute kidney injury; natural language processing. 
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Background and significance
The development of acute kidney injury (AKI) in the postoper-
ative period is common in hospitalized patients and is associ-
ated with a significant increase in morbidity and mortality, as 
well as prolonged duration and increased costs of hospitaliza-
tion.1–6 AKI is defined by either an increase in serum creatinine 
(Scr) or a decrease in urine output according to the Kidney Dis-
ease Improving Global Outcomes (KIDGO) consensus defini-
tion established over the last decade.7 The incidence of AKI 
varies from 5.0% to 7.5% in hospitalized patients receiving 
acute care and can reach up to 20% in patients admitted to the 
intensive care unit (ICU).8 While the incidence of postoperative 
AKI depends on the type of surgery, 30%-40% of all in- 
hospital AKI cases are related to surgical procedures.9 Patients 
who develop postoperative AKI are more likely to develop sep-
sis and coagulopathy,8 have a higher risk of receiving pro-
longed mechanical ventilation,8 and their mortality rate at 30 
days can be 15-fold higher than those who do not develop 
postoperative AKI.10,11 Early detection of individuals at high 
risk for postoperative AKI could facilitate timely therapies, 
resulting in improved quality of care and more efficient use of 
hospital resources.

While machine learning (ML) models have been developed 
to detect patients with AKI,12–18 many algorithms rely on 
data from a single modality, such as structured data variables 
like vital signs and laboratory values.13,19,20 However, elec-
tronic health records (EHRs) contain a wealth of information 
stored in various modalities, including clinical notes and radi-
ology reports. Nearly 80% of EHR data reside in an unstruc-
tured free text format.21,22 The application of natural 
language processing (NLP) to extract clinically meaningful 
information from free text is effective in research and clinical 
practice,23–28 and has improved performance of risk stratifi-
cation models.27,29 Leveraging NLP combined with struc-
tured data for multimodal learning to predict postoperative 
AKI risk could improve the performance of these models, 
resulting in more accurate detection of at risk patients.

External validation is essential to determine a prediction of 
model’s reproducibility and generalizability to a new and dif-
ferent patient population,30,31 but few post-operative AKI 
models have been externally validated.32–35 This is com-
pounded by the challenge of externally validating NLP mod-
els, which risk leaking protected health information (PHI) 
when trained on clinical notes.36–40

Objectives
In this study, we aim to develop and externally validate ML 
models to predict postoperative AKI using structured data 
and medical concepts extracted from raw clinical notes as 
concept unique identifiers (CUIs). We further aim to compare 
different approaches to modeling CUI data to determine 
which method demonstrates the highest discrimination and 
calibration. We hypothesize that multimodal models that 
combine CUIs and structured data will achieve higher per-
formance than unimodal models with structured data only 
for predicting postoperative AKI.

Methods
Study population
We conducted a retrospective cohort study of adult (�18 
years) postoperative patients at Loyola University Medical 

Center (LUMC) between 2009 and 2017 and at the Univer-
sity of Wisconsin-Madison Hospital (UW) between 2009 and 
2020. Patients were excluded if they had any of the follow-
ing: (1) no operating room (OR) location; (2) chronic 
end-stage renal failure billing diagnosis prior to hospital 
admission; (3) no documented SCr measurement before dis-
charge; (4) had an initial admitting SCr value greater than or 
equal to 3.0 mg/dL; (5) required kidney replacement therapy 
(KRT) before or within 48 h of their first documented SCr 
measurement; (6) developed KDIGO stage 1 before first OR 
discharge, or (7) had no clinical documentation (eg, notes, 
reports) before developing stage 2 AKI. Additionally, all 
admissions that did not have data in the following time inter-
vals were excluded: (1) between first SCr measurement and 
last vitals; (2) in the emergency department (ED), ward, or 
ICU; or (3) in the 7-day window following first OR. These 
exclusions were made to ensure that patients did not have 
pre-existing renal failure and ensured data were available for 
the model to predict AKI. The exclusions of those with an ini-
tial SCr greater than or equal to 3.0 mg/dL and KRT within 
48 h of first SCr measurement were done to minimize the 
misclassification of patients with pre-existing AKI prior to 
admission, which is consistent with other AKI studies.13,14,18

The study was approved by the LUMC and UW institutional 
review boards with a waiver of informed consent.

Data collection
Structured data and raw clinical notes were extracted from 
the Clinical Research Data Warehouses at LUMC and UW. 
Structured data included demographic characteristics, vital 
signs, laboratory results, trends of vital signs and laboratory 
values (eg, highest heart rate in previous 24 h), patient loca-
tion data (eg, ward, ED, ICU, OR), interventions, and nurs-
ing documentation (eg, Braden score). Structured data 
occurring closest to (at or before) the first ward, ICU, or ED 
observation following the patient’s operation were included 
as model predictor variables. See Table S1 for the full list of 
structured variables.

The Apache clinical Text Analysis and Knowledge Extrac-
tion System41 was utilized to map the raw text from the clini-
cal notes and reports to CUIs from the National Library of 
Medicine Unified Medical Language Systems (UMLS). The 
CUIs are codes that were derived from the Systematized 
Nomenclature of Medicine—Clinical Terms medical vocabu-
lary from UMLS Metathesaurus.42 The CUIs were obtained 
from clinical notes collected across the entire encounter con-
sisting of operative notes, progress notes, ancillary notes (eg, 
physical therapy, occupational therapy, and dietitian notes), 
procedural notes, and radiology reports. Utilization of CUIs 
minimizes the number of variables by mapping similar terms 
to a single code (eg, hematoma, hematomas, and blood clots 
all map to CUI C0018944). CUIs from all notes occurring 
prior to and including the time a patient arrived at the wards, 
ICU, or ED following their OR stay were used as input fea-
tures to our ML models.

Study outcome
The primary outcome of the study was the development of 
Stage 2 AKI within 7 days of the first ward, ICU, or ED 
observation following the patient’s operation. If a patient had 
multiple operations during an admission, only the first opera-
tion was included. The SCr-based criteria from the KDIGO 
consensus definition7 was used to define AKI. As described 
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previously, baseline SCr measurement was defined as the 
admission SCr value and was updated on a rolling basis for 
48-hour and 7-day criteria, as per the KDIGO 
guidelines.7,13,14

Statistical analysis
A comparison of characteristics, such as patient demo-
graphics, patient location data (eg, ward, ED, ICU, OR), lab 
results, and outcomes between the sites groups (LUMC and 
UW), was performed using t-tests and analyses of variance 
for normally distributed data, Wilcoxon rank sum tests, and 
Kruskal–Wallis tests for nonnormally distributed data, and 
chi-square for categorical data. Missing data were handled 
separately in each cohort by using the median by location 
within the hospital (for continuous data) or 0 (for categorical, 
eg, interventions data).14 See Table S2 for the summary of 
missing data.

All analyses were performed using R version 3.6.3 (The R 
Project for Statistical Computing). Model development and 
validation along with data visualization were performed 
using several packages including glmnet, glmnetUtils, pROC, 
XGBoost, ParBayesianOptimatization, caret, ggplot2, and 
tidyverse. Statistical significance was set at P<.05, and all 
tests were 2-tailed.

Machine learning model development
The extreme gradient boosting machine (XGBoost) algorithm 
was used to predict the study outcome of stage 2 AKI or 
higher within 7 days after leaving the OR. XGBoost is a gra-
dient boosted machine algorithm that combines weak learn-
ers (decision trees) to achieve stronger overall 
discrimination.43 This iterative process builds trees aiming to 
better predict cases of post-operative AKI missed by earlier 
trees by weighting the difficult-to predict cases to a greater 
degree. This results in a tree ensemble model that is more 
accurate than any one individual tree. This algorithm is rec-
ommended for classification and regression problems with 
tabular data.43,44 Hyperparameters, including the number of 
trees, depth of trees, learning rate, and the minimum size of 
the terminal leaves were tuned to maximize the area under 
the receiver operating characteristic curve (AUROC) using 5- 
fold cross-validation on the training dataset (LUMC cohort) 
(see Table S3 for list of tunning grids used). As a more inter-
pretable comparator model to XGBoost, elastic net logistic 
regression models were also derived, which combine lasso 
and ridge regularization penalties in a single framework. 
These penalty terms were tuned using 5-fold cross-validation 
in the training data.

For the unimodal models, demographics, vital signs, labo-
ratory values, interventions, medications, nursing documen-
tation, and diagnostics (see Table S1 for a full list of 
predictors) from LUMC were used to train the models, and 
they were externally validated using the same features from 
UW structured data. For the CUI dataset, 3 approaches were 
used to engineer the representation of CUIs: binary (absence 
versus presence of CUIs), TF (term frequency count of each 
unique CUI), or TF-IDF (term frequency inverse document 
frequency, a normalized version of the TF). For model devel-
opment, only CUIs that appeared in at least 5 admissions 
from the training dataset were retained and used to train the 
models (based on exploratory analysis of CUI distributions). 
Predictors from each CUI dataset defined above were 

concatenated with features from the structured data to create 
a multimodal model (Figure S1 for the model architecture).

Model evaluation
Model performances were validated on the external testing 
dataset (UW cohort). For multimodal model testing, all CUIs 
included in the models were retained and CUIs in the training 
set not appearing in the test set were set to zero (see Figure S2 
for details). Delong’s test for differences in AUROC using the 
trapezoidal method was used to compare the performance of 
unimodal and multimodal models.45,46 Sensitivity, specificity, 
and positive and negative likelihood ratios (LRþ and LR − ) 
were compared across a range of thresholds for the XGBoost 
unimodal and multimodal models (see Table S4). As a secon-
dary metric for comparison, model calibration, which com-
pares the true probability of the outcome versus a model’s 
prediction, was compared using calibration slope, intercept, 
Brier score, and unreliability index P-value. A well-calibrated 
model is expected to have an intercept of zero, a slope of 1, 
an unreliability index P-value>.05, and a low Brier score. 
The importance of each model feature was computed to 
examine the predictive influence of structured vs CUI fea-
tures. The gain-based variable importance metric, which con-
siders both the quantity and quality of the split associated 
with each feature was used for XGBoost models. This 
approach provides insights into which feature contributes the 
most to the model’s predictive performance by taking into 
account the number of times a feature is used for splitting 
(frequency) and the magnitude of improvement achieved 
(gain).43 The coefficient-based variable importance metric 
was used for the GLMNET model. This method examines 
the magnitude of the estimated coefficients. Features with 
larger absolute coefficients are considered more important, as 
they have a strong influence on models’ predictions.47

Results
Patient characteristics and comparison
There were 138 389 adult patient encounters included in the 
final cohort, with 61 257 admissions from LUMC and 77 132 
admissions from UW. Among those, 2959 (2.1%) developed 
stage 2 AKI or higher within a week after their operation, 
with 1445 (2.4%) from LUMC and 1514 (2.0%) from UW. 
See Figure 1 for the exclusions leading to this cohort. Table 1 
shows patient characteristics and clinical outcomes across the 
2 sites. Compared to UW, the LUMC cohort was older and 
had a higher proportion of African-American and female 
patients (P-value<.001). Additionally, LUMC admissions 
had a higher admission SCr measurement, higher blood urea 
nitrogen (BUN) concentration, longer ICU stay, and a higher 
proportion of prior ICU visits than UW admissions (P- 
value<.001).

Unimodal and multimodal machine learning model 
performance comparisons
The vocabulary size for CUIs in notes collected prior to 
patients’ first observation following their departure from the 
OR in the training data (LUMC) was 37 570 and the vocabu-
lary size for the validation data (UW) was 43 494. After elim-
inating rare CUIs (�5 encounters) in the training data, 
22 106 (59%) CUIs were selected as features for the training 
dataset. The unimodal model with structured-only data had 
61 variables as inputs and the multimodal models with both 
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CUIs and structured data combination had 22 167 input fea-
tures. See Figure S2 for the exclusions leading to the final 
training and validation CUI dataset.

Table 2 shows the AUROC in the validation dataset (UW) 
for the models. XGBoost consistently outperformed GLMNET 
across all data types, with an average AUC of 0.81 (95% CI, 
0.80-0.82), whereas GLMNET achieved an average AUC of 
0.78 (95% CI, 0.77-0.79). Moreover, the multimodal 
XGBoost model incorporating TF-IDF showed the highest dis-
crimination performance, achieving an AUC of 0.82 (95% CI, 
0.81-0.83). This value was significantly higher than the AUC 
of the unimodal model, which was 0.79 (Delong test P-value 
< .05). At a similar specificity cut-off (73%), the multimodal 
model with CUI TF-IDF had a sensitivity of 75%, CUI TF had 

a sensitivity of 75%, and CUI Binary had a sensitivity of 73%. 
These values were greater than the sensitivity of 68% for the 
unimodal model at the same specificity cut-off. A detailed sum-
mary showing the model performance across a range of thresh-
olds for the XGBoost models is shown in Table S4. A pairwise 
comparison between the unimodal model with structured-only 
data and multimodal models for XGBoost using Delong test 
demonstrated statistical improvement in discrimination for 
multimodality over single modality (Delong test P value<.05 
for all comparisons).

Model calibration comparison
Table 3 shows the calibration plot summary data for the 
unimodal and multimodal models. Although both unimodal 

Figure 1. Consort diagram of study cohort included in ML models.

Table 1. Patient characteristics and clinical outcomes comparison between sites (n¼138 389).

Variables
LUMC UW

P-value(n5 61 257) (n5 77 132)

Demographics
Age, mean (SD), yr 58 (16) 57 (16) <.001
Race, n (%)

African American 8940 (15) 2566 (3) <.001
Others 52 317 (85) 74 566 (97)

Sex, n (%)
Female 32 019 (52) 38 807 (50) <.001

Lab values
Admission Scr (mg/dL), mean (SD) 0.99 (0.38) 0.90 (0.33) <.001
Admission blood urea nitrogen (mg/dL), mean (SD) 14.3 (8.9) 15.0 (8.1) <.001

Hospital stay details
Length of hospital stay (hours), median (Q1, Q3) 99 (51, 187) 99 (58, 174) <.001
Location of AKI, n (%)

Ward 35 591 (58.1) 59 077 (76.59) N/A
ICU 25 582 (41.8) 18 037 (23.38) <.001
Emergency department/other 84 (0.14) 18 (0.02) <.001

SD, standard deviation; yr, year; ICU, intensive care unit; length of hospital stay, length of patient hospital stay during this admission.
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and multimodal models were not well-calibrated statistically 
(unreliability P-value<.01), the XGBoost multimodal model 
using TF had the best overall calibration (calibration slope 
closer to 1 and intercept closer to 0). This observation is sup-
ported by the plots for the multimodal models, which dis-
played predicted probabilities that closely aligned with the 
actual probabilities (Figure S3).

Feature importance comparison
Figure 2 illustrates the variable importance plot showcasing 
the top 20 variables in the highest-performing multimodal 
model. The analysis revealed that the SF ratio (ratio of oxy-
gen saturation in arterial blood to the percentage of oxygen 
in inspired air), current Scr level, and current fraction of 
inspired oxygen (FIO2) were the most influential predictors 
in the model. Notably, in both the XGBoost and GLMNET 
models, all of the top 20 predictors in the multimodal models 
were derived from the structured data. However, when com-
paring the multimodal models to the structured-only model, 
it became apparent that certain relevant AKI features such as 
heart rate, change in Scr, and potassium emerged as top 20 
predictors exclusively in the XGBoost multimodal models. 
Detailed examination of the top 50 variables of the XGBoost 
multimodal model showed 2 CUIs features (neurosurgical 
procedures and eye) in the CUI binary þ structured data 
model, 5 CUIs in CUI TF þ structured data model (transplan-
tation, pain, patient, neurosurgical procedures, and lisino-
pril), and 10 CUIs in the CUI þ TF-IDF models 
(transplantation, liver cirrhosis, lisinopril, aortic aneurysm 
abdominal, pain, tobacco, neurosurgical procedure, vomit-
ing, bowel preparation, and neck). See Table S5 for details.

Discussion
In this multicenter study, we developed and externally vali-
dated ML risk models that accurately predicted the develop-
ment of postoperative AKI using structured and unstructured 
data. We found that a multimodal approach that combines 
features from notes and structured data increased model per-
formance over a unimodal approach using structured data 
only. Specifically, we demonstrate that the integration of 
structured data with TF-IDF weighting of medical concepts 
from unstructured clinical notes in an XGBoost algorithm 
predicted at-risk postoperative AKI with the highest discrimi-
nation. These results highlight the predictive power of CUIs 
when merged with structured data for clinical prediction 
models for predicting AKI.

Although prior research suggests that multimodality mod-
els typically perform better than the traditional single modal-
ity models, few studies used external validation.48–50 For 
example, Liao et al. applied NLP to the EHR to build a com-
putable phenotype for multiple diseases and showed that the 
inclusion of NLP to structured data increased sensitivity 
while either maintaining or improving the accuracy of the 
phenotype classification algorithms for Crohn’s disease, 
ulcerative colitis, multiple sclerosis, and rheumatoid arthritis 
than an algorithm with only structured data.49 Halpern et al. 
also observed that NLP in conjunction with structured data 
resulted in more precise identification of phenotyping of the 
patients and generalized better than classifier with only struc-
tured data.50 The fusion of data from different modalities 
allows our models to harness the full granularity of the EHR 
and account for the depth of information hidden in the raw 
clinical notes to predict at-risk patients with superior per-
formance. Our multimodality models contribute to reducing 

Table 2. Summary of the unimodal versus multimodal models performance in the external validation dataset (UW).

Data Number of features ML algorithm CUI method AUROC (95% CI)

Structured data 61 XGBoost N/A 0.79 (0.78-0.80)
CUI þ structured data 22 167 Binary 0.81 (0.80-0.82)

TF 0.81 (0.80-0.82)
TF-IDF 0.82 (0.81-0.83)

Structured data 61 GLMNET N/A 0.79 (0.78-0.80)
CUI þ structured data 22 167 Binary 0.77 (0.76-0.78)

TF 0.77 (0.76-0.78)
TF-IDF 0.80 (0.77-0.79)

Structured data, unimodal models with structured only data; CUI þ structured data, multimodal models with CUI and structured data combined; binary, 
CUI weighted as 0 if absence and 1 if presence; TF, weighting the term frequency count of each unique CUI; TF-IDF, weighting the term frequency inverse 
document frequency of each unique CUI, a normalized version of the TF.

Table 3. Calibration summary for the unimodal and multimodal models in the validation cohorts.

Data CUI method Model Intercept Slope Unreliability index P-value Brier score

Structured data N/A XGBoost − 0.18 0.91 <.01 0.02
CUI þ structured data Binary 0.48 1.05 <.01 0.02

TF 0.14 1.00 <.01 0.02
TF-IDF 0.38 1.04 <.01 0.02

Structured data N/A GLMNET − 0.23 0.92 <.01 0.02
CUI þ structured data Binary − 0.27 1.00 <.01 0.02

TF − 3.19 0.90 <.01 0.02
TF-IDF − 0.25 0.92 <.01 0.02

Structured data, unimodal models with structured only data; CUI þ structured data, multimodal models with CUI and structured data combined; Binary, 
CUI weighted as 0 if absence and 1 if presence; TF, weighting the term frequency count of each unique CUI; TF-IDF, weighting the term frequency inverse 
document frequency of each unique CUI, a normalized version of the TF.
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false-positive predictions, thereby alleviating false alarms and 
the resulting alert fatigue commonly associated with tradi-
tional unimodal models that rely on incomplete clinical 
data.51 Furthermore, our models are developed in 1 setting 
and validated in another, enabling investigation of clinical 
outcomes across different settings and generalization to 
diverse patient populations. This addresses one of the current 
limitations observed in existing AKI algorithms.13,19,20

While TF-IDF had better calibration than the other 
approaches, including an excellent calibration slope (1.00), 
none of the models studied were well-calibrated overall, 
which was due to the mis-calibration of the intercept. This 
mis-calibration is likely due to differences between sites, 
which could include variations in patient case mix and preva-
lence, types of surgical procedures, post-operative care, and 
content of clinical notes. Poor calibration can impact inter-
ventional studies that assume the predicted probabilities cor-
relate well to the actual probabilities of the outcome (eg, 
recommending a screening mammogram if the risk of breast 
cancer is >10%), so methods to improve calibration of our 
models, such as Platt scaling and domain adaption,52,53

should be considered in these situations. However, our mod-
els still order patients from highest to lowest risk well, as 
shown by their high discrimination, so interventions aimed at 
the highest risk patients would still be feasible despite their 
poor overall calibration.54,55 These considerations are more 
important for local adaptation than external validation 
alone.52

There are several ways to parameterize CUI features in 
NLP models. In our study, we represented the raw clinical 
notes as a bag of CUIs and compared 3 approaches to engi-
neer the CUIs features. Previous studies have used different 
vectorizations of CUIs as ML features. Liao et al. used binary 

vectorization of CUIs in their study examining the perform-
ance of single modality versus multimodality in phenotype 
algorithm.49 CUIs as TF-IDF and binary vectorizations were 
used by Kulshrestha et al. in their recent study comparing the 
performance of bag of CUIs to the bag of words approach.29

However, to the best of our knowledge, ours is the first study 
that examined 3 different CUI vectorizations as ML features 
to identify the CUI modeling approach that provides optimal 
discrimination in the postoperative setting. Our results 
showed that when modeling CUIs in conjunction with other 
data types, TF-IDF categorization provided the best discrimi-
nation. The high predictive power of TF-IDF can be attrib-
uted to the way this modeling approach weights terms within 
each document across corpus.56 TF-IDF not only evaluates 
how relevant a CUI is to an encounter, but accounts for the 
significance of that CUI in a collection of encounters. This 
characteristic enables TF-IDF to discriminate crucial CUIs 
that occur more frequently but in a limited number of 
encounters, thereby accounting for variations in CUIs across 
admissions.

This study has several strengths. First, the representation of 
raw clinical notes as a bag of CUIs gives us the assurance that 
our models are compliant with the Health Insurance Portabil-
ity and Accountability Act (HIPAA), accounts for variations 
in clinical documentation practices across institutions, and 
meaningfully reduces the number and complexity of variables 
needed for modeling. These bag-of-concept features are free 
of PHI because they effectively de-identify raw text by trans-
forming it into codified data, allowing for the sharing of the 
trained risk models across institutions without concern for 
PHI leakage and HIPAA violations.22,37 CUIs account for 
variations in clinical documentation practices between pro-
viders and institutions by mapping concepts from the raw 

Figure 2. Variable importance plot for the best performing XGBoost model (CUI TF-IDF þ structured data) developed in the validation (UW) cohort.
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clinical notes to codified data, addressing some of the com-
mon problems with semantic analyses of clinical notes includ-
ing grammatical and spelling errors, lexical variation, and 
semantic ambiguities of notes.57,58 We also minimized the 
number and complexity of variables used in our ML model 
significantly by mapping similar terms to a single CUIs. Sec-
ond, our structured data model uses clinical data that are 
readily available in the EHR and could be calculated in real 
time to identify high-risk patients.59,60 Third, we externally 
validated our models in an external health system as opposed 
to training and validating at the same center. Studies have 
long established the importance and implications of external 
validation of multivariable models.28,31 Model accuracy 
often decreases during external validation, and this may be 
even more impactful when using data from clinical notes 
given how “smart phrases” and semantics may vary across 
centers. Finally, our analyses utilized XGBoost as opposed to 
deep learning models to allow for comparisons and interpret-
ability of the models to better understand the optimal data 
input as it relates to clinical utility.

Our study also has several limitations. First, we did not use 
the urine output definitions of AKI due to the inability to accu-
rately measure urine output on an hourly basis in most of our 
cohorts. We only defined AKI through changes in SCr concen-
tration because of the inability to obtain accurate hourly urine 
output measurements in all hospitalized patients to comply 
with KDIGO definitions. However, this is in line with several 
other previously published AKI risk scores.12–14,18 Second, we 
defined baseline SCr concentration using the admission values 
as opposed to outpatient values, as we did not have access to 
outpatient SCr values in our cohort. However, we did define 
AKI according to international consensus definitions that 
should allow for replication and validation in future cohorts, 
and our approach has been used by other AKI modeling stud-
ies in the past.13,14,34,61 Third, we only utilized 2 of the hun-
dreds of different possible ML algorithms in our study. 
However, XGBoost is a top-performing algorithm in tabular 
data,62 and logistic regression is a commonly used method in 
clinical research. Finally, there are other approaches to utiliz-
ing PHI to develop ML models while maintaining patient pri-
vacy, such as federated learning, which was outside the scope 
of this manuscript.

Conclusion
We developed and externally validated ML algorithms to 
identify postoperative patients who develop AKI with high 
discrimination. A multimodal approach with CUIs weighted 
as TF-IDF fused with structured data had performance gains 
over unimodal models with structured-only data. Future 
work to implement these models may improve the early 
detection and treatment of patients with postoperative AKI, 
which could improve patient outcomes.
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