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Abstract

Very preterm infants (born at less than 32 weeks gestational age) are at high risk for serious 

motor impairments, including cerebral palsy (CP). The brain network changes that antecede 

the early development of CP in infants are not well characterized, and a better understanding 

may suggest new strategies for risk-stratification at term, which could lead to earlier access to 

therapies. Graph theoretical methods applied to diffusion MRI-derived brain connectomes may 

help quantify the organization and information transfer capacity of the preterm brain with greater 

nuance than overt structural or regional microstructural changes. Our aim was to shed light 

on the pathophysiology of early CP development, before the occurrence of early intervention 
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therapies and other environmental confounders, to help identify the best early biomarkers of CP 

risk in VPT infants. In a cohort of 395 very preterm infants, we extracted cortical morphometrics 

and brain volumes from structural MRI and also applied graph theoretical methods to diffusion 

MRI connectomes, both acquired at term-equivalent age. Metrics from graph network analysis, 

especially global efficiency, strength values of the major sensorimotor tracts, and local efficiency 

of the motor nodes and novel non-motor regions were strongly inversely related to early CP 

diagnosis. These measures remained significantly associated with CP after correction for common 

risk factors of motor development, suggesting that metrics of brain network efficiency at term 

may be sensitive biomarkers for early CP detection. We demonstrate for the first time that in 

VPT infants, early CP diagnosis is anteceded by decreased brain network segregation in numerous 

nodes, including motor regions commonly-associated with CP and also novel regions that may 

partially explain the high rate of cognitive impairments concomitant with CP diagnosis. These 

advanced MRI biomarkers may help identify the highest risk infants by term-equivalent age, 

facilitating earlier interventions that are informed by early pathophysiological changes.
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1. Introduction

Across the globe, nearly 10% of babies are born preterm (Chawanpaiboon et al., 2019). 

Very preterm (VPT) infants are born at less than 32 weeks gestational age (GA) and 

disproportionally suffer from motor impairments including cerebral palsy (CP), one of the 

most prevalent childhood physical disabilities (Spittle et al., 2011). Approximately 8% of 

babies born at less than 28 weeks GA develop CP, and the percentage increases with 

each added week of prematurity (Smith et al., 2018). While all children with CP manifest 

sensorimotor impairments, up to 50% also suffer from cognitive and language impairments 

(Novak et al., 2012). By school age, 32–44% of VPT children exhibit signs of milder 

motor abnormalities than CP (Arnaud et al., 2007; Van Hus et al., 2014). Cerebral palsy 

is commonly diagnosed around two years of age or later. This is primarily because 30% 

of children who develop CP do not have any major injury on brain MRI (De Vries et 

al., 2011; Hubermann et al., 2016; Hadders-Algra, 2014; Benini et al., 2013). This lag in 

identification of the most at-risk infants causes clinicians and therapists to miss the window 

for intervention when neuroplasticity is maximal. Given the value of early intervention to 

preserve motor and cognitive ability (Spittle et al., 2015), time lost may mean increased rates 

of neurodevelopmental impairment in this vulnerable population. The brain network changes 

that antecede early development of CP in infants are not well-characterized, and a better 

understanding may suggest new strategies for risk-stratification at term, which could lead to 

earlier access to therapies.

We previously demonstrated that brain volumetrics and cortical morphometrics from term 

structural MRI are predictive of motor aptitude at two-years of age (Kline et al., 2020). 

However, more sensitive methods such as diffusion MRI are able to query the brain’s 

microstructure in greater detail, and regional diffusion metrics (e.g., fractional anisotropy 
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[FA]) are more tightly linked with CP than measures of macrostructural injury (Parikh, 

2016; Parikh et al., 2019; Merhar et al., 2020). On the network connectome level, graph 

theoretical methods applied to diffusion MRI may help quantify the organization and 

information transfer capacity of the preterm brain with greater nuance than overt structural 

or regional microstructural changes (Bullmore and Sporns, 2009; Rubinov and Sporns, 

2010; Sporns and Zwi, 2004; Sporns, 2013; Bassett et al., 2017). Using graph theory, 

the brain’s wiring diagram or connectome can be modeled as a collection of regions 

(nodes) and the magnitude of their interaction (edge weights). These edge weights can 

be anything from the total number of white matter streamlines connecting two nodes, the 

mean functional connectivity value between two nodes, the mean fractional anisotropy, 

etc. From such connectivity matrices, graph theory metrics can be calculated that quantify 

high-level properties of the network, which may help elucidate the biological and network 

underpinnings of disorders such as CP (Rubinov and Sporns, 2010; Sporns, 2013; Bassett et 

al., 2017).

Many graph theory metrics can be understood as measures of either functional integration or 

functional segregation. Functional integration is the ability of a network to rapidly combine 

specialized information from distant regions, while functional segregation is the ability of 

discrete groups of nodes to carry out specialized processing. Global efficiency (Eglob), or 

the network’s inverse shortest path length, is an integration measure (Latora and Marchiori, 

2001). Shorter paths do not represent physical distance, but rather represent fewer steps 

between regions. Local efficiency (Eloc) (Wang et al., 2017) is a segregation measure that 

is equivalent to global efficiency calculated on the neighborhood of an individual node. 

Clustering coefficient (CC) (Latora and Marchiori, 2001), another segregation measure, 

describes the fraction of a node’s neighbors that are neighbors of each other, indexing 

the ability of nodes to cluster into sub-groups and providing a measure of network fault 

tolerance. Strength is the sum of all edge weights (e.g., FA) for an individual node, which 

makes it a surrogate measure of the microstructural integrity of all tracts traversing that 

region. Global efficiency, local efficiency, clustering coefficient, and strength are all altered 

in preterm infants and children compared to their term-born peers (Young et al., 2018; 

Thompson et al., 2016; Bouyssi-Kobar et al., 2019; Ballester-Plané et al., 2017; Ceschin 

et al., 2015), and such alterations have been correlated with illnesses of prematurity and 

neurodevelopmental impairment (Bouyssi-Kobar et al., 2019; Ballester-Plané et al., 2017; 

Ceschin et al., 2015; Gozdas et al., 2018). For instance, Young et al. (2018) reported 

decreased Eglob, Eloc, and CC in very preterm children compared to term-born peers at 

age four, and Bouyssi-Kobar and colleagues showed that bronchopulmonary dysplasia and 

length of oxygen support were associated with further decreased global efficiency in the 

preterm brain (Bouyssi-Kobar et al., 2019).

A recent international guideline recommended the combined use of structural MRI at term-

equivalent age and Prechtl’s General Movements Assessment (GMA) or the Hammersmith 

Infant Neurological Examination (HINE) at 3-4 months corrected age to facilitate early 

diagnosis or high-risk for CP label (Novak et al., 2017). In a large prospective cohort of VPT 

infants, we used this rubric to diagnose early CP and examined brain morphometry metrics 

from term structural MRI and graph theory metrics from term diffusion MRI as potential 

antecedents of abnormal motor development in a large prospective cohort of VPT infants. 
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Our aims were to shed light on the pathophysiology of early CP development, before the 

occurrence of early intervention therapies and other environmental confounders, and to help 

identify the best early biomarkers of CP risk in VPT infants.

2. Material and methods

2.1. Participants

We enrolled a multicenter, prospective cohort of 395 VPT infants born at or before 

32 weeks GA from five level-III Greater Cincinnati area neonatal intensive care units: 

(1) Cincinnati Children’s Hospital Medical Center, (2) University of Cincinnati Medical 

Center, (3) Good Samaritan Hospital, (4) Kettering Medical Center, and (5) St. Elizabeth 

Healthcare. Participants were recruited between September 2016 and November 2019 and 

were excluded if they had cyanotic heart disease or chromosomal or congenital anomalies 

of the central nervous system. For this study we also expected that infants with severe 

destructive brain injury would need to be excluded as these anatomic abnormalities do not 

permit accurate alignment of subject images to group atlases. The Cincinnati Children’s 

Hospital Institutional Review Board approved this study, resulting in approval at the other 

sites due to reciprocity agreements. A parent or guardian of each infant gave written 

informed consent.

2.2. MRI data acquisition

All study infants were imaged during natural sleep between 40- and 44-weeks postmenstrual 

age on the same 3T Philips Ingenia scanner (Best, Netherlands) with 32 channel phase array 

head coil, using identical imaging parameters. A neonatal nurse and a neonatologist were 

present for any scans requiring positive pressure airway support. Each infant was fed 30 min 

prior to MRI, fitted with silicone earplugs to block scanner noise, and swaddled in a blanket 

and a vacuum immobilization device to promote natural sleep. We acquired MRI data as 

follows: diffusion MRI: echo time 88 ms, repetition time 6972 ms, flip angle 90°, field of 

view 160 × 160 mm2, 80 × 79 matrix, 2 mm contiguous slices, and 5:58 min total scan time. 

34 directions of diffusion gradients were applied with a b-value of 800 s/mm2, and 4 b0 

images were acquired; axial T2-weighted image: echo time 166 ms, repetition time 18,567 

ms, flip angle 90°, voxel dimensions 1.0 × 1.0 × 1.0 mm3, and 3:43 min total scan time; 3D 

T1-w image (magnetization-prepared rapid gradient echo): echo time 3.4 ms, repetition time 

7.3 ms, flip angle 11°, voxel dimensions 1.0 × 1.0 × 1.0 mm3, and 2:47 min total scan time; 

sagittal SWI: echo time 7.2 ms, repetition time 29 ms, flip angle 17°, voxel dimensions 0.57 

× 0.57 × 1.0 mm3, and 3:27 min total scan time.

2.3. Early motor examinations

At 3 to 4 months corrected age, infants returned for motor testing using the GMA and the 

HINE. General movements were recorded for 5 min with the calm, undressed infant placed 

supine (Einspieler and Prechtl, 2005; Einspieler et al., 2004). The videos were scored within 

72 h by one certified examiner masked to MRI and clinical history. Any questionable videos 

were reviewed by a second rater from the General Movements Trust (Harpster et al., 2021). 

Normally developing infants should exhibit complex fidgety movements of the arms, legs, 

neck, and trunk. Infants with these movements received normal GMA scores and infants 
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lacking fidgety movements or with abnormal fidgety movements received abnormal scores. 

The HINE is a standard neurological examination indicated for infants between 2 and 24 

months of age and comprising 26 items over 5 domains: cranial nerve function (max score 

of 15), posture (max score of 18), movements (max score of 6), tone (max score of 24), and 

reflexes and reactions (max score of 15) (Romeo et al., 2013). Each item is scored between 0 

and 3, and these scores are summed to obtain an overall HINE score (range: 0–78). A HINE 

score below 57 is considered abnormal at this age (Romeo et al., 2013). A single trained 

examiner masked to clinical history and term MRI findings performed all HINE testing and 

GMA recording during the same visit.

2.4. Brain abnormality and CP risk scoring

A single pediatric neuroradiologist masked to clinical history assessed brain abnormality 

using Kidokoro’s standard rubric (Kidokoro et al., 2013), which generates abnormality 

scores for the gray matter, white matter, deep gray matter, and cerebellum, which are 

subsequently summed to obtain a global brain abnormality score. Total scores of 0–3 are 

normal, scores of 4–7 represent mild abnormality, scores of 8–11 are moderate, and scores 

of 12 and higher represent severe abnormality. Using the Novak et al. early CP diagnosis 

guidelines (Novak et al., 2017), we labeled infants as having early CP if they had both 

moderate to severe injury on structural MRI (score ≥8) plus an abnormal GMA and/or an 

abnormal HINE score.

2.5. Structural MRI processing

We used the developing human connectome project (dHCP) pipeline (Makropoulos et al., 

2018) to automatically segment the structural T2-weighted images. The dHCP performs 

tissue segmentation and volume estimation for each main tissue type and all cortical 

and subcortical structures. It also generates maturation metrics for each cortical region 

of the Gousias (Gousias et al., 2013; Gousias et al., 2012) neonatal atlas. As our initial 

structural MRI feature set, we chose four cortical maturational features that are altered 

by preterm birth (Kline et al., 2019): surface area, gyrification index, sulcal depth, and 

inner cortical curvature for the whole brain and bilaterally for all five lobes (frontal, 

parietal, occipital, temporal, and insular). We also examined volume of the white matter, 

deep gray matter, and ventricles; bilateral volume of all five lobes; bilateral volume of 

the main subcortical structures: the amygdala, hippocampus, caudate nucleus, lentiform 

nucleus, thalamus, subthalamic nucleus, and cerebellum; and unilateral volume of the corpus 

collosum and brainstem. To facilitate interpretability of the reported odds ratios, we divided 

brain volumes (originally in mm3) by 1000 to transform them to cm3 (mL). We also divided 

total and regional surface area measurements by 100 to transform them to cm2. As sulcal 

depth is a unitless measure reflecting mean convexity/concavity (Makropoulos et al., 2018), 

we converted to a z score before calculating the associated odds ratios.

2.6. Diffusion MRI processing

We processed the b800 data using a slightly modified version of the dHCP diffusion 

preprocessing pipeline (Bastiani et al., 2019), correcting for susceptibility-induced 

distortions, eddy current artifact, and movement artifact. With Diffusion Toolkit, we 

generated maps of FA and performed whole-brain, deterministic fiber tracking in diffusion 
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space. We aligned the 122-region John’s Hopkins University (JHU) (Oishi et al., 2011) 

neonatal brain template to create parcellated brain maps in diffusion space (Fig. 1) in a 

multi-step process. First, we aligned the JHU T2-weighted scan to the subject T2-weighted 

scan using FLIRT linear alignment in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, version 

5.0.11), and then we applied the resulting transform on the JHU parcellation file. To 

enhance the alignment of the fine anatomical structures, in ANTs (Avants et al., 2011), 

we used symmetric normalization, an elastic registration tool, to further conform the FLIRT-

aligned image to subject T2-weighted space. Then we applied this second transform to the 

parcellation file. With a second FLIRT alignment, we registered subject T2 space to b0 space 

and applied this third and final transformation to the parcellation file.

2.7. Brain structural connectome construction

In MRTRIX3 (http://www.mrtrix.org, version 0.3.0), we generated symmetrical, undirected 

connectivity matrices, with edge weights corresponding to the mean fractional anisotropy 

(FA) for all streamlines connecting each pair of regions. FA is influenced by axonal density, 

packing, orientation, and myelination and has often been used as a surrogate measure 

of white matter health or maturation. We first extracted FA values for each point along 

each white matter streamline and then stored the paired regional means as 122 × 122 

connectivity matrices. Because regional graph theory metrics are influenced by average 

network degree42, we normalized by retaining the 950 strongest links for each network (the 

minimum number of unique nonzero connections across all connectomes was 966). This 

approach results in an equal average degree distribution for all networks (van Wijk et al., 

2010). To ensure that our normalization was robust, we also repeated all analyses retaining 

the top 900 and 850 strongest links.

2.8. Graph theory metrics

We used the open-source MATLAB-compatible Brain Connectivity Toolbox (brain-

connectivity-toolbox.net) to calculate our graph theory metrics. For each subject, we 

computed Eglob for the whole connectome and Eloc, CC, and strength for each node (n 
= 122).

2.9. Statistical analysis

In Stata 16.0 (StataCorp, College Station, TX), we used logistic regression to examine the 

association of all MRI metrics of interest with early diagnosis of CP, coded as 0 (early 

CP) or 1 (no CP). We coded early CP diagnosis as 0 rather than 1 to facilitate clinical 

interpretation of our results, because we expected our advanced MRI biomarkers would 

exhibit a negative association with cerebral palsy (i.e., the higher the graph theory or 

morphometric measure, the lower the risk of CP). We corrected for (1) just postmenstrual 

age (PMA) at scan and (2) PMA at scan, gestational age (GA), sex, bronchopulmonary 

dysplasia (BPD), retinopathy of prematurity (ROP), and maternal magnesium therapy. We 

selected these variables because previous work associated them with motor outcome in 

VPT infants. BPD is a chronic lung disease affecting preterm infants who often require 

mechanical ventilation or continuous positive airway pressure and supplementary oxygen 

(Davidson and Berkelhamer, 2017). It is related to later neurodevelopmental deficits 

including cerebral palsy (Van Marter et al., 2011) and poorer cognitive (Singer et al., 

Kline et al. Page 6

Neuroimage. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.mrtrix.org
http://brain-connectivity-toolbox.net
http://brain-connectivity-toolbox.net


2001) and language outcomes (Short et al., 2003; Natarajan et al., 2012). ROP, a severe 

eye disease, is also linked to excessive use of oxygen in the neonatal period (Morken et al., 

2019). Severe ROP is associated with delayed white matter maturation, poorer cognitive and 

motor scores (Glass et al., 2017), and lower IQ in late childhood (Molloy et al., 2016). BPD 

and ROP tend to co-occur, but they are independently predictive of neurodevelopmental 

impairment (Schmidt et al., 2003). For all regional volume and surface area metrics, 

we also included either total tissue volume or total cortical surface area, respectively, as 

regression covariates to control for the effect of differing brain sizes. We applied Benjamini 

Hochberg false discovery rate (FDR) correction to account for all 367 graph theory metrics 

(1 global measure + 3 regional measures x 122 nodes) and all 72 structural MRI metrics 

tested. Because Eglob, Eloc, and CC, are small numbers theoretically ranging from 0 to 1, 

we transformed the values of all graph theory metrics to z scores before calculating the 

associated odds ratios.

To identify possible exclusion bias, we compared the baseline characteristics of the final 

cohort to those of the excluded infants. We used Fischer’s exact test for binary variables and 

either a Student’s t-test or a Mann-Whitney U test for continuous variables, after assessing 

normality with a Shapiro Wilks test. For this bias analysis, a p-value of <0.05 indicated 

significance.

2.10. Data and code availability statement

Code used in this analysis and derived data that support the conclusions of this study are 

available upon direct request to the corresponding author.

3. Results

Of our initial 395 participants, 364 had either structural or diffusion data at term and 

early CP outcome. A statistical comparison of the baseline variables for these 364 infants 

versus the 31 excluded infants can be found in Table 1. Excluded infants were statistically 

more likely to have BPD and, as expected, severe brain injury than included infants. 

Subdividing by MRI modality, 326 infants had high-quality artifact-free T2-w images 

that were successfully processed by the dHCP pipeline. 312 returned for follow-up motor 

assessments, and 32 (10.3%) of these infants were diagnosed with early CP. 327 infants had 

high-quality diffusion MRI with optimal template alignment, 313 returned, and of these 34 

(10.9%) were diagnosed with early CP. All analyses were carried out on final cohorts of 312 

and 313 for structural and diffusion MRI, respectively.

When correcting for PMA only, total tissue volume (OR [95% CI]: 1.03 [1.02, 1.04], p = 

6.11 × 10−8), total surface area (1.01 [1.01, 1.02], p = 1.74 × 10−6), and total sulcal depth 

(2.32 [1.43, 3.70], p = 6.96 × 10−4) of the very preterm brain were all negatively correlated 

with early CP diagnosis. Regionally, bilateral volume of the thalamus (right: 16.67 [3.7, 

100.00], p = 2.53 × 10 −4; left: 11.11 [2.70, 50.00], p = 9.52 × 10−4), total volume of the 

deep gray matter (including the thalamus and also the caudate, lentiform, and subthalamic 

nuclei: 1.85 [1.32, 2.56], p = 3.90 × 10−4), and volume of the brainstem (6.67 [0.05, 

0.47], p = 1.10 × 10−3) were all negatively associated with CP, whereas ventricular volume 

(0.83 [0.76, 0.92], p = 1.43 × 10−4) was positively associated. There were no significant 
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associations with any curvature or gyrification metrics. When correcting for all covariates 

of interest, total tissue volume (1.02 [1.01,1.03], p = 1.42 × 10−4), total surface area (1.01 

[1.003, 1.01], p = 8.11 × 10−4), bilateral thalamic volume (right: 12.5 [2.70, 50.00], p = 

1.26 × 10−3; left: 9.09 [2.13, 50.00], p = 3.11 × 10−3), and volume of the deep gray matter 

(1.72 [1.22, 2.50], p = 2.34 × 10−3) remained negatively associated with CP, and ventricular 

volume (0.85 [0.76, 0.94], p = 2.03 × 10−3) remained positively associated (Fig. 2).

Graph theory metrics of network efficiency were associated with early CP in numerous 

brain regions. Correcting for PMA only, global efficiency of the entire brain network 

was negatively associated with early CP diagnosis (OR [95% CI]: 3.70 [2.27, 5.88], p = 

6.39 × 10−8). The same was true for local efficiency in 72 regions, clustering coefficient 

in 28 regions, and strength in 24 regions (See Supplementary Table 1 for all significant 

regions and their p-values when correcting for PMA only). When correcting for all 

covariates of interest, global efficiency remained negatively associated with early CP (3.13 

[1.85, 5.26], 1.76 × 10−5). Local efficiency, clustering coefficient, and strength remained 

negatively associated with early CP in 41, 9, and 10 nodes, respectively (Table 2; Figs. 

3–5). Segregation metrics (Eloc and CC) were decreased with CP diagnosis in multiple 

sensorimotor regions previously reported in diffusion MRI studies to be associated with 

established CP (e.g., the subcortical nuclei, the precentral and postcentral gyrus, and the 

cerebellum) and in a few novel ROIs in the frontal, parietal, and occipital lobes. Strength 

values that were significantly related to early CP diagnosis occurred primarily in major 

white matter tracts including the stria terminalis, the left corpus callosum, left posterior 

corona radiata, left pontine crossing tract, right tapetum, right corticospinal tract, left 

posterior thalamic radiations, and right fornix. When testing the same networks with the 

top 900 and 850 strongest connections retained, Eglob remained highly significant (p = 2.31 

× 10−5 for 900 and p = 3.07 × 10−5 for 850 links). See Supplementary Table 1 for all 

significant regional metrics at different network density levels.

4. Discussion

In our cohort of VPT infants, early development of CP was anteceded by decreased global 

brain efficiency by term-equivalent age and decreased graph theory measures of functional 

segregation in sensorimotor regions known to be impacted in CP and also in novel regions. 

A decrease in regional GT metrics in multiple nodes or a decrease in whole brain global 

efficiency were associated with significantly elevated odds of early CP diagnosis. For the 

morphometry measures, a decrease in total surface area, whole-brain sulcal depth, total 

volume, or multiple regional brain volumes was associated with significantly elevated odds 

of early CP diagnosis. These findings, and the more widespread regional significance of the 

graph metrics, suggests that altered brain network efficiency may be more sensitive to the 

early brain changes associated with CP than morphometric abnormalities. Our analysis also 

suggests that the early development of CP is characterized by widespread brain network 

alteration rather than damage to isolated regions or tracts, for instance to the motor nuclei 

and motor cortex alone. Using a data-driven approach, our study is also the first to identify 

numerous nodes and pathways that are involved in the etiology of CP after preterm birth.
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After correcting for known risk factors of CP, decreased global efficiency of the preterm 

structural connectome was associated with early CP diagnosis, independent of potential 

confounders. Local efficiency of the preterm brain was inversely associated with CP in the 

highest number of nodes of any metric tested (n = 41), most strongly in the left and right 

thalamus, right corpus callosum, right fornix, and right cingulate gyrus. Strength values tied 

to early CP risk mainly occurred in the major motor tracts including the left posterior corona 

radiata (carrying information from the precentral gyrus of the motor cortex Song, 2007), left 

pontine crossing tract (a pathway involved in the planning and control of precise dexterous 

movements Haines and Mihailoff, 2017), right corticospinal tract (relaying information from 

the sensory cortex and the major spinal pathways that control voluntary movements Van 

Wittenberghe and Peterson, 2020), and the left posterior thalamic radiations (connecting 

the thalamus to the occipital cortex). The overall picture emergent from graph theory 

suggests that CP is associated with decreased integrity of the major motor tracts, as indexed 

by strength. Compromised integrity of these pathways would reduce overall information 

processing capability (as indexed by Eglob) and local modular processing (as indexed by 

Eloc and CC), and we indeed see a concurrent downregulation in these metrics with early 

CP, especially in the precentral and postcentral gyrus, subcortical nuclei, cerebellum, and 

accessory regions in the parietal and occipital cortex that facilitate higher-order spatial 

processing. Both segregation metrics were significantly decreased with early CP in the 

right corpus callosum, right cingulate gyrus, left and right thalamus, right inferior cerebral 

peduncle, left and right cerebellar hemisphere, and right middle occipital gyrus, which 

suggests that these areas may be the main loci of compromised local information processing.

Our study corroborates other literature regarding which brain regions are most impacted 

by CP. In a systematic review of diffusion MRI studies of older children with established 

CP, the most common finding across 22 studies was reduced FA of the CST, indicating 

compromised integrity of this tract (reported by 17 studies) (Scheck et al., 2012). 

The posterior thalamic radiations, corticobulbar tract, corpus callosum, posterior limb 

of the internal capsule, and superior thalamic radiations were also implicated in the 

pathophysiology of CP by at least 3 papers each (Scheck et al., 2012), with reduced 

FA of these tracts in CP populations being the predominant findings. These findings 

highlight the importance of sensory as well as motor white matter tracts in the development 

of CP, with a handful of outcome studies reporting that integrity of the sensorimotor 

thalamic pathways exert more influence on sensory and motor function than the descending 

corticomotor pathways. For instance, Rose et al. illustrated that streamline count for the 

sensorimotor thalamic projections was more highly correlated with paretic hand function 

in CP than the same metric from the corticospinal tracts (Rose et al., 2011). Hoon and 

colleagues likewise demonstrated that PTR injury was correlated with impaired contralateral 

touch threshold, proprioception, and with motor impairment severity (Hoon et al., 2009). 

Pannek et al. (2014) performed a diffusion MRI-based structural connectivity analysis 

and probabilistic tractography in 50 children with unilateral CP. They identified reduced 

integrity in motor pathways such as the CST and the thalamocortical projections and in 

novel association pathways, including between the postcentral gyrus and superior frontal 

lobe, precentral gyrus and insular cortex, and superior frontal lobe and superior parietal 

lobe. In children with bilateral CP and periventricular leukomalacia, voxel-based analysis 
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demonstrated reduced FA in commonly-reported motor tracts and also in optic tracts, 

including the posterior thalamic radiations, and in the fornix and cingulum (Arrigoni et 

al., 2016). These combined results triangulate that white matter damage in CP is widespread 

across the whole brain and not restricted to sensorimotor connections. Our study suggests 

that such widespread changes can be observed at an early age before confounding by early 

intervention therapies and developmental neuroplasticity.

Our study also suggests unique regional vulnerabilities anteceding CP development in the 

VPT brain, especially those related to visuospatial processing and higher-order cognitive 

functions. We identified decreased segregation measures in a number of novel regions 

including the left angular gyrus, which is involved in memory, attention, and spatial 

cognition (Seghier, 2013), and the left and right lateral fronto-orbital gyri, which contain the 

inferior frontal gyrus, a major hub of language comprehension and production (Ishkhanyan 

et al., 2020). Associations were also seen in the right fusiform gyrus, which is involved 

with higher-order visual processing and is implicated in childhood visual-motor deficits 

(Sripada et al., 2015), and the right middle occipital gyrus, which engages in spatial 

processing of auditory and tactile stimuli (Renier et al., 2010). Segregation metrics in the 

high risk group were also diminished in brain regions commonly associated with memory 

and cognition, such as the left superior frontal gyrus, which contributes to working memory 

(du Boisgueheneuc et al., 2006), the cingulate gyrus, which plays a role in learning, 

memory, and emotion, the middle occipital gyrus, which is involved in object recognition 

(Pennick and Kana, 2012), and also in the amygdala and hippocampus and their major 

output pathways, i.e. the stria terminalis and the fornix. These findings are novel but 

unsurprising, given that CP is frequently associated with non-motor symptoms such as 

disrupted sensation, perception, behavior, learning, and communication. As higher cognitive 

functions are affected in up to 50% of children with CP, the novel associations with graph 

theory segregation metrics in these regions suggest that they are early antecedents of these 

abnormalities.

Several studies utilizing different diffusion MRI modeling techniques have identified 

varying degrees of white matter/brain network involvement with later motor outcomes. In 

a small tract-based spatial statistics study of 12 infants with perinatal brain injury, reduced 

FA was seen in nearly all white matter tracts in the CP group (Merhar et al., 2020). In 

contrast, in a cohort of VPT infants, fixel-based metrics from the Constrained Spherical 

Deconvolution model were only associated with two-year Bayley-III motor scores in the 

splenium of the corpus callosum, right corticospinal tracts, and midbrain (all motor areas). 

When gestational age was added as a covariate, only an association in the right CST 

remained. Yang et al. reported reduced strength, clustering coefficient, and local efficiency 

in VPT children at four years of age, notably in the lateral frontal regions, middle and 

superior temporal regions, cingulate, precuneus, and lateral occipital regions (Young et al., 

2018). However, they did not identify an association with visuomotor ability, possibly due 

to their small sample size. We believe that our large sample size and meticulous template 

alignment, i.e., multi-step linear and non-linear alignment with visual inspection of the deep 

structures, allowed us to identify robust associations between early CP and graph theory 

metrics in multiple brain regions.
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In our study, a few morphometric antecedents were significantly associated with early CP 

risk after full covariate correction, including bilateral thalamic volume, volume of the deep 

gray matter, volume of the brainstem, volume of the ventricles, total tissue volume, and 

total surface area. Several previous studies have reported correlations between brain tissue 

volumes at term-equivalent age and later motor ability/impairment (Setänen et al., 2016; 

Bolk et al., 2018; Gui et al., 2019; Keunen et al., 2016; Spittle et al., 2010; Limperopoulos 

et al., 2014) (see Keunen et al., 2012 for a systematic review). We previously identified 

a strong association of thalamic volume and cortical surface area with two year motor 

ability in a smaller VPT cohort (Kline et al., 2020). However, the associations we identified 

between early CP and graph theory metrics involved many more regions than those showing 

overt morphometric alterations. Past studies that tested diffusion MRI metrics were more 

likely to report identification of one or more significant prognostic biomarkers compared to 

volumetric MRI studies (Parikh, 2016), which agrees with our current analysis. Our study 

suggests that a more complete picture of the vulnerabilities present in early CP can be 

gleaned by analyzing the higher-order network properties of the brain, rather than focusing 

on the morphology of any specific region. These findings are also consistent with the fact 

that destructive macroscopic brain injuries such as cystic periventricular leukomalacia are far 

less prevalent now compared to 20 years ago (Hamrick et al., 2004).

Our large sample size was a major strength of the study. Additionally, we corrected for 

covariates that are pertinent to motor development to identify independent early antecedents 

of CP. We were limited by the lack of a clinical CP diagnosis at two years of age in this 

population. However, we used the most predictive set of early diagnostic tools currently 

available for CP detection before five months of age. Our study also had a selection bias 

in that the excluded participants (those for whom the data processing pipelines or template 

alignment failed) were more likely to have BPD and severe brain injury than the included 

participants. However, the fact that we identified such a strong association of graph theory 

metrics with early CP risk while correcting for multiple confounders is promising, as better 

early developmental biomarkers are specifically needed in infants who lack structural brain 

abnormalities on term MRI. Using these graph biomarkers in combination with other novel 

biomarkers to predict early CP remains an end goal of our work.

5. Conclusion

We demonstrate for the first time that in VPT infants, early CP diagnosis is anteceded 

by decreased brain network segregation in numerous nodes, including motor regions 

commonly-associated with CP (the thalamus, cerebellum, and the major sensorimotor 

white matter tracts) and also in novel regions such as the middle occipital gyrus and the 

superior frontal gyrus, which may partially explain the high rate of cognitive impairments 

concomitant with CP diagnosis. These advanced MRI biomarkers may detect more of the 

brain alterations accompanying early CP than overt brain abnormalities. These findings 

cannot as of yet be applied to patient care. More research would be needed to define 

population metric norms, and novel, efficient software would be required for brain network 

analysis in a clinical setting. Follow up studies are needed to verify that graph metrics 

correlate with CP diagnosis at age two and with cognitive impairments in this vulnerable 

population. We are currently conducting these additional analyses in our longitudinal cohort.
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Fig. 1. 
Alignment (3rd column) of the 122-region JHU atlas (2nd column) with diffusion space 

tractography (1st column) for a female very preterm infant, born at a gestational age of 

31.86 weeks. From here, we calculated the mean fractional anisotropy for all streamlines 

connecting each regional pair as a 122 × 122 symmetrical matrix.
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Fig. 2. 
Brain templates in sagittal, coronal, and axial orientations (left to right) demonstrating 

regional brain volumes significantly associated with the early diagnosis of cerebral palsy 

(CP) when correcting for postmenstrual age only (top row) and all covariates of interest 

(bottom row). Red volumes are positively associated with early CP (ventricles); blue 

volumes are negatively associated with early CP; light blue = thalamus (top and bottom); 

dark blue = deep nuclear gray matter (top and bottom) and brainstem (top); gray/white 

volumes are not significant.
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Fig. 3. 
Nodes in which local efficiency was negatively associated with early CP diagnosis 

correcting for PMA, GA, sex, BPD, ROP, and maternal magnesium therapy and adjusting 

for FDR.
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Fig. 4. 
Nodes in which clustering coefficient was negatively associated with early CP diagnosis 

correcting for PMA, GA, sex, BPD, ROP, and maternal magnesium therapy and adjusting 

for FDR.
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Fig. 5. 
Nodes in which strength was negatively associated with early CP diagnosis, correcting for 

PMA, GA, sex, BPD, ROP, and maternal magnesium therapy and adjusting for FDR.
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