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INTRODUCTION 
 
Osteoarthritis (OA) is a disease with high morbidity, 
which impairs human health and social economy [1, 2]. 
It mainly afflicts the weight-bearing joints, such as the 
hips and knees, and causes physical disability. 
However, the precise pathogenesis of OA has not been 
detailed completely. According to the literature, there is 
few efficient treatments for OA except total joint 
arthroplasty for end-stage OA [3]. Therefore, it is 
crucial for prevention and treatment to systematically 
understand the mechanism underlying OA and find out 
a new approach to treat it effectively. Research showed  

 

that chondrocyte autophagy, as a self-protective 
mechanism, has been considered as a potential target for 
recuperating chondrocytes viability and then sup-
pressing the progression of OA [4–6]. Cellular 
dysfunction and death often occur when the capacity of 
endoplasmic reticulum could not bear the protein 
folding under prolonged endoplasmic reticulum stress 
(ERs) [7, 8]. Hence, the occurrence of ERs would 
aggravate OA severity. The effects of autophagy and 
ERs on osteoarthritis remain to be further explored. 
 
MicroRNAs (miRNAs) have been suggested to participate 
in regulating gene expression after transcription in OA  
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ABSTRACT 
 
Objective: This study aimed to explore the underlying mechanism of miR-375 in exacerbating osteoarthritis (OA). 
Results: MiR-375 expression were upregulated in OA cartilage tissues, whereas ATG2B expression was 
decreased. MiR-375 targeted ATG2B 3’ UTR and inhibited its expression in the chondrocytes, and then 
suppressed autophagy and promoted endoplasmic reticulum stress (ERs). The apoptosis rate of chondrocytes 
was increased after being transfected with miR-375 mimics. In vivo results further verified that inhibition of 
miR-375 could relieve OA-related symptoms. 
Conclusion: miR-375 can inhibit the expression of ATG2B in chondrocytes, suppress autophagy and promote the 
ERs. It suggests that miR-375 could be considered to be a key therapy target for OA. 
Methods: Differential expression analyses for mRNA and miRNA microarray datasets from ArrayExpress were 
performed. MiR-375 and ATG2B expressions in cartilage tissues were detected by qRT-PCR. Dual luciferase 
assay was applied to verify the targeting relationship between ATG2B and miR-375. In vitro, the role of miR-
375 on chondrocyte autophagy and ERs was investigated by western blot and immunofluorescence. The 
apoptotic rate was quantified by flow cytometry. In vivo, OA mice model was established, HE and Safranin O 
and Fast Green staining, as well as the OARSI and modified Mankin scores, were applied to measure the OA 
cartilage damage severity. 
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[9, 10]. MiRNAs could suppress gene expression via 
targeting its 3’UTR region, which either blocks the 
translation process or induces cleavage [11]. These small 
regulators serve vital function in various biological 
processes [12]. Accumulating research has suggested  
that some miRNAs had regulatory effect in the formation 
and process of OA. For instance, D’Adamo et al.  
have unclosed that miR-155 inhibits autophagy in 
chondrocytes by regulating autophagy proteins 
expression [13]. MiR-375 was also found to be connected 
with cell autophagy, which could inhibit the autophagy 
activity of hepatocellular carcinoma under hypoxic 
conditions [14]. However, few researches have explored 
the role of miR-375 in OA. 
 
As the main regulators in autophagy process, the 
expressions of the autophagy-related genes (ATGs) are 
usually up-regulated with a magnified autophagy 
activity [15]. Jin et al. revealed that Gcn4, Gat1, Gln3 
and Sfl1 act on ATGs in autophagy process as 
transcriptional activators [16]. Besides, ERs were 
involved in autophagy. Tan et al. discovered that ERs 
induced apoptosis and autophagy while ATGs 
contributed to the regulation of autophagy [17]. As a 
member of the ATG family, ATG2B has the familiar 
function with ATG family. Previous studies have 
demonstrated the role of ATG2B in other diseases  
[15, 18, 19]. Nonetheless, the mechanism of ATG2B 
affected cell autophagy and apoptosis remains to be 
further studied, and its role in OA remains to be 
explored. 
 
Animal models are of great importance in presenting 
underlying mechanisms of joint damage caused by OA. 
In addition, they also provide evidence for conceptive 
design in the progress of pharmacological and 
biological therapeutic [20]. These animal models were 
designed to reveal the different mechanisms through 
which stress results in OA progression as follow: the 
transection of the meniscus and/or ligaments [21, 22], 
the intra-articular administration of a chemical 
substance like papain, collagenase [23, 24]. In this 
study, destabilization of the medial meniscus (DMM) 
surgery induced OA model was established to analyze 
the role of miR-375 in vivo. We aimed to illuminate the 
potential role of miR-375 and ATG2B in OA.  
 
RESULTS 
 
Bioinformatic analysis 
 
DESeq2 analysis between OA and normal donors (ND) 
samples from ArrayExpress database identified mRNAs 
as differentially expressed with fold change (FD) >2 
(log2fold>1) (Figure 1A). KEGG pathway analysis 
indicated that differentially expressed mRNAs were 

enriched in 12 biological pathways, including 
autophagy (Figure 1B). To categorize the altered 
autophagy-associated proteins in OA, we performed a 
similar differential analysis. As expected, autophagy-
associated proteins were predominantly suppressed in 
OA, especially ATG2B (Figure 1C). By qRT-PCR, 
ATG2B was further confirmed to be downregulated in 
OA samples (Figure 1D). We applied the prediction 
algorithm of DIANA-mirPath (v3.0) to investigate the 
potential miRNAs targeting autophagy-related genes. 
The analyses found the increase of hsa-miR-375 and 
hsa-miR-4284 in OA (Figure 1E). MiR-375 was highly 
expressed in OA samples (Figure 1F), which was 
predicted to target ATG2B.  
 
MiR-375 targeting the 3’-UTR of ATG2B 
 
Based on the TargetScan database, we predicted that miR-
375 could target ATG2B 3’-UTR region (Figure 2A). 
MiR-375 mimics could significantly reduce the activity  
of wild 3’-UTR, without affecting the luciferase 
activities of the mutated 3’-UTR, indicating that miR-
375 could directly bind to ATG2B 3’-UTR (Figure 2B). 
The transfection efficiency of miRNA-375 mimics and 
inhibitor in chondrocytes was tested by qRT-PCR 24h 
after transfection, as well as pcDNA3.1-ATG2B. In 
Figure 2C, miRNA-375 expression in transfected 
chondrocytes was significantly elevated by miRNA-375 
mimics compared to NC (P<0.01). Meanwhile, 
pcDNA3.1-ATG2B could significantly increase the 
expression of ATG2B (Figure 2D, 2E). In addition, due 
to the relationship with anabolism and catabolism in OA 
pathological processes, the expressions of Collagen II 
and MMP13 were detected [25]. Collagen II expression 
was significantly decreased after MiR-375 mimics 
transfection, while MMP13 expression was remarkably 
up-regulated (Figure 2F, 2G). The influence of miR-375 
mimics on Collagen II and MMP13 was partially 
reversed by pcDNA3.1-ATG2B. 
 
Effect of miR-375 and ATG2B on ERs and 
autophagy in chondrocytes 
 
CHOP and p-eIF2a proteins, as ERs markers, were 
detected by western blot. Significant increases of  
p-eIF2a and CHOP expression were revealed after  
miR-375 mimics transfection, with the effects being 
reversed by pcDNA3.1-ATG2B (Figure 3A and 3B). 
Immunocytochemical analysis presented similar trends in 
CHOP expression in the OA chondrocytes (Figures 3C, 
3D). Then, the influence of miR-375 and ATG2B on 
autophagy was explored. As indicated in Figure 4A, 4B, 
Beclin 1 and LC3 II expressions were significantly 
decreased, while P62 was increased by miR-375 mimics. 
Again, pcDNA3.1-ATG2B could reverse these effects. 
The immunofluorescence staining also showed that 
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Figure 1. Differential expressed mRNAs and miRNAs related to autophagy in OA. (A) Heatmap of top differentially expressed 
mRNAs from 8 matched osteoarthritic and normal samples in osteoarthritis (OA) patients. (B) Significant function and pathways (P<0.05) 
based on KEGG database were analyzed using GSEA tool from upregulated and downregulated genes. Activated pathways were indicated in 
the left box, with suppressed pathways showing in the right box. (C) Heatmap depicting statistically significant (P<0.05) differentially 
expressed mRNAs related to autophagy. (D) Relative expression of ATG2B in osteoarthritic and normal samples was analyzed by qRT-PCR. (E) 
Heatmap depicting differentially expressed miRNAs related to autophagy from 6 matched osteoarthritic and normal samples. (F) Relative 
expression of miR-375 was analyzed by qRT-PCR. 
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miR-375 mimics inhibited the LC3 II expression, but 
pcDNA3.1-ATG2B significantly increased the LC3 II 
expression (Figure 4C, 4D). Taken together, miR-375 
overexpression inhibited autophagy and promoted ERs in 
chondrocytes. 
 
Effects of miR-375 and ATG2B on apoptosis of 
chondrocytes 
 
As shown in Figure 5A, apoptotic chondrocytes were 
remarkably increased after miR-375 mimics transfection, 
which could be partially reversed by pcDNA3.1-ATG2B.  

The statistical results also confirmed that miR-375 mimics 
could induce chondrocytes apoptosis, while pcDNA3.1-
ATG2B could protect chondrocytes from apoptosis 
(Figure 5B). In addition, miR-375 mimics significantly 
upregulated the expression of Bax, and cleaved Caspase-
3, while repressed the expression of Bcl2, respectively 
(Figure 5C, 5D). 
 
MiR-375 antagomir alleviated DMM-induced OA 
 
Specimens harvested from OA mice exhibited miR-375 
over-expression, compared to the decline of ATG2B 

 

 
 

Figure 2. MiR-375 targeting ATG2B.3’-UTR. (A) miR-375 targeting the 3’-UTR of ATG2B predicted by TargetScan; (B) miR-375 mimics 
significantly reduced the wild 3’-UTR luciferase reporter activity of ATG2B; (C) OA chondrocytes were transfected with miRNA-375 mimics or 
inhibitor, and miRNA-375 expression was detected by qRT-PCR; (D, E) OA chondrocytes were transfected with pcDNA3.1-ATG2B, and ATG2B 
protein was detected by western blot, and the statistical results were presented; (F, G) protein expression of ATG2B, Collagen II and MMP13 
were measured by western blot, and the statistical results were presented. * P<0.05, ** P<0.01, compared with NC group; #, P<0.05, 
compared with pcDNA3.1-ATG2B group. 
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expression (Figure 6A). To evaluate the role of miR-375 
on ATG2B and cartilage destruction, as well as 
autophagy and ERs of chondrocytes, injection of miR-
375 antagomir was conducted at the knee joint cavity of 
the OA mice. The antagomir treatment significantly 
reduced the DMM-induced miR-375 expression in 
articular cartilage. As indicated in Figure 6B and 6C, the 
treatment of miR-375 antagomir dramatically up-
regulated the expression of LC3 II in DMM-induced OA 
model, while the CHOP expression was suppressed by 
miR-375 antagomir. As the images shown in Figure 6D, 
articular cartilage damage was obviously observed in OA 
mice. By contrast, the miR-375 antagomir revealed to be 
beneficial for articular cartilage repairment. The OARSI 
and modified Mankin scores were applied to measure the 
OA cartilage damage severity (Figure 6E, 6F), and the 

results indicated that miR-375 antagomir remarkably 
alleviated cartilage damage of OA mice. 
 
DISCUSSION 
 
In the current research, we analyzed the differentially 
expressed mRNAs and miRNAs between OA and 
normal cartilage tissues by analyzing microarray 
datasets of mRNAs and miRNAs in OA from 
ArrayExpress. In human samples, we discovered that 
miR-375 was over-expressed in OA, while ATG2B was 
conspicuously down-regulated in pathological OA 
articular cartilage tissues. In vitro, miR-375 inhibited 
autophagy and enhanced ERs of chondrocytes by 
suppressing the expression of ATG2B. Simultaneously, 
apoptosis of chondrocytes was promoted by miR-375 

 

 
 

Figure 3. The effects of miR-375 and ATG2B on ERs. (A) Western blot of p-eIF2a and CHOP after infected with miR-375 mimics, 
miR-375 inhibitor, pcDNA3.1-ATG2B and pcDNA3.1-ATG2B plus miR-375 mimics in OA chondrocytes; (B) Qualitative analysis of p-eIF2a 
and CHOP, and the values were normalized to β-actin; (C, D) OA chondrocytes were double stained with CHOP (red) and DAPI (blue) and 
visualized by confocal microscopy after different treatment. ** P<0.01, compared with NC group; #, P<0.05, compared with pcDNA3.1-
ATG2B group. 
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mimics. Furthermore, OA mice model induced by 
DMM surgery in the right knee was established and 
verified the function of miR-375 on exacerbating OA. 
 
MiR-375 was first transcribed in Min6 cell, and it 
maintained a high degree of conservatism in species 
evolution [26]. Researchers have found that miR-375 
took part in the regulation of biological and pathologic 
activities through multiple molecular mechanisms, 
especially in cancer [27]. In this study, miR-375 
expression in OA articular cartilage tissues was measured 
by qRT-PCR. In OA cartilage tissues, miR-375 
expression was highly expressed. The result indicated 
that dysregulated miR-375 could affect OA progression. 
 
At present, many studied had revealed kinds of miRNAs 
were associated with autophagy process [28]. Korkmaz et 
al. determined that miR-376b could inhibit ATG4C and 
BECN1, as well as mTOR signaling pathway, then 
controlled starvation [29]. In addition, Song et al. found 
miR-21 acted as a regulatory factor of GAS5 in the 

pathogenesis of OA, and it also stimulated chondrocytes 
apoptosis and cut down the expression level of 
autophagic complex. The interaction between miR-21and 
GAS5 was suspected to be responsible for inhibiting the 
autophagy reaction [30]. With the discovery of high 
expression of miR-375 in OA, a new possibility has been 
found. For the clinical treatment of OA, miR-375 might 
be treated as a new therapeutic target. Inhibition of miR-
375 was demonstrated to reduce apoptosis and promote 
autophagy of chondrocytes, which might attenuate the 
progression of OA. 
 
MiRNAs is considered as a key factor in determining 
the role of gene silencing after transcription. Hence, 
their function and regulating mechanism are vital for 
understanding the biology of OA process, and may 
clarify their role in OA pathophysiology [31]. MiRNAs 
could suppress gene expression by binding 3’-UTR of 
targeted genes. The roles of miRNAs could be 
contributed to the synergetic interaction with its targets 
since a miRNA could bind to hundreds of genes, hence

 

 
 

Figure 4. The effects of miR-375 and ATG2B on autophagy. (A) Western blot of Beclin 1, LC3 I/II and p62 after infected with miR-375 
mimics, miR-375 inhibitor, pcDNA3.1-ATG2B and pcDNA3.1-ATG2B plus miR-375 mimics in OA chondrocytes; (B) Qualitative analysis of Beclin 
1, LC3 I/II and p62, and the values were normalized to β-actin; (C, D) OA chondrocytes were double stained with LC3 (green) and DAPI (blue) 
and visualized by confocal microscopy after different treatment. * P<0.05, ** P<0.01, compared with NC group; # P<0.05, compared with 
pcDNA3.1-ATG2B group. 
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involving in various biological processes [14, 32, 33]. 
In the current study, the results demonstrated that miR-
375 could inhibit autophagy through ATG2B. MiR-375 
remarkably inhibited ATG2B expression, and the 
luciferase reporter assay demonstrated that miR-375 
could directly bind to ATG2B 3’-UTR. These results 
illuminated that ATG2B is a key autophagy-related 
gene inhibited by miR-375. We suspect that ATG2B 
overexpression could promote chondrocytes to undergo 
autophagy, and protect chondrocytes from over-reaction 
to metabolic stresses, like ERs. The inhibitory role of 
miR-375 on ATG2B could be a potential biologic 
suppressor for autophagy. However, the collaborative 
effects of miR-375 by targeting other genes might lead 
to the inhibition of autophagy and apoptosis related 
signals, suggesting a synergic involvement of miR-375 
in autophagy and ERs. 
 
Autophagy and apoptosis exerted vital impacts on 
chondrocytes apoptosis in OA pathogenesis. As we all 
known, autophagy was an intrinsic and protective role in 
chondrocytes, which was correlated to OA and age-
related loss in cartilage tissues [34]. ERs and autophagy 
are correlated in maintaining cellular homeostasis 
through a well-orchestrated mechanism [35, 36]. All is 

known that autophagy regulates cellular stress responses, 
ERs mediated by autophagy ensures ER protein 
homeostasis [37, 38]. The interaction between autophagy 
and ERs activation could influence the equilibrium 
among autophagy, apoptosis and ERs signals. Hence, we 
suspected that ATG2B overexpression could block ERs 
as soon as autophagy activation, which plays a protective 
role in inhibiting ERs. 
 
Our study demonstrated miR-375 accelerated the 
progression of OA. Besides, by detecting autophagy 
monitoring proteins Beclin 1 and LC3 II, and p62, we 
found that miR-375 would inhibit autophagy process. 
Increasing studied indicated that ERs, a rising degree or 
duration of stress could contribute to apoptosis 
mechanism and pro-survival functions of autophagy 
process [39]. Recent studies showed that ERs was 
capable to promote or suppress autophagy [37, 38]. 
However, the stress-related mechanisms that regulate 
the transition switch between autophagy induction and 
inhibition are still fuzzy [40]. Previous research 
suggested that the ERs conditions were led by an 
accumulation of misfolded or unfolded proteins. 
Specific roles of miR-375/ATG2B in ERs process were 
still unclear and need further exploration. Therefore,

 

 
 

Figure 5. Effects of miR-375 and ATG2B on apoptosis of chondrocytes. (A, B) Effects of miR-375 and ATG2B on apoptosis of 
chondrocytes was detected by flow cytometry, and the statistical analysis were presented; (C, D) Protein expressions of Bax, Bcl2, cleaved 
caspase-3 in chondrocytes were measured by western blotting. * P<0.05, ** P<0.01, compared with NC group; # P<0.05, compared with 
pcDNA3.1-ATG2B group. 
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further exploration of the complexity of the ERs 
response is worthy for development in novel therapeutic 
methods. In the current study, we discovered that ERs 
monitoring proteins, especially CHOP, were up-
regulated in miR-375 mimics groups and the effect was 
offset by the treatment of pcDNA3.1-ATG2B. Besides, 

we tested the expression levels of apoptosis monitoring 
proteins, including Bax, Bcl2, and cleaved Caspase-3, 
which demonstrated that miR-375 mimics would 
promote apoptosis process. According to the research 
conclusion of targeting ERs induced apoptosis [41], our 
results have been validated. Hence, we concluded that 

 

 
 

Figure 6. MiR-375 antagomir alleviated DMM-induced OA. (A) Down-regulated expression of miR-375 in chondrocytes after 
antagomir treatment and increased levels of ATG2B in DMM-injured OA knees. (B, C) Expression of ATG2B, LC3I/II, CHOP was detected by 
western blot. (D) Safranin O and Fast Green and HE stained sections of knee joints. (E, F) Cartilage destruction evaluated with the OARSI and 
Mankin scores. Scale bar: 50 μm. Data per group are expressed as mean ± SEM calculated from six mice. ** P<0.01, compared with sham 
group; # P<0.05, ## P<0.01, compared with OA group. 
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ERs induced apoptosis might be related to miR-
375/ATG2B regulatory network.  
 
However, the effect of miR-375 on autophagy and ERs 
is still not clear, and it needs to be fully explained 
through reasonable experiments. In addition, this study 
doesn’t thoroughly explore the biological mechanism of 
ATG2B and miR-375 in OA chondrocytes ERs and 
autophagy. Further studies are needed in the future to 
illuminate the detailed mechanism. Furthermore, a more 
comprehensive regulatory network needs to be built to 
explore the OA pathological mechanism. 
 
CONCLUSIONS 
 
In summary, we had provided an evidence of miR-375 
deteriorating OA progression by suppressing autophagy 
and accelerating ERs process through regulating 
ATG2B. Furthermore, we set up an OA model to 
explore the effect of miR-375 in vivo. Therefore, miR-
375 could be a potential target for OA treatment. 
 
MATERIALS AND METHODS 
 
Clinical samples 
 
Articular cartilage tissues were isolated from eight knee 
OA patients at end-stage receiving total knee 
arthroplasties, and their clinical characteristics were 
listed in Supplementary Table 1. Cartilage from paired 
osteochondral samples were isolated from the intact 
PLC (posterior lateral condyle) and the damaged DMC 
(distal medial condyle). Ethical approval (2019141) was 
obtained from the Institutional Review Board of the 
Second Xiangya Hospital of Central South University. 
Written informed consent was obtained. 
 
Bioinformatic analysis 
 
RNA-seq data for mRNA (E-MTAB-4304) and miRNA 
(E-MTAB-5715) are obtained in the ArrayExpress 
database (https://www.ebi.ac.uk/arrayexpress/) [42, 43]. 
Cartilage from 8 paired osteochondral samples were 
available for mRNAs screening, while cartilage from 6 
matched osteoarthritic and normal samples were used for 
miRNAs screening. Analysis of the microarray data were 
carried out by using R software (ver. 3.4.1). Differential 
expression analysis was performed using DESeq2 
package. Heatmaps were generated with log2 
transformed and normalized counts using the pheatmap 
function. Biochemical and cellular pathways were 
clustered by employing Gene Set Enrichment Analysis 
(GSEA) tool. Based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database, GSEA identified the 
OA-related signaling pathways that were most significant 
to the data set (–log2[P value]>2.0). The GSEA analysis 

results were visualized using "ggplot2" package. To 
identify molecular pathways influenced by potential 
miRNAs, DIANA-mirPath (v3.0) was use to perform an 
enrichment analysis of specific miR targets, comparing 
each set of miR targets to genes and genomes pathways 
denoted by KEGG database. Potential targets of miR-375 
was predicted by the TargetScan database. 
 
DMM-induced OA model 
 
Experimental protocols for C57BL/6J mice were 
approved by the Animal Research Committee of the 
Central South University (2018sydw0015). Eighteen 
male mice (8 weeks) were obtained from Hunan SJA 
Laboratory Animal Co., Ltd (Changsha, China). The 
mice were separated randomly into three groups with 
six mice each: Sham group, OA group, and OA + miR-
375 antagomir group. OA model in the right knee was 
established via DMM surgery, while the control group 
received sham non-injurious surgery using aseptic 
surgical procedures [44]. One week after surgery, intra-
articular injection of antagomir-375 was given to the 
mice in antagomir group for 3 weeks (once a week). 
After 4 or 8 weeks, the mice were sacrificed and the 
keen joints were isolated for further experiments. For 
western blot and qPCR analysis, the cartilage tissues 
without subchondral bone were isolated. 
 
Histomorphology staining 
 
For morphological analysis, the tissue sections were 
embedded in paraffin. Serial tissue sections at thickness 
of 5-μm in mid-sagittal were collected, and were stained 
with safranin O and hematoxylin and eosin (HE) to 
identify pathological features and proteoglycan content 
in the articular cartilage. The severity of OA articular 
cartilage degeneration was quantified by the 
Osteoarthritis Research Society International (OARSI) 
scores and modified Mankin scales [45, 46]. 
 
Chondrocytes isolation 
 
Tissues were cleaned by sterile phosphate buffer 
solution (PBS). The diced cartilage was digested 
overnight and then incubated in 10% fetal bovine serum 
(FBS) and high-glucose Dulbecco’s modified eagle 
medium (DMEM). The cell suspension was centrifuged 
for 5 min after being filtrated in a cell strainer. Primary 
chondrocytes were collected and cultured in high 
glucose DMEM and 10% FBS. First passage of primary 
chondrocytes was used for the experiments.  
 
Cell transfection 
 
Chondrocytes were seeded in 96-well plates with  
1×104 cells/well and then incubated for about 24h. 

https://www.ebi.ac.uk/arrayexpress/
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Transfections of miRNA-375 mimics (10 nM, Qiagen, 
Germantown, USA) or the corresponding miRNA-375 
inhibitor (10 nM, Qiagen, Germantown, USA) were 
conducted via Lipofectamine RNAiMAX (Invitrogen, 
Carlsbad, USA). The transfection efficiency was 
verified 48h later, before performing further 
experiments. pcDNA3.1-ATG2B was also transfected 
into chondrocytes for 24h by Lipofectamine RNAiMAX 
(Invitrogen, Carlsbad, USA). 
 
Luciferase reporter assay 
 
The wild-type and mutant-type sequences of the 
ATG2B 3’-UTR were constructed into luciferase 
receptor vectors, respectively. Luciferase reporter vector 
were transfected into chondrocytes followed by miR-
375-3p mimics. Dual Luciferase Detection Kits 
(Promega) were used to quantify the luciferase activities 
after being normalized with the activity of Renilla 
luciferase. 
 
qRT-PCR 
 
As for qRT-PCR of mRNA, TaqTM II Kit and 
PrimeScript RT reagent Kit (Takara, Japan) were used. β-
actin was applied to be an internal reference. As for RT-
PCR of miR-375, MicroRNA Isolation Kits (Biochain, 
USA), miRNA Fist-Strand cDNA Synthesis Kit and 
qPCR Kit (GeneCopoeia, America) were used with U6 as 
the internal standard. The 2−ΔΔCt method was applied to 
measure the relative expression [47]. The primer 
sequences are presented in Supplementary Table 2. 
 
Western blot 
 
RIPA (Beyotime, China) was used to harvest total 
protein of chondrocytes from cell lysates. Sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) was applied for separating protein, and 
then protein was transferred to polyvinylidene 
difluoride (PVDF) membrane. Primary antibodies 
incubated for 24h, and then secondary antibody 
incubated in IgG conjugated horseradish peroxidase 
(HRP) for another 2h. Enhanced chemiluminescence 
(ECL) kit was applied to detect light-emitting signal. 
The primary antibodies were used for ATG2B, Beclin 1, 
LC3, p62, Collagen II, MMP13, CHOP, p-eIF2a, Bax, 
Bcl-2, Caspase 3, and β-actin (BOSTER, China).  
 
Chondrocytes apoptosis 
 
The number of apoptotic chondrocytes accounting for a 
total of 105 cells was quantified by flow cytometry with 
fluorescein isothiocyanate (FITC)-labeled Annexin V 
and propidium iodide (PI) (Enzo Life Sciences Inc., 
Farmingdale, NY). 

Immunofluorescence staining 
 
Chondrocytes were fixed in paraformaldehyde and 
blocked with bovine serum albumin after being rinsed 
in PBS. Primary antibodies of CHOP or LC-3 
incubated overnight, then HRP-conjugated goat anti-
rabbit IgG incubated for 1h and DAPI labeled for 
5mins. Fields were acquired by using fluorescence 
microscopy (Nikon, Japan), and Image J (Bethesda, 
USA) was used for fluorescence intensity 
quantification. Cells Positive chondrocytes for ERs or 
autophagy were defined as CHOP or LC3 labeled 
cells. 
 
Statistical analysis 
 
Each experiment was conducted in triplicate, with data 
being presented as means ± standard deviation (SD). 
Statistical analyses were conducted using GraphPad 
Prism 5.0 (GraphPad Software, USA). Independent-
sample student’s t test were used for comparison 
between two groups, while one-way analysis of 
variance (ANOVA) with post hoc test was used for 
multiple group comparisons. P < 0.05 was considered to 
be significant. 
 
Ethical approval 
 
All procedures performed in studies involving human 
and animals were in accordance with the ethical 
requirements of The Second Xiangya Hospital of 
Central South University. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Supplementary Table 1. Clinical characteristics of osteoarthritis patients. 

Samples Disease Age (year) Gender Modified Mankin score 
Patient_1 osteoarthritis of the knee 63 male 20 
Patient_2 osteoarthritis of the knee 65 male 17 
Patient_3 osteoarthritis of the knee 70 female 18 
Patient_4 osteoarthritis of the knee 72 female 20 
Patient_5 osteoarthritis of the knee 66 male 18 
Patient_6 osteoarthritis of the knee 65 male 19 
Patient_7 osteoarthritis of the knee 69 female 17 
Patient_8 osteoarthritis of the knee 71 male 19 

 

Supplementary Table 2. Oligonucleotide sequences and RT-qPCR primers. 

Oligonucleotide sequences and RT-qPCR primers for human specimens 
miR-375-3p UUUGUUCGUUCGGCUCGCGUGA 

U6  GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAACGATACAGAGAAGATTA
GCATGGCCCCTGCGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTT 

Atg2b Forward: 5’-AACTGCTGACGAATCCTCAGG-3’ 
Reverse: 5’-GGGGTTCCAGCTAGGTGAGA-3’ 

β-actin Forward: 5’-GTAACCCGTTGAACCCCATT-3’ 
Reverse: 5’-CCATCCAATCGGTAGTAGCG-3’ 

Oligonucleotide sequences and RT-qPCR primers for mouse specimens 
miR-375-3p UUUGUUCGUUCGGCUCGCGUGA 

U6  GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAACGATACAGAGAAGATTA
GCATGGCCCCTGCGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTT 

Atg2b Forward: 5’-TGCCAGAGGTGTTTGTTGGT-3’  
Reverse: 5’-TTGGCCAAGGGAAGTGGTTT-3’ 

β-actin Forward: 5’-GTAACCCGTTGAACCCCATT-3’ 
Reverse: 5’-CCATCCAATCGGTAGTAGCG-3’ 

 
 


