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Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively
studied in chronic pain. A hypothetic mechanism of action would be to prevent or
revert the ongoing maladaptive plasticity within the pain matrix. In this review, the
authors discuss the mechanisms underlying the development of maladaptive plasticity in
patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic
plasticity in neuropathic pain conditions.
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INTRODUCTION

Despite plasticity of the central nervous system is considered a positive adaptive phenomenon
related to structural modifications as well as changes in afferent inputs and target outputs,
sometimes it may become detrimental causing significant dysfunctions. In this case, functional
impairment is the result of maladaptive plasticity (Pascual-Leone et al., 2005).

The best example of maladaptive plasticity in human pathology is focal dystonia where sensory
motor plasticity impairment occurs as a consequence of excessive practicing of a stereotyped
movement leading to musician’s dystonia or writer’s cramp (Quartarone et al., 2006).

Non-invasive brain stimulation (NIBS) has a therapeutic potential in focal dystonia, as revealed
by clinical studies that have demonstrated the efficacious and long-lasting neuromodulatory effects
of repetitive transcranial magnetic stimulation (rTMS) at 1 Hz over primary somatosensory area
(S1; Havrankova et al., 2010) and rTMS at 0.2 Hz or 1 Hz over the premotor cortex (Murase et al.,
2005; Borich et al., 2009).

Chronic pain is another classic example of maladaptive plasticity in neurology and provides the
ideal model to discuss the use of NIBS in the prevention of this pathological event.

Therefore, in the present review, we would like to discuss the potential role of NIBS in blocking
and possibly reverting maladaptive plasticity, which is associated with several models of chronic
pain, such as central post-stroke pain, pain after spinal cord injury or post-surgical pain.

MALADAPTIVE PLASTICITY IN CHRONIC PAIN

The detection of noxious stimuli (Sherrington, 1906) is a protective process that helps to prevent
injury by generating both a reflex withdrawal from the stimulus and a sensation so unpleasant that
culminates in complex behavioral strategies to avoid further contact with such noxious stimuli. If
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stimuli are particularly intense, sensitization of the nociceptive
system may lower the threshold for nociception, increasing the
amplitude of withdrawal responses to subsequent inputs (Woolf
and Salter, 2000). In this sense, nociceptor-induced sensitization
of the somatosensory system is a very efficient adaptive plastic
mechanism that makes the system hyper alert in conditions in
which a risk of further damage is high, for example, immediately
after exposure to an intense or damaging stimulus.

In many clinical syndromes, pain is no longer protective.
The pain in these situations arises spontaneously, can be elicited
by normally innocuous stimuli (allodynia), is exaggerated and
prolonged in response to noxious stimuli (hyperalgesia), and
spreads beyond the site of injury (secondary hyperalgesia).
Overstimulation of nociceptive pathways induced by chronic
conditions (such as inflammatory pain, neuropathic pain, or
deafferentation syndromes) in predisposed patients (depending
on the influence of the individual genotype on the predisposition
to pain chronicity and, consequently, the response to treatment;
Baron, 2006) may lead to a massive maladaptive re-arrangement
in pain-related structures, called central sensitization, which
culminates in secondary hyperalgesia and allodynia. When
neurons in the dorsal horn of spinal cord are subject to
central sensitization, they develop: (i) an increase in spontaneous
activity; (ii) a reduction in the threshold for activation by
peripheral stimuli; (iii) an increase in response to supra-threshold
stimulation; and (iv) an enlargement of their receptive fields
(Woolf and King, 1990; Woolf and Salter, 2000; Ji et al., 2003).
Central sensitization induces conversion of nociceptive-specific
neurons to wide-dynamic-range neurons that now respond to
both innocuous and noxious stimuli (Woolf, 1983, 2007).

In this way, spinal dorsal horn neurons undergoing central
sensitization become hyper-excitable and hyper-responsive to
nociceptive inputs from already sensitized or injured first
order neurons. They also show hyper-responsiveness to inputs
from other non-sensitized neurons outside the lesioned area
(secondary hyperalgesia) and become responsive to non-
nociceptive inputs to the nociceptive pathway (allodynia; Woolf,
2011).

At molecular level, central sensitization of pain is
characterized by two different phases: (i) the phosphorylation-
dependent stage, resulting in rapid changes of glutamate
receptors and ion channel properties. This stage is induced
with a short latency (seconds) by intense, repeated, or sustained
nociceptor inputs and typically lasts from tens of minutes to
several hours in the absence of further nociceptor input. (ii) the
transcription-dependent stage, where synthesis of new proteins
take place for longer-lasting effects. Both these stages depend
on N-methyl-D-aspartate (NMDA) receptors and glutamate
signaling modifications and contribute to the induction and
maintenance of acute activity-dependent central sensitization
(Woolf and Thompson, 1991). Multiple triggers can contribute to
the establishment of this process, such as substance P, Calcitonin
Gene Related Peptide (CGRP), bradykinin, Brain-Derived
Neurotrophic Factor (BDNF), and nitric oxide (Latremoliere
and Woolf, 2009). Indeed, these different triggers are released or
induced in response to nociceptor activity, and each trigger can
initiate the activation of multiple intracellular signaling pathways

that lead to a hyperexcitability in dorsal horn neurons. The
elevation in intracellular Ca2+ has a key role since it activates
multiple Ca2+-dependent kinases acting on receptors and ion
channels, which increases synaptic efficacy.

Finally, glutamate receptor phosphorylation during central
sensitization increases the activity/density of NMDA receptors,
leading to an increase in membrane excitability, a facilitation
of synaptic strength, a decrease in inhibitory influences in
dorsal horn neurons, and the strengthening of nociceptive
transmission at the dorsal horn. The role of glutamate in central
sensitization is suggested by animal studies that have revealed
that NMDA receptor blockade by microinjection of 2-amino-
5-phosphonopentanoate in the rostral ventromedial medulla
(RVM) attenuated signs of central sensitization (Coutinho et al.,
1998; Urban et al., 1999). Similarly, microinjection of MK-801
(a NMDA receptor antagonist) within the thalamus reduces
signs of central sensitization (Kawamura et al., 2010; Kaneko
et al., 2011). The NIBS-induced plasticity modulation is achieved
though several mechanisms, including changes in threshold, in
kinetics and trafficking to the membrane of glutamate receptors,
increase in inward currents and reduction in outward currents
of ion channels, and reduction in inhibitory neurotransmission.
Altogether, such mechanisms may lead to changes in the
excitability of nociceptive neurons (Carvalho et al., 2000; Fang
et al., 2003).

On the other hand, transcription-dependent changes are
required for longer-lasting effects; these do not occur only
in response to nociceptor activity but also as a consequence
of peripheral inflammation and nerve injury (see below). In
this stage, different mechanism of synaptic plasticity with
some resemblance to long-term potentiation (LTP) and long-
term depression (LTD) phenomena occur in central nervous
system, thus activating either active synapses (homosynaptic
potentiation) or non-activated synapses (heterosynaptic
potentiation). The main mediators of these mechanism are
thought to be the metabotropic glutamate receptors and the
nitroxide (Fagni et al., 2000).

Even though the role of neural circuit remodeling and
structural synaptic plasticity in the “pain matrix” in chronic
pain has been thought as a secondary epiphenomenon to
altered nociceptive signaling in the spinal cord, brain imaging
studies on human patients and animal models have suggested
the possibility that structural plastic changes in cortical neural
circuits may actively contribute to the development of chronic
pain symptoms (Kim and Kim, 2016). Indeed, activity-dependent
central sensitization is basically an adaptive mechanism, since
it prevents, e.g., the use of an injured body part. Nonetheless,
central sensitization is pathological when tissue damage persists
or if it becomes autonomous and it is maintained in absence of
real signaling (Koltzenburg et al., 1992b).

At central level, the abovementioned plastic changes indeed
occur in at least six supra-spinal structures of the pain matrix,
including the primary somatosensory cortex (S1), secondary
somatosensory cortex (S2), anterior cingulate cortex (ACC),
insular cortex, and thalamus, which are involved in the
phenomena of central sensitization (Urban and Gebhart, 1999;
Zhuo, 2007). In addition, neuroimaging studies of induced
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secondary hyperalgesia have shown significant activations in
the prefrontal cortex, periaqueductal gray (PAG), nucleus
cuneiformis, superior colliculi, cerebellum and somatosensory
and parietal associative cortices (Iadarola et al., 1998; Baron et al.,
1999; Witting et al., 2001; Maihöfner et al., 2004; Zambreanu
et al., 2005; Lee et al., 2008; Seifert et al., 2009). On the other
hand, pathological and experimentally induced allodynia appear
to be associated with enhanced activity of ACC, thalamus, RVM,
PAG, insula, orbitofrontal cortex, dorsolateral prefrontal cortices
(DLPFCs), putamen, somatosensory cortex, and dorsomedial
midbrain. These supra-spinal structures may exert facilitatory
pain mechanisms that have been implicated in the generation
and maintenance of central sensitization and, possibly, the
establishment of chronic pain (Lorenz et al., 2002, 2003; Becerra
et al., 2006; Mainero et al., 2007; Seifert and Maihöfner, 2007;
Geha et al., 2008).

By a molecular point of view, the NMDA-mediated
mechanisms of central sensitization also contributes to the
longer-lasting and sometimes persistent pain hypersensitivity
(Latremoliere and Woolf, 2009). With regard to neuropathic
pain, damaged and non-damaged Adelta- and C-fiber generate
spontaneous action potentials after a peripheral nerve injury
(ectopic input; Devor and Seltzer, 1999; Djouhri et al., 2006).
Such activity in C- and also Adelta-fiber can initiate and
maintain activity-dependent central sensitization in the dorsal
horn (Koltzenburg et al., 1992a; Devor, 2009). Injured and also
non-injured sensory neurons in the dorsal root ganglion exhibit
massive changes in transcription, thus altering their membrane
properties, growth, and transmitter functions (Xiao et al., 2002).
Affected fibers express new transmitters and neuromodulators,
including substance P, BDNF, and a cofactor for nitroxide
synthase (namely, synthetic enzymes for tetrahydrobiopterin).
On the other hand, the stimulation of non-nociceptive fibers
triggers the release of factors that can further drive central
sensitization (Xiao et al., 2002). The release of these mediators
induces a substantial disinhibition in the dorsal horn with loss
of Gamma-Aminobutyric-Acid(GABA)ergic and glycinergic
inhibitory currents leading to a NMDA-dependent excitotoxicity
neuronal death (Moore et al., 2002; Scholz et al., 2005). In
addition, there is also an increase in descending excitatory
controls from the RVM in the brainstem after peripheral nerve
injury, as well as a reduction of descending inhibitory controls
(Vera-Portocarrero et al., 2006).

Of note, there are also structural changes as a consequence of
the molecular processes described above, which consist in a trans-
ganglionic degeneration of C-fiber terminals in lamina II. This
degeneration determines the myelinated Abeta-fibers sprouting
from laminae III-IV into laminae I-II and making contact with
nociceptive-specific neurons (Woolf et al., 1992, 1995). Finally,
astrocytes become hyper-active after nerve injury and may play
a role in the maintenance of neuropathic pain hypersensitivity
(Zhuang et al., 2005).

It is likely that chronic pain, regardless of the etiology
(inflammatory or neuropathic) and pain model, may trigger
various forms of maladaptive structural plasticity at cortical and
sub-cortical level, which in turn could be directly or indirectly
involved in the development of sensory, emotional and cognitive

symptoms of chronic pain. Since it is well known that structural
plasticity of neuronal connections in the brain occurs after a
period of several weeks or months after the functional changes, it
is mandatory in the future, to intervene as soon as possible before
these permanent changes may take place. In this perspective, the
use of NIBS in the transition from acute to chronic pain should
be explored in the near future to optimize a time window for new
efficient therapeutic strategies (Andrade et al., 2013).

GENERAL OVERVIEW ON
NON-INVASIVE BRAIN STIMULATION
AND CORTICAL PLASTICITY: TMS AND
TRANSCRANIAL DIRECT CURRENT
STIMULATION (tDCS)

TMS and tDCS are methods to painlessly stimulate the cerebral
cortex through the intact skull, and can be used to induce long-
term effects in several cortical areas.

TMS was conceived as a method to investigate the integrity of
the corticospinal outflow from cerebral motor cortex to the spinal
cord (Rothwell, 1997). Indeed, TMS pulses readily penetrate
the skull and carry an electric stimulating current into the
cortex near the surface, thus activating the axons of interneurons
of layers II and III that synapse onto the pyramidal neurons
of layers V. In this way, the size of the response produced
by a given stimulus is sensitive to the excitability of synaptic
connections within the cortex, giving an indirect measure of
the excitability of intrinsic cortical circuits within the conscious
brain. This provides a reliable indicator of any changes produced
by neural plasticity within the motor cortex. In addition, when
probing motor cortex excitability with single pulses, TMS can
also produce long-term changes in excitability if the TMS pulses
are applied repetitively (Siebner and Rothwell, 2003). In general,
low-frequency stimulation (1 Hz or below) depresses cortical
excitability, whereas high-frequency application (5 Hz) increases
cortical excitability (Quartarone et al., 2005a). Although the
duration of the effects of brief rTMS is short-lasting, longer-
lasting after-effects can be achieved by using protocols that
include longer periods of stimulation or multiple sessions of
rTMS (Quartarone et al., 2006).

Most researchers believe that the long-lasting therapeutic
effects of rTMS and the effects of magnetic stimulation on the
processes described above are related to two phenomena: LTP
and LTD (Ziemann, 2004). The possibility that rTMS induces
changes in brain excitability that outlast the stimulation period
has prompted its use for therapeutic purposes. The long lasting
effects are probably mediated through NMDA synaptic plasticity.
Indeed, it has been demonstrated that the long lasting after effects
of continuous and intermittent theta burst stimulation on the
M1 of healthy volunteers are abolished by using memantine, an
NMDA-receptor antagonist (Huang et al., 2008). According to
the classical model of induction of LTP- and LTD-like effects,
postsynaptic NMDA receptors induce Ca2+ influx into neurons.
This ionic shift triggers a series of reactions that prompt long-
term changes in synaptic strength (Malenka and Bear, 2004). An
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important upstream regulator of NMDA synaptic plasticity is the
BDNF- Tropomyosin receptor kinase-B (TrkB) system. Indeed,
we showed that a 5-day rTMS stimulation enhanced BDNF
binding affinity for TrkB, BDNF-TrkB signaling, and NMDA
receptor-TrkB interaction in rat prefrontal cortex (Wang et al.,
2011). Interestingly, in the same study, we showed that the same
protocol could induce an increased BDNF binding affinity for
TrkB and enhanced BDNF-TrkB signaling in rats and humans
peripheral lymphocytes (Wang et al., 2011). These results suggest
that the long lasting excitatory effects of rTMS are at least in
part mediated through an upstream regulation of glutamatergic
NMDA interaction.

Another important issue about the mechanism of action of
rTMS at a system level is that the effects of rTMS are not
only restricted to the stimulated region but tend to spread over
distant interconnected cortical, subcortical, and spinal structures
(Kobayashi and Pascual-Leone, 2003). This possibility opens a
window to reach subcortical structures of the pain matrix that
are involved in the mechanism of central sensitization. Indeed,
neuroimaging studies have revealed that rTMS applied over
the primary motor cortex (M1) can modulate the activity in
cortical and subcortical regions such as M1, premotor cortex
supplementary motor area, thalamus, ACC, somatosensory
cortex, insula, red nucleus, and cerebellum (Fox et al., 1997;
Siebner et al., 2000; Baudewig et al., 2001; Lee et al., 2003;
Okabe et al., 2003; Speer et al., 2003; Takano et al., 2004; Rounis
et al., 2005; Gaynor et al., 2008; Cárdenas-Morales et al., 2011).
Similarly, DLPFC, ACC, somatosensory cortex, basal ganglia,
thalamus, insula, cerebellum and parahippocampus were the
main targeted areas when rTMS was applied over DLPFC (Zheng,
2000; Paus et al., 2001; Loo et al., 2003; Michael et al., 2003;
Ferrarelli et al., 2004).

tDCS does not induce any action potential, in contrast to other
NIBS techniques. It instead modulates membrane excitability by
the application of weak electrical currents through two oppositely
charged electrodes. The amount of polarization is small, but it
can bias the membrane potential of cells, changing the threshold
for synaptic activation. When a positively charged electrode
(anode) is applied to the surface of the scalp, a fraction of the
current is thought to enter the brain and to polarize neurons
in proximity of the electrode, thus increasing neuronal firing.
Conversely, a negatively charged electrode (cathode) decreases
cortical excitability and induces neuronal hyperpolarization
(Nitsche and Paulus, 2000; Quartarone et al., 2006).

Application of a small current (1–2 mA), using two electrodes
on the scalp for 5–10 min, changes cortical excitability up
to 30–60 min afterward (Nitsche and Paulus, 2000). Animal
experiments show that this leads to changes in firing rates
of neurons while the stimulus is applied, and it is thought
that this causes long-term effects on excitability that outlast
the stimulation (Fritsch et al., 2010). Similar to the effects of
rTMS, after-effects of tDCS are abolished by NMDA receptor
antagonists and, hence, are likely to reflect changes in synaptic
effectiveness (Nitsche et al., 2003). In addition to NMDA
receptors, it is also possible that dopamine and GABA receptors
are involved in tDCS-mediated neuroplasticity. Indeed the
administration of sulpiride (a D2 receptor antagonist) abolishes

tDCS after-effects in normal humans (Nitsche et al., 2006). In
addition, lorazepam enhances and prolongs the plastic effects of
anodal tDCS (Nitsche et al., 2004). Finally, the effects of tDCS
can also be non-synaptic, possibly involving transient changes in
the density of protein channels localized below the stimulating
electrode or alterations on cAMP and calcium levels (Nitsche
et al., 2008). Indeed, the tDCS-induced constant electric field
can locally change ionic concentrations, induce a migration of
transmembrane proteins (similarly to gel electrophoresis), thus
causing steric and conformational changes, and locally alter the
tissue acid–base balance (Ardolino et al., 2005). The latter may
mainly affect NMDA signaling (Tang et al., 1990).

PUTATIVE MECHANISMS OF TMS IN
PAIN TREATMENT

Best practices for neurostimulation on neuropathic pain have
been standardized and are available in the European Federation
of Neurological Societies for neurostimulation therapy for
neuropathic pain (Cruccu et al., 2007). Nonetheless, it is difficult
to determine which specific parameters are best for clinical
use, since the TMS treatment parameters vary among the
published studies. Effectiveness of rTMS depends on the type
of neuropathic pain (Lefaucheur, 2006; Leung et al., 2013),
although many types of intractable chronic pain have been
treated with NIBS. On note, before rTMS can be applied in a
patient, it is necessary to accurately determine timing, amount,
and duration for each stimulation session, thereby ensuring the
optimal duration of effect. Significant results have been reported
when employing rTMS at 20 Hz (Fricová et al., 2009; Leung et al.,
2013). Nonetheless, rTMS has also been tested at low-frequency
stimulation (1 Hz), thus reducing the activity of excitatory circuits
in the human motor cortex. However, the best frequency of
stimulation for the most effective pain treatment has not yet
been resolved. The most commonly targeted area is represented
by the M1 contralateral to the position corresponding to the
somatotopic location of the pain source; the DLPFC is also of
interest, since it seems to have a substantial influence on neuronal
circuits involved in the processing of cognitive and emotional
aspects of pain (Rokyta and Fricová, 2012).

Beyond frequency and protocol duration, the orientation of
the figure-of-eight–shaped coil used to perform the stimulation
can influence the nature of the descending volleys elicited by
the TMS itself. It is well known that the best analgesic effect is
obtained using an antero-posterior orientation (André-Obadia
et al., 2008). Taking into account the effects of magnetic field
orientation on cortical fibers, pain relief after stimulation of M1 is
thought to be produced by activating fibers running superficially
within the precentral gyrus, parallel to the convexity of the
cortical surface. This pattern of activation is similar to that
produced by cathodal epidural motor cortex stimulation (EMCS)
at the crown of the precentral gyrus.

Another important issue when designing a NIBS protocol for
pain treatment is the timing of rTMS application. It is generally
thought that rTMS should be applied as soon as possible in case
of intractable pain (Treister et al., 2013).
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There are many uncertainties regarding the mechanism of
pain relief induced by TMS and the nature and connections
of the TMS-activated neuronal circuits (Nguyen et al., 2011).
It is thought that NIBS may target the ‘top–down’ regulatory
system controlling anti-nociception. TMS may induce a variety
of changes concerning LTD and LTP mechanisms, activation
of feedback loops, and changes in neuronal excitability. In fact,
neurostimulation can activate axons more easily than cell bodies
(Nowak and Bullier, 1998) and, therefore, the mechanisms of
action of neurostimulation must be modeled in terms of neural
circuits rather than local brain activity changes. Axons recruited
by cortical stimulation can be short fibers of intracortical
interneurons of layers II and III and afferent or efferent fibers
connected with distant structures. Altogether, these changes may
decrease sensory pain threshold and inhibits the transmission
of sensory information in the spinothalamic tract, depending
on the stimulation duration and frequency of each treatment
(Lefaucheur et al., 2004; Lefaucheur, 2008).

Of note, the fact that motor but not sensory cortex
stimulation relieves pain is not fully understood. Since TMS
only directly affects the superficial cortex, the currents rapidly
dissipate, the triggered action potentials propagate to distributed
neural networks, and M1 projections directly reach pain-
modulating structures (including medial thalamus, anterior
cingulate/orbitofrontal cortices, and PAG), it is possible that
parallel fibers within motor areas may be more suitable than
the sensory ones to be targeted by TMS (Irlbacher et al.,
2006; Wasserman et al., 2008; Mylius et al., 2012; Peterchev
et al., 2012). Indeed, experimental evidence suggests that either
epidural stimulation or NIBS may act through an antidromic
modulation of the thalamo-cortical pathways (Tsubokawa et al.,
1991), thus confirming the important role of the connections
between afferent fibers from thalamic nuclei and pyramidal cells
concerning nociception control (Villanueva and Fields, 2004).
In keeping with this notion, recent studies confirmed that the
integrity of the thalamo-cortical tract is required to mediate the
anti-nociceptive effects of high-frequency rTMS of M1 (Ohn
et al., 2012). In addition, there is evidence suggesting that
rTMS may exert a descending modulation within the brainstem,
triggered by the cortico-thalamic output (Lefaucheur et al.,
2004).

Finally, it should be considered that rTMS of M1 also
can act on structures involved in the affective, cognitive, and
emotional aspects of pain, such as the cingulate, prefrontal,
and orbitofrontal cortices involving opioidergic mechanisms
(Tamura et al., 2004). In line with this view, an elevation of
serum beta-endorphin concentration was found in patients with
phantom limb pain successfully treated by high-frequency rTMS
of M1 (Ahmed et al., 2011). Last, naloxone (an opioid receptor
antagonist) significantly reduces the analgesic effect of high-
frequency rTMS on either M1 or left DLPF in normal volunteers
(de Andrade et al., 2011; Taylor et al., 2012). Regarding the
neurotransmitters, the mechanisms of action of motor cortex
stimulation could also involve inhibitory GABA transmission.
This is suggested by some data reporting that intracortical
inhibition, a TMS marker of GABAA transmission in the motor
cortex, is reduced in the hemisphere contralateral to neuropathic

pain. High-frequency rTMS of M1 can restore intracortical
inhibition in correlation with the amount of induced pain relief
in patients with neuropathic pain (Lefaucheur et al., 2006, 2012;
Fierro et al., 2010; Mhalla et al., 2011).

PUTATIVE MECHANISMS OF tDCS IN
PAIN TREATMENT

As compared to TMS, tDCS after-effects are less well
characterized (Ngernyam et al., 2013). There is growing evidence
confirming the effectiveness of tDCS in treating different types
of neuropathic pain (Knotkova et al., 2013), including refractory
orofacial pain, fibromyalgia, phantom pain, and back pain
(Rokyta et al., 2012; Bolognini et al., 2013; Zhang et al., 2013).
Several papers have used different sites of stimulation, including
the DLPFC and M1 (Fregni et al., 2006a,b; O’Connell et al.,
2013), intensity of stimulation (1–2 mA), time (from 10 up to
30 min; Boggio et al., 2009) and duration of application (i.e.,
number of sessions per week; Soler et al., 2010).

The mechanism of action of tDCS differs from that of rTMS or
epidural motor cortex stimulation, since tDCS-induced current
intensity is not high enough to generate action potentials into the
brain by itself alone (Lefaucheur, 2016). As outlined above, tDCS
increases or decreases the value of axon membrane potential
(depolarization or hyperpolarization), according to the polarity
(anodal or cathodal) of the stimulation. However, tDCS may exert
local and remote effects that, like rTMS, extend well beyond the
time of stimulation, reversibly, painlessly, and safely (Nitsche and
Paulus, 2001).

Similarly to EMCS and rTMS, the analgesic effects of tDCS
may result from the modulation of distant neural structures
involved in sensory-discriminative, cognitive, or emotional
aspect of chronic pain (Yoon et al., 2014). Indeed, tDCS
has preferential analgesic efficacy when the motor cortex
receives anodal stimulation, whereas EMCS-induced analgesia
is mediated by the placement of cathode over M1 (Holsheimer
et al., 2007b; Foerster et al., 2015). This is supported by a recent
study showing decreased levels of glutamate in the ACC and
thalamus and increased levels of N-acetyl-aspartate and GABA in
the posterior and anterior insula after anodal tDCS delivered over
the left M1 in patients with non-neuropathic pain (DosSantos
et al., 2012). In addition, similarly to rTMS, tDCS may also
target the opioid system. In particular, the posterior thalamus
was activated by anodal tDCS of M1 in a patient with trigeminal
neuropathic pain (Holsheimer et al., 2007a).

EXPERT COMMENTARY AND FUTURE
PERSPECTIVES

In line with the current lines of research, we hypothesize
that NIBS over M1 could exert its modulation of descending
facilitatory pathways and the subsequent disruption of ongoing
plastic changes in cortical and sub-cortical structures of the
pain matrix, before they consolidate in maladaptive structural
phenomena.
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Considering that central sensitization is a mechanism
mediated by NMDA related synaptic plasticity, it is tempting
to consider the possibility of using rTMS at early stages to
shift the threshold of plasticity and to trigger homeostatic
mechanisms that could reset abnormal plasticity and may prevent
the development of maladaptive plasticity phenomena.

In line with this hypothesis, one opportunity of manipulating
the abnormal plasticity in acute pain would be to prime
the effects of rTMS. Indeed, preconditioning M1 using tDCS
prior to 1 Hz rTMS of M1 effectively modulated experimental
thermal pain thresholds. In addition, the direction of pain
threshold modulation after 1 Hz rTMS depended on the
polarity of tDCS priming. For the cathodal (inhibitory) tDCS
before 1 Hz rTMS, heat and cold pain thresholds significantly
increased. Consistently with the concept that pre-conditioning
with tDCS controls the direction of the effect of subsequent
rTMS, pain threshold decrease was observed after the anodal
(excitatory) tDCS before 1 Hz rTMS (Moloney and Witney,
2013).

Further studies are needed to provide direct evidence of the
efficacy of NIBS to prevent the development of maladaptive
plasticity at an early stage, using the prime technique. In
particular, it would be important to evaluate the homeostatic
control of plasticity in patients with neuropathic pain, especially
in the acute phase, in order to better define the priming protocol
of stimulation.

It is interesting to note that patients suffering from migraine
have an alteration of the homeostatic regulation plasticity within

the motor cortex between the attacks (Antal et al., 2008), similarly
to patients with focal dystonia, another condition characterized
by maladaptive plasticity (Quartarone et al., 2005b; Kang et al.,
2011).

Finally, since there are no reliable serum biological markers
that can assess neuroplasticity, it will be useful to validate
surrogate outcomes for neuroplasticity using TMS, high-density
electroencephalography, and neuroimaging methods (including
tractography), in the attempt to better correlate functional and
structural maladaptive plastic changes with clinical outcomes.
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