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Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and

have achieved unprecedented success in cognitive tasks such as image and speech

recognition. Training of large DNNs, however, is computationally intensive and this

has motivated the search for novel computing architectures targeting this application.

A computational memory unit with nanoscale resistive memory devices organized in

crossbar arrays could store the synaptic weights in their conductance states and

perform the expensive weighted summations in place in a non-von Neumann manner.

However, updating the conductance states in a reliable manner during the weight

update process is a fundamental challenge that limits the training accuracy of such

an implementation. Here, we propose a mixed-precision architecture that combines

a computational memory unit performing the weighted summations and imprecise

conductance updates with a digital processing unit that accumulates the weight updates

in high precision. A combined hardware/software training experiment of a multilayer

perceptron based on the proposed architecture using a phase-change memory (PCM)

array achieves 97.73% test accuracy on the task of classifying handwritten digits

(based on the MNIST dataset), within 0.6% of the software baseline. The architecture

is further evaluated using accurate behavioral models of PCM on a wide class of

networks, namely convolutional neural networks, long-short-term-memory networks,

and generative-adversarial networks. Accuracies comparable to those of floating-point

implementations are achieved without being constrained by the non-idealities associated

with the PCM devices. A system-level study demonstrates 172× improvement in energy

efficiency of the architecture when used for training a multilayer perceptron compared

with a dedicated fully digital 32-bit implementation.

Keywords: phase-changememory, in-memory computing, deep learning,mixed-signal design,memristive devices

1. INTRODUCTION

Loosely inspired by the adaptive parallel computing architecture of the brain, deep neural networks
(DNNs) consist of layers of neurons and weighted interconnections called synapses. These
synaptic weights can be learned using known real-world examples to perform a given task on
new unknown data. Gradient descent based algorithms for training DNNs have been successful
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in achieving human-like accuracy in several cognitive tasks.
The training typically involves three stages. During forward
propagation, training data is propagated through the DNN
to determine the network response. The final neuron layer
responses are compared with the desired outputs to compute
the resulting error. The objective of the training process is
to reduce this error by minimizing a cost function. During
backward propagation, the error is propagated throughout the
network layers to determine the gradients of the cost function
with respect to all the weights. During the weight update stage,
the weights are updated based on the gradient information.
This sequence is repeated several times over the entire dataset,
making training a computationally intensive task (LeCun et al.,
2015). Furthermore, when training is performed on conventional
von Neumann computing systems that store the large weight
matrices in off-chip memory, constant shuttling of data between
memory and processor occurs. These aspects make the training
of large DNNs very time-consuming, in spite of the availability of
high-performance computing resources such as general purpose
graphical processing units (GPGPUs). Also, the high-power
consumption of this training approach is prohibitive for its
widespread application in emerging domains such as the internet
of things and edge computing, motivating the search for new
architectures for deep learning.

In-memory computing is a non-von Neumann concept that
makes use of the physical attributes of memory devices organized
in a computational memory unit to perform computations in-
place (Ielmini and Wong, 2018; Sebastian et al., 2020). Recent
demonstrations include the execution of bulk bit-wise operations
(Seshadri et al., 2016), detection of temporal correlations
(Sebastian et al., 2017), and matrix-vector multiplications (Hu
et al., 2016; Burr et al., 2017; Sheridan et al., 2017; Le Gallo
et al., 2018a,b; Li et al., 2018b). The matrix-vector multiplications
can be performed in constant computational time complexity
using crossbar arrays of resistive memory (memristive) devices
(Wong and Salahuddin, 2015; Hu et al., 2016; Ielmini andWong,
2018). If the network weights are stored as the conductance states
of the memristive devices at the crosspoints, then the weighted
summations (or matrix-vector multiplications) necessary during
the data-propagation stages (forward and backward) of training
DNNs can be performed in-place using the computational
memory, with significantly reduced data movement (Burr et al.,
2015; Prezioso et al., 2015; Gokmen and Vlasov, 2016; Yao et al.,
2017; Li et al., 2018a; Sun et al., 2018). However, realizing accurate
and gradual modulations of the conductance of the memristive
devices for the weight update stage has posed a major challenge
in utilizing computational memory to achieve accurate DNN
training (Yu, 2018).

The conductance modifications based on atomic
rearrangement in nanoscale memristive devices are stochastic,
non-linear, and asymmetric as well as of limited granularity
(Wouters et al., 2015; Nandakumar et al., 2018a). This has
led to significantly reduced classification accuracies compared
with software baselines in training experiments using existing
memristive devices (Burr et al., 2015). There have been several
proposals to improve the precision of synaptic devices. A
multi-memristive architecture uses multiple devices per synapse

and programs one of them chosen based on a global selector
during weight update (Boybat et al., 2018a). Another approach,
which uses multiple devices per synapse, further improves
the precision by assigning significance to the devices as in
a positional number system such as base two. The smaller
updates are accumulated in the least significant synaptic device
and periodically carried over to higher significant analog
memory devices accurately (Agarwal et al., 2017). Hence, all
devices in the array must be reprogrammed every time the
carry is performed, which brings additional time and energy
overheads. A similar approach uses a 3T1C (3 transistor 1
capacitor) cell to accumulate smaller updates and transfer them
to PCM periodically using closed-loop iterative programming
(Ambrogio et al., 2018). So far, the precision offered by these
more complex and expensive synaptic architectures has only
been sufficient to demonstrate software-equivalent accuracies
in end-to-end training of multi-layer perceptrons for MNIST
image classification. All these approaches use a parallel weight
update scheme by sending overlapping pulses from the rows and
columns, thereby implementing an approximate outer product
and potentially updating all the devices in the array in parallel.
Each outer product needs to be applied to the arrays one at a
time (either after every training example or one by one after a
batch of examples), leading to a large number of pulses applied
to the devices. This has significant ramifications for device
endurance, and the requirements on the number of conductance
states to achieve accurate training (Gokmen and Vlasov, 2016;
Yu, 2018). Hence, this weight update scheme is best suited for
fully-connected networks trained one sample at a time and is
limited to training with stochastic gradient descent without
momentum, which is a severe constraint on its applicability to
a wide range of DNNs. The use of convolution layers, weight
updates based on a mini-batch of samples as opposed to a single
example, optimizers such as ADAM (Kingma and Ba, 2015),
and techniques such as batch normalization (Ioffe and Szegedy,
2015) have been crucial for achieving high learning accuracy in
recent DNNs.

Meanwhile, there is a significant body of work in the
conventional digital domain using reduced precision arithmetic
for accelerating DNN training (Courbariaux et al., 2015; Gupta
et al., 2015; Merolla et al., 2016; Hubara et al., 2017; Zhang
et al., 2017). Recent studies show that it is possible to reduce
the precision of the weights used in the multiply-accumulate
operations (during the forward and backward propagations) to
even 1 bit, as long as the weight gradients are accumulated
in high-precision (Courbariaux et al., 2015). This indicates the
possibility of accelerating DNN training using programmable
low-precision computational memory, provided that we address
the challenge of reliably maintaining the high-precision gradient
information. Designing the optimizer in the digital domain
rather than in the analog domain permits the implementation
of complex learning schemes that can be supported by general-
purpose computing systems, as well as maintaining the high-
precision in the gradient accumulation, which is necessary
to be as high as 32-bit for training state-of-the-art networks
(Micikevicius et al., 2018). However, in contrast to the fully digital
mixed-precision architectures which uses statistically accurate
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rounding operations to convert high-precision weights to low
precision weights and subsequently make use of error-free digital
computation, the weight updates in analog memory devices
using programming pulses are highly inaccurate and stochastic.
Moreover, the weights stored in the computational memory
are affected by noise and temporal conductance variations.
Hence, it is not evident if the digital mixed-precision approach
translates successfully to a computational memory based deep
learning architecture.

Building on these insights, we present a mixed-precision
computational memory architecture (MCA) to train DNNs.
First, we experimentally demonstrate the efficacy of the
architecture to deliver performance close to equivalent floating-
point simulations on the task of classifying handwritten digits
from the MNIST dataset. Subsequently, we validate the approach
through simulations to train a convolutional neural network
(CNN) on the CIFAR-10 dataset, a long-short-term-memory
(LSTM) network on the Penn Treebank dataset, and a generative-
adversarial network (GAN) to generate MNIST digits.

2. RESULTS

2.1. Mixed-Precision Computational
Memory Architecture
A schematic illustration of the MCA for training DNNs is
shown in Figure 1. It consists of a computational memory
unit comprising several memristive crossbar arrays, and a high-
precision digital computing unit. If the weights Wji in any layer
of a DNN (Figure 1A) are mapped to the device conductance
values Gji in the computational memory with an optional scaling

factor, then the desired weighted summation operation during
the data-propagation stages of DNN training can be implemented
as follows. For the forward propagation, the neuron activations,
xi, are converted to voltages, Vxi , and applied to the crossbar
rows. Currents will flow through individual devices based on
their conductance and the total current through any column,
Ij = 6iGjiVxi , will correspond to6iWjixi, that becomes the input
for the next neuron layer. Similarly, for the backward propagation
through the same layer, the voltages Vδj corresponding to the
error δj are applied to the columns of the same crossbar array
and the weighted sum obtained along the rows, 6jWjiδj, can be
used to determine the error δi of the preceding layer.

The desired weight updates are determined as 1Wji = ηδjxi,
where η is the learning rate. We accumulate these updates in a
variable χ in the high-precision digital unit. The accumulated
weight updates are transferred to the devices by applying
single-shot programming pulses, without using an iterative
write-verify scheme. Let ǫ denote the average conductance
change that can be reliably programmed into the devices in
the computation memory unit using a given pulse. Then,
the number of programming pulses p to be applied can be
determined by rounding χ/ǫ toward zero. The programming
pulses are chosen to increase or decrease the device conductance
depending on the sign of p, and χ is decremented by pǫ after
programming. Effectively, we are transferring the accumulated
weight update to the device when it becomes comparable to
the device programming granularity. Note that the conductances
are updated by applying programming pulses blindly without
correcting for the difference between the desired and observed
conductance change. In spite of this, the achievable accuracy of

FIGURE 1 | Mixed-precision computational memory architecture for deep learning. (A) A neural network consisting of layers of neurons with weighted interconnects.

During forward propagation, the neuron response, xi , is weighted according to the connection strengths, Wji , and summed. Subsequently, a non-linear function, f , is

applied to determine the next neuron layer response, xj . During backward propagation, the error, δj , is back-propagated though the weight layer connections, Wji , to

determine the error, δi , of the preceding layer. (B) The mixed-precision architecture consisting of a computational memory unit and a high-precision digital unit. The

computational memory unit has several crossbar arrays whose device conductance values Gji represent the weights Wji of the DNN layers. The crossbar arrays

perform the weighted summations during the forward and backward propagations. The resulting x and δ values are used to determine the weight updates, 1W, in the

digital unit. The 1W values are accumulated in the variable, χ . The conductance values are updated using p = ⌊χ/ǫ⌋ number of pulses applied to the corresponding

devices in the computational memory unit, where ǫ represents the device update granularity.
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DNNs trained with MCA is extremely robust to the nonlinearity,
stochasticity, and asymmetry of conductance changes originating
from existing nanoscale memristive devices (Nandakumar et al.,
2018b).

2.2. Characterization and Modeling of PCM
Devices
Phase-change memory (PCM) devices are used to realize the
computational memory for the experimental validation of MCA.
PCM is arguably the most advanced memristive technology that
has found applications in the space of storage-class memory
(Burr et al., 2016) and novel computing paradigms such as
neuromorphic computing (Kuzum et al., 2011; Tuma et al.,
2016; Sebastian et al., 2018; Joshi et al., 2020) and computational
memory (Cassinerio et al., 2013; Sebastian et al., 2017; Le Gallo
et al., 2018a). A PCM device consists of a nanometric volume
of a chalcogenide phase-change alloy sandwiched between two
electrodes. The phase-change material is in the crystalline phase
in an as-fabricated device. By applying a current pulse of
sufficient amplitude (typically referred to as the RESET pulse)
an amorphous region around the narrow bottom electrode is
created via melt-quench process. The resulting “mushroom-type”
phase configuration is schematically shown in Figure 2A. The
device will be in a high resistance state if the amorphous region

blocks the conductance path between the two electrodes. This
amorphous region can be partially crystallized by a SET pulse
that heats the device (via Joule heating) to its crystallization
temperature regime (Sebastian et al., 2014). With the successive
application of such SET pulses, there is a progressive increase in
the device conductance. This analog storage capability and the
accumulative behavior arising from the crystallization dynamics
are central to the application of PCM in training DNNs.

We employ a prototype chip fabricated in 90 nm CMOS
technology integrating an array of doped Ge2Sb2Te5 (GST)
PCM devices (see section A.1). To characterize the gradual
conductance evolution in PCM, 10,000 devices are initialized
to a distribution around 0.06µS and are programmed with a
sequence of 20 SET pulses of amplitude 90µA and duration
50 ns. The conductance changes show significant randomness,
which is attributed to the inherent stochasticity associated with
the crystallization process (Le Gallo et al., 2016), together
with device-to-device variability (Tuma et al., 2016; Boybat
et al., 2018a). The statistics of cumulative conductance evolution
are shown in Figure 2A. The conductance evolves in a state-
dependent manner and tends to saturate with the number of
programming pulses, hence exhibiting a nonlinear accumulative
behavior. We analyzed the conductance evolution due to the
SET pulses, and developed a comprehensive statistical model
capturing the accumulative behavior that shows remarkable

FIGURE 2 | Phase-change memory characterization experiments and model response. (A) The mean and standard deviation of device conductance values (and the

corresponding model response) as a function of the number of SET pulses of 90µA amplitude and 50 ns duration. The conductance was read 38.6 s after the

application of each SET pulse. The 10,000 PCM devices used for the measurement were initialized to a distribution around 0.06µS. (B) The distribution of

conductance values compared to that predicted by the model after the application of 15 SET pulses. (C) The average conductance drift of the states programmed

after each SET pulse. The corresponding model fit is based on the relation, G(t) = G(t0)(t/t0)
−ν , that relates the conductance G after time t from programming to the

conductance measurement at time t0 and drift exponent ν. Each color corresponds to the conductance read after the application of a certain number of SET pulses,

ranging from 1 to 20. (D) Experimentally measured conductance evolution from 5 devices upon application of successive SET pulses compared to that predicted by

the model. These measurements are based on 50 reads that follow each of the 20 programming instances. Each line with different color shade corresponds to a

different device.
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agreement with the measured data (Nandakumar et al., 2018c)
(see Figures 2A,B and Supplementary Note 1). Note that,
the conductance response curve is unidirectional and hence
asymmetric as we cannot achieve a progressive decrease in the
conductance values with the application of successive RESET
pulses of the same amplitude.

The devices also exhibit a drift behavior attributed to the
structural relaxation of the melt-quenched amorphous phase
(Le Gallo et al., 2018). The mean conductance evolution after
each programming event as a function of time is plotted
in Figure 2C. Surprisingly, we find that the drift re-initiates
every time a SET pulse is applied (Nandakumar et al., 2018c)
(see Supplementary Note 1), which could be attributed to the
creation of a new unstable glass state due to the atomic
rearrangement that is triggered by the application of each SET
pulse. In addition to the conductance drift, there are also
significant fluctuations in the conductance values (read noise)
mostly arising from the 1/f noise exhibited by amorphous phase-
change materials (Nardone et al., 2009). The statistical model
response from a few instances incorporating the programming
non-linearity, stochasticity, drift, and instantaneous read noise
along with actual device measurements are shown in Figure 2D,
indicating the similar trend in conductance evolution between
the model and the experiment at an individual device level.

2.3. Training Experiment for Handwritten
Digit Classification
We experimentally demonstrate the efficacy of the MCA by
training a two-layer perceptron to perform handwritten digit
classification (Figure 3A). Each weight of the network, W, is
realized using two PCM devices in a differential configuration
(W ∝ (Gp − Gn)). The 198,760 weights in the network are
mapped to 397,520 PCM devices in the hardware platform
(see section A.2). The network is trained using 60,000 training
images from the MNIST dataset for 30 epochs. The devices are
initialized to a conductance distribution with mean 1.6µS and
standard deviation of 0.83µS. These device conductance values
are read from hardware, scaled to the network weights, and used
for the data-propagation stages. The resulting weight updates
are accumulated in the variable χ . When the magnitude of χ

exceeds ǫ (= 0.096, corresponding to an average conductance
change of 0.77µS per programming pulse), a 50 ns pulse with
an amplitude of 90µA is applied to Gp to increase the weight
if χ > 0 or to Gn to decrease the weight if χ < 0; |χ |
is then reduced by ǫ. These device updates are performed
using blind single-shot pulses without a read-verify operation
and the device states are not used to determine the number
or shape of programming pulses. Since the continuous SET
programming could cause some of the devices to saturate during

FIGURE 3 | MCA training experiment using on-chip PCM devices for handwritten digit classification. (A) Network structure used for the on-chip mixed-precision

training experiment for MNIST data classification. Each weight, W, in the network is realized as the difference in conductance values of two PCM devices, Gp and Gn.

(B) Stochastic conductance evolution during training of Gp and Gn values corresponding to 5 arbitrarily chosen synaptic weights from the second layer. Each color

corresponds to a different synaptic weight. (C) The number of device updates per epoch from the two weight layers in mixed-precision training experiment and

high-precision software training (FP64), showing the highly sparse nature of weight update in MCA. (D) Classification accuracies on the training (dark-shaded curves)

and test (blue-shaded curves) set from the mixed-precision training experiment. The maximum experimental test set accuracy, 97.73%, is within 0.57% of that

obtained in the FP64 training. The experimental behavior is closely matched by the training simulation using the PCM model. The shaded areas in the PCM model

curves represent one standard deviation over 5 training simulations. (E) Inference performed using the trained PCM weights on-chip on the training and test dataset

as a function of time elapsed after training showing negligible accuracy drop over a period of 1 month.
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training, a weight refresh operation is performed every 100
training images to detect and reprogram the saturated synapses.
After each training example involving a device update, all the
devices in the second layer and 785 pairs of devices from the
first layer are read along with the updated conductance values
to use for the subsequent data-propagation step (see section
A.2.2). A separate validation experiment confirms that near
identical results are obtained when the read voltage is varied
in accordance with the neuron activations and error vectors
for every matrix-vector multiplication during training and
testing (see Supplementary Note 2). The resulting evolution of
conductance pairs,Gp andGn, for five arbitrarily chosen synapses
from the second layer is shown in Figure 3B. It illustrates the
stochastic conductance update, drift between multiple training
images, and the read noise experienced by the neural network
during training. Also, due to the accumulate-and-program nature
of the mixed-precision training, only a few devices are updated
after each image. In Figure 3C, the number of weight updates
per epoch in each layer during training is shown. Compared to
the high-precision training where all the weights are updated
after each image, there are more than three orders of magnitude
reduction in the number of updates in the mixed-precision
scheme, thereby reducing the device programming overhead.

At the end of each training epoch, all the PCM conductance
values are read from the array and are used to evaluate
the classification performance of the network on the entire
training set and on a disjoint set of 10,000 test images
(Figure 3D). The network achieved a maximum test accuracy
of 97.73%, only 0.57% lower than the equivalent classification
accuracy of 98.30% achieved in the high-precision training.
In comparison, applying directly the weight updates to the
analog PCM devices without accumulating them in digital with
the MCA results in a maximum test accuracy of only 83%
in simulation (Nandakumar et al., 2018c). The high-precision
comparable training performance achieved by the MCA, where
the computational memory comprises noisy non-linear devices
with highly stochastic behavior, demonstrates the existence of
a solution to these complex deep learning problems in the
device-generated weight space. And even more remarkably, it
highlights the ability of the MCA to successfully find such
solutions. We used the PCM model to validate the training
experiment using simulations and the resulting training and
test accuracies are plotted in Figure 3D. The model was able
to predict the experimental classification accuracies on both the
training and the test sets within 0.3%, making it a valuable tool
to evaluate the trainability of PCM-based computational memory
for more complex deep learning applications. The model was
also able to predict the distribution of synaptic weights across
the two layers remarkably well (see Supplementary Note 3). It
also indicated that the accuracy drop from the high-precision
baseline training observed in the experiment is mostly attributed
to PCMprogramming stochasticity (see Supplementary Note 4).
After training, the network weights in the PCM array were
read repeatedly over time and the classification performance
(inference) was evaluated (Figure 3E). It can be seen that the
classification accuracy drops by a mere 0.3% over a time period
exceeding a month. This clearly illustrates the feasibility of

using trained PCM based computational memory as an inference
engine (see section A.2.3).

The use of PCM devices in a differential configuration
necessitates the refresh operation. Even though experiments
show that the training methodology is robust to a range of refresh
schemes (see Supplementary Note 5), it does lead to additional
complexity. But remarkably, the mixed-precision scheme can
deal with even highly asymmetric conductance responses such
as in the case where a single PCM device is used to represent
the synaptic weights.We performed such an experiment realizing
potentiation via SET pulses while depression was achieved using
a RESET pulse. To achieve a bipolar weight distribution, a
reference conductance level was introduced (see section A.2.4).
By using different values of ǫ for potentiation and depression,
a maximum test accuracy of 97.47% was achieved within
30 training epochs (see Supplementary Figure 1). Even if the
RESET pulse causes the PCM to be programmed to a certain
low conductance value regardless of its initial conductance, using
an average value of this conductance transition to represent
ǫ for depression was sufficient to obtain satisfactory training
performance. These results conclusively show the efficacy of
the mixed-precision training approach and provide a pathway
to overcome the stringent requirements on the device update
precision and symmetry hitherto thought to be necessary to
achieve high performance frommemristive device based learning
systems (Burr et al., 2015; Gokmen and Vlasov, 2016; Kim et al.,
2017; Ambrogio et al., 2018).

2.4. Training Simulations of Larger
Networks
The applicability of the MCA training approach to a wider class
of problems is verified by performing simulation studies based
on the PCM model described in section 2.2. The simulator is
implemented as an extension to the TensorFlow deep learning
framework. Custom TensorFlow operations are implemented
that take into account the various attributes of the PCM devices
such as stochastic and nonlinear conductance update, read noise,
and conductance drift as well as the characteristics of the data
converters (see section A.3.1 and Supplementary Note 6). This
simulator is used to evaluate the efficacy of the MCA on three
networks: a CNN for classifying CIFAR-10 dataset images, an
LSTMnetwork for character level languagemodeling, and a GAN
for image synthesis based on the MNIST dataset.

CNNs have become a central tool for many domains in
computer vision and also for other applications such as audio
analysis in the frequency domain. Their power stems from the
translation-invariant weight sharing that significantly reduces
the number of parameters needed to extract relevant features
from images. As shown in Figure 4A, the investigated network
consists of three sets of two convolution layers with ReLU
(rectified linear unit) activation followed by max-pooling and
dropout, and three fully-connected layers at the end. This
network has approximately 1.5 million trainable parameters
in total (see section A.3.2 and Supplementary Note 7). The
convolution layer weights are mapped to the PCM devices of
the computational memory crossbar arrays by unrolling the filter
weights and stacking them to form a 2D matrix (Gokmen et al.,
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FIGURE 4 | MCA training validation on complex networks. (A) Convolutional neural network for image classification on CIFAR-10 dataset used for MCA training

simulations. The two convolution layers followed by maxpooling and dropout are repeated thrice, and are followed by three fully-connected layers. (B) The

classification performance on the training and the test datasets during training. It can be seen that the test accuracy corresponding to MCA-based training eventually

exceeds that from the high-precision (FP32) training. (C) The maximal training and test accuracies obtained as a function of the dropout rates. In the absence of

dropout, MCA-based training significantly outperforms FP32-based training. (D) The LSTM network used for MCA training simulations. Two LSTM cells with 512

hidden units followed by a fully-connected (FC) layer are used. (E) The BPC as a function of the epoch number on training and validation sets shows that after 100

epochs, the validation BPC is comparable between the MCA and FP32 approaches. The network uses a dropout rate of 0.15 between non-recurring connections. (F)

The best BPC obtained after training as a function of the dropout rate indicates that without any dropout, MCA-based training delivers better test performance (lower

BPC) than FP32 training. (G) The GAN network used for MCA training simulations. The generator and discriminator networks are fully-connected. The discriminator

and the generator are trained intermittently using real images from the MNIST dataset and the generated images from the generator. (H) The Frechet distance

obtained from MCA training and the generated images are compared to that obtained from the FP32 training. (I) The performance measured in terms of the Frechet

distance as a function of the number of epochs obtained for different mini-batch sizes and optimizers for FP32 training. To obtain convergence, mini-batch size >1

and the use of momentum are necessary in the training of the GAN.

2017). The network is trained on the CIFAR-10 classification
benchmark dataset. The training and test classification accuracies
as a function of training epochs are shown in Figure 4B. The
maximal test accuracy of the network trained via MCA (86.46 ±
0.25%) is similar to that obtained from equivalent high-precision
training using 32-bit floating-point precision (FP32) (86.24 ±

0.19%). However, this is achieved while having a significantly
lower training accuracy for MCA, which is suggestive of some
beneficial regularization effects arising from the use of stochastic
PCM devices to represent synaptic weights. To understand this
regularization effect further, we investigated themaximal training
and test accuracies as a function of the dropout rates (see
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Figure 4C) (see section A.3.3 for more details). It was found
that the optimal dropout rate for the network trained via MCA
is lower than that for the network trained in FP32. Indeed,
if the dropout rate is tuned properly, the test accuracy of the
network trained in FP32 could marginally outperform that of the
one trained with MCA. Without any dropout, the MCA-trained
network outperforms the one trained via FP32 which suffers from
significant overfitting.

LSTM networks are a class of recurrent neural networks used
mainly for language modeling and temporal sequence learning.
The LSTM cells are a natural fit for crossbar arrays, as they
basically consist of fully-connected layers (Li et al., 2019). We
use a popular benchmark dataset called Penn Treebank (PTB)
(Marcus et al., 1993) for training the LSTM network (Figure 4D)
usingMCA. The network consists of two LSTMmodules, stacked
with a final fully-connected layer, and has a total of 3.3 million
trainable parameters (see Supplementary Note 7). The network
is trained using sequences of text from the PTB dataset to predict
the next character in the sequence. The network response is a
probability distribution for the next character in the sequence.
The performance in a character level language modeling task is
commonly measured using bits-per-character (BPC), which is a
measure of howwell themodel is able to predict samples from the
true underlying probability distribution of the dataset. A lower
BPC corresponds to a better model. TheMCA based training and
validation curves are shown in Figure 4E (see section A.3.4 for
details). While the validation BPC from MCA and FP32 at the
end of training are comparable, the difference between training
and validation BPC is significantly smaller in MCA. The BPC
obtained on the test set after MCA and FP32 training for different
dropout rates are shown in Figure 4F. The optimal dropout rate
that gives the lowest BPC for MCA is found to be lower than
that for FP32, indicating regularization effects similar to those
observed in the case of the CNN.

GANs are neural networks trained using an recently proposed
adversarial training method (Goodfellow et al., 2014). The
investigated network has two parts: a generator network that
receives random noise as input and attempts to replicate the
distribution of the training dataset and a discriminator network
that attempts to distinguish between the training (real) images
and the generated (fake) images. The network is deemed
converged when the discriminator is no longer able to distinguish
between the real and the fake images. Using the MNIST dataset,
we successfully trained the GAN network shown in Figure 4G

with MCA (see section A.3.6 for details). The performance of
the generator to replicate the training dataset distribution is
often evaluated using the Frechet distance (FD) (Liu et al.,
2018). Even though the FD achieved by MCA training is slightly
higher than that of FP32 training, the resulting generated images
appear quite similar (see Figure 4H). The training of GANs is
particularly sensitive to the mini-batch size and the choice of
optimizers, even when training in FP32. As shown in Figure 4I,
the solution converges to an optimal value only in the case of
a mini-batch size of 100 and when stochastic gradient descent
with momentum is used; we observed that the solution diverges
in the other cases. Compared to alternate in-memory computing
approaches where both the propagation and weight updates are

performed in the analog domain (Ambrogio et al., 2018), a
significant advantage of the proposedMCA approach is its ability
to seamlessly incorporate these more sophisticated optimizers as
well as the use of mini-batch sizes larger than one during training.

3. DISCUSSION

We demonstrated via experiments and simulations that the
MCA can train PCM based analog synapses in DNNs to
achieve accuracies comparable to those from the floating-point
software training baselines. Here, we assess the overall system
efficiency of the MCA for an exemplary problem and discuss
pathways for achieving performance superiority as a general
deep learning accelerator. We designed an application specific
integrated circuit (ASIC) in 14 nm low power plus (14LPP)
technology to perform the digital computations in the MCA
and estimated the training energy per image, including that
spent in the computationalmemory and the associated peripheral
circuits (designed in 14LPP as well). The implementation
was designed for the two-layer perceptron performing MNIST
handwritten digit classification used in the experiments of section
2.3. For reference, an equivalent high-precision ASIC training
engine was designed in 14LPP using 32-bit fixed-point format
for data and computations with an effective throughput of
43k images/s at 0.62W power consumption (see section A.4
and Supplementary Note 8 for details). In both designs, all
the digital memory necessary for training was implemented
with on-chip static random-access memory. The MCA design
resulted in 269× improvement in energy consumption for
the forward and backward stages of training. Since the high-
precision weight update computation and accumulation are the
primary bottleneck for computational efficiency in the MCA, we
implemented the outer-products for weight update computation
using low-precision versions of the neuron activations and back-
propagated errors (Hubara et al., 2017; Zhang et al., 2017; Wu
et al., 2018), achieving comparable test accuracy with respect
to the experiment of section 2.3 (see Supplementary Note 8).
Activation and error vectors were represented using signed 3-bit
numbers and shared scaling factors. The resulting weight update
matrices were sparse with <1% non-zero entries on average.
This proportionally reduced accesses to the 32-bit χ memory
allocated for accumulating the weight updates. Necessary scaling
operations for the non-zero entries were implemented using bit-
shifts (Lin et al., 2016; Wu et al., 2018), thereby reducing the
computing time and hardware complexity. Additional device
programming overhead was negligible, since on average only one
PCM device out of the array was programmed every two training
images. This allowed the device programming to be executed
in parallel to the weight update computation in the digital
unit, without incurring additional time overhead. In contrast
to the hardware experiment, the weight refresh operation was
distributed across training examples as opposed to periodically
refreshing the whole array during training, which allowed it to
be performed in parallel with the weight update computation in
the digital unit (see Supplementary Note 8). These optimizations
resulted in 139× improvement in the energy consumption of the
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TABLE 1 | Energy and time estimated based on application specific integrated circuit (ASIC) designs for processing one training image in MCA and corresponding fully

digital 32-bit and mixed-precision designs.

Architecture Parameter Forward propagation Backward propagation Weight update Total

32-bit design
Energy 5.62µJ 0.09µJ 8.64µJ 14.35µJ

Time 7.31µs 0.59µs 15.36µs 23.27µs

Fully digital mixed-precision design Energy 1.78µJ 0.016µJ 0.076µJ 1.87µJ

(4-bit weights, 8-bit activations/errors) Time 6.41µs 0.13µs 0.79µs 7.33µs

MCA—computational memory
Energy 7.29 nJ 2.15 nJ 0.05 nJ

Time 0.27µs 0.13µs –

MCA—digital unit
Energy 8.97 nJ 2.76 nJ 61.98 nJ

Time 0.34µs 0.09µs 1.19µs

MCA—total
Energy 16.3 nJ 4.91 nJ 62.03 nJ 83.2 nJ

Time 0.61µs 0.22µs 1.19µs 2.02 µs

The numbers are for a specific two-layer perceptron with 785 input neurons, 250 hidden neurons, and 10 output neurons.

weight update stage in MCA with respect to the 32-bit design.
Combining the three stages, the MCA consumed 83.2 nJ per
image at 495 k images/s, resulting in a 11.5× higher throughput
at 172× lower energy consumption with respect to the 32-bit
implementation (see Table 1). We also compared the MCA with
a fully digital mixed-precision ASIC in 14LPP, which uses 4-
bit weights and 8-bit activations/errors for the data propagation
stages. This design uses the same weight update implementation
as the MCA design, but replaces the computational memory
by a digital multiply-accumulate unit. The MCA achieves an
overall energy efficiency gain of 22× with respect to this digital
mixed-precision design (see section A.4). The energy estimates
of the MCA on MNIST for inference-only (16.3 nJ/image) and
training (83.2 nJ/image) may be on par or better compared with
alternate architectures achieving similar accuracies (Bavandpour
et al., 2018; Marinella et al., 2018; Chang et al., 2019; Park
et al., 2019; Hirtzlin et al., 2020). For training, our approach
compares favorably with a digital spiking neural network (254.3
nJ/image) (Park et al., 2019) and is also close to an analog-
only approach using 3T1C+PCM synaptic devices (48 nJ/image)
(Chang et al., 2019). However, there are notable differences
in the technology nodes, methods of energy estimation, actual
computations and network size involved in each design, making
accurate comparisons with those alternate approaches difficult
to provide.

While the above study was limited to a simple two-layer
perceptron, deep learning with MCA could generally have
the following benefits over fully digital implementations. For
larger networks, digital deep learning accelerators as well as
the MCA will have to rely on dynamic random-access memory
(DRAM) to store the model parameters, activations, and errors,
which will significantly increase the cost of access to those
variables compared with on-chip SRAM. Hence, implementing
DNN weights in nanoscale memory devices could enable large
neural networks to be fit on-chip without expensive off-chip
communication during the data propagations. Analog crossbar
arrays implementing matrix-vector multiplications in O(1) time
permit orders of magnitude computational acceleration of
the data-propagation stages (Gokmen and Vlasov, 2016; Li
et al., 2018b; Merrikh-Bayat et al., 2018). Analog in-memory

processing is a desirable trade-off of numerical precision for
computational energy efficiency, as a growing number of DNN
architectures are being demonstrated to support low precision
weights (Courbariaux et al., 2015; Choi et al., 2019). In contrast to
digital mixed-precision ASIC implementations, where the same
resources are shared among all the computations, the dedicated
weight layers in MCA permit more efficient inter and intra layer
pipelines (Shafiee et al., 2016; Song et al., 2017). Handling the
control of such pipelines for training various network topologies
adequately with optimized array-to-array communication, which
is a non-trivial task, will be crucial in harnessing the efficiency
of the MCA for deep learning. Compared with the fully analog
accelerators being explored (Agarwal et al., 2017; Kim et al.,
2017; Ambrogio et al., 2018), the MCA requires an additional
high-precision digital memory of same size as the model, and
the need to access that memory during the weight update stage.
However, the digital implementation of the optimizer in the
MCA provides high-precision gradient accumulation and the
flexibility to realize a wide class of optimization algorithms,
which are highly desirable in a general deep learning accelerator.
Moreover, the MCA significantly relaxes the analog synaptic
device requirements, particularly those related to linearity,
variability, and update precision to realize high-performance
learning machines. In contrast to the periodic carry approach
(Agarwal et al., 2017; Ambrogio et al., 2018), it avoids the need
of reprogramming all the weights at specific intervals during
training (except for a small number of devices during weight
refresh). Instead, single-shot blind pulses are applied to chosen
synapses at every weight update, resulting in sparse device
programming. This relaxes the overall reliability and endurance
requirements of the nanoscale devices and reduces the time and
energy spent to program them.

In summary, we proposed a mixed-precision computational
memory architecture for training DNNs and experimentally
demonstrated its ability to deliver performance close to
equivalent 64-bit floating-point simulations.We used a prototype
phase-change memory (PCM) chip to perform the training of a
two-layer perceptron containing 198,760 synapses on theMNIST
dataset. We further validated the approach by training a CNN on
the CIFAR-10 dataset, an LSTM network on the Penn Treebank
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dataset, and a GAN to generate MNIST digits. The training
of these larger networks was performed through simulations
using a PCM behavioral model that matches the characteristics
of our prototype array, and achieved accuracy close to 32-bit
software training in all the three cases. The proposed architecture
decouples the optimization algorithm and its hyperparameters
from the device update precision, allowing it to be employed with
a wide range of non-volatile memory devices without resorting
to complex device-specific hyperparameter tuning for achieving
satisfactory learning performance. We also showed evidence for
inherent regularization effects originating from the non-linear
and stochastic behavior of these devices that is indicative of
futuristic learning machines exploiting rather than overcoming
the underlying operating characteristics of nanoscale devices.
These results show that the proposed architecture can be used
to train a wide range of DNNs in a reliable and flexible manner
with existing memristive devices, offering a pathway toward
more energy-efficient deep learning than with general-purpose
computing systems.
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A. METHODS

A.1. PCM-Based Hardware Platform
The experimental hardware platform is built around a prototype
phase-change memory (PCM) chip that contains 3 million PCM
devices (Close et al., 2010). The PCM devices are based on
doped Ge2Sb2Te5 (GST) and are integrated into the chip in
90 nm CMOS baseline technology. In addition to the PCM
devices, the chip integrates the circuitry for device addressing,
on-chip ADC for device readout, and voltage- or current-mode
device programming. The experimental platform comprises a
high-performance analog-front-end (AFE) board that contains
a number of digital-to-analog converters (DACs) along with
discrete electronics such as power supplies, voltage and current
reference sources. It also comprises an FPGA board that
implements the data acquisition and the digital logic to interface
with the PCM device under test and with all the electronics of
the AFE board. The FPGA board also contains an embedded
processor and ethernet connection that implement the overall
system control and data management as well as the interface
with the host computer. The embedded microcode allows
the execution of the multi-device programming and readout
experiments that implement the matrix-vector multiplications
and weight updates on the PCM chip. The hardware modules
implement the interface with the external DACs used to provide
various voltages to the chip for programming and readout, as
well as the interface with the memory device under test, i.e.,
the addressing interface, the programming-mode, or read-mode
interfaces, etc.

The PCM device array is organized as a matrix of 512 word
lines (WL) and 2,048 bit lines (BL). Each individual device along
with its access transistor occupies an area of 50 F2 (F is the
technology feature size, F = 90 nm). The PCM devices were
integrated into the chip in 90 nm CMOS technology using a sub-
lithographic key-hole transfer process (Breitwisch et al., 2007).
The bottom electrode has a radius of ∼ 20 nm and a length of
∼ 65 nm. The phase change material is ∼ 100 nm thick and
extends to the top electrode, whose radius is ∼ 100 nm. The
selection of one PCM device is done by serially addressing a WL
and a BL. The addresses are decoded and they then drive the
WL driver and the BL multiplexer. The single selected device
can be programmed by forcing a current through the BL with
a voltage-controlled current source. For reading a PCM device,
the selected BL is biased to a constant voltage of 300 mV by
a voltage regulator via a voltage Vread generated off-chip. The
sensed current, Iread, is integrated by a capacitor, and the resulting
voltage is then digitized by the on-chip 8-bit cyclic ADC. The
total time of one read is 1µs. The readout characteristic is
calibrated via the use of on-chip reference polysilicon resistors.
For programming a PCM device, a voltage Vprog generated off-
chip is converted on-chip into a programming current, Iprog.
This current is then mirrored into the selected BL for the
desired duration of the programming pulse. Each programming
pulse is a box-type rectangular pulse with duration of 10 ns
to 400 ns and amplitude varying between 0 and 500µA. The
access-device gate voltage (WL voltage) is kept high at 2.75V
during programming. Iterative programming, which is used for

device initialization in our experiments, is achieved by applying
a sequence of programming pulses (Papandreou et al., 2011).
After each programming pulse, a verify step is performed and the
value of the device conductance programmed in the preceding
iteration is read at a voltage of 0.2 V. The programming current
applied to the PCM device in the subsequent iteration is adapted
according to the sign of the value of the error between the target
level and read value of the device conductance. The programming
sequence ends when the error between the target conductance
and the programmed conductance of the device is smaller than a
desired margin or when the maximum number of iterations (20)
has been reached. The total time of one program-and-verify step
is approximately 2.5µs.

A.2. Mixed-Precision Training Experiment
A.2.1. Network Details
The network used in the experiment had 784 inputs and 1
bias at the input layer, 250 sigmoid neurons and 1 bias at the
hidden layer, and 10 sigmoid neurons at the output layer. The
network was trained by minimizing the mean square error loss
function with stochastic gradient descent (SGD). The network
was trained with a batch size of 1, meaning that the weight
updates were computed after every training example. We used a
fixed learning rate of 0.4.We used the fullMNIST training dataset
of 60,000 images for training the network, and the test dataset
of 10,000 images for computing the test accuracy. The order of
the images was randomized for each training epoch. Apart from
normalizing the gray-scale images, no additional pre-processing
was performed on the training and test sets.

A.2.2. Differential PCM Experiment
397,520 devices were used from the PCM hardware platform
to represent the two-layer network (Figure 3A) weights in a
differential configuration. The devices were initialized to a
conductance distribution with mean of 1.6µS and standard
deviation of 0.83µS via iterative programming. Since the
platform allowed only serial access to the devices, all the
conductance values were read from hardware and reported to the
software that performed the forward and backward propagations.
The weight updates were computed and accumulated in the χ

memory in software. When the magnitude of χ exceeded ǫ for
a particular weight, a 50 ns pulse with an amplitude of 90µA
was applied to the corresponding device (Gp or Gn, depending
on the sign of χ) of the PCM chip. The synaptic conductance to
weight conversion was performed by a linear mapping between
[−8µS, 8µS] in the conductance domain and [−1, 1] in the
weight domain.

The PCM devices exhibit temporal variations in the
conductance values such as conductance drift and read noise.
As a result, each matrix multiplication in every layer will see a
slightly different weight matrix even in the absence of any weight
update. However, the cost of re-reading the entire conductance
array for every matrix-vector multiplication in our experiment
was prohibitively large due to the serial interface. Therefore,
after each programming event to the PCM array, we read the
conductance values of a subset of all the PCM devices along with
the programmed device. Specifically, we read all the devices in the
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second layer and a set of 785 pairs of devices from the first layer
in a round robin fashion after every device programming event.
This approach faithfully captures the effects of PCM hardware
noise and drift in the network propagations during training. For
the weight refresh operation, the conductance pairs in software
were verified every 100 training examples and if one of the
device conductance values was above 8µS and if their difference
was less than 6µS, both the devices were RESET using 500 ns,
360µA pulses and their difference was converted to a number
of SET pulses based on an average observed conductance change
per pulse. During this weight refresh, the maximum number of
pulses was limited to 3 and the pulses were applied to Gp or Gn

depending on the sign of their initial conductance difference.

A.2.3. Inference After Training
After training, all the PCM conductance values realizing the
weights of the two-layer perceptron are read at different time
intervals and used to evaluate the classification accuracy on the
60,000 MNIST training images and 10,000 test images. Despite
the conductance drift, there was only negligible accuracy drop
over a month. The following factors might be contributing to
this drift tolerance. During on-chip training, different devices
are programmed at different times and are drifting during
the training process. The training algorithm could compensate
for the error created by the conductance drift and could
eventually generate a more drift resilient solution. Furthermore,
the perceptron weights are implemented using the conductance
difference of two PCM devices. This differential configuration
partially compensates the effect of drift (Boybat et al., 2018b).
Also, from the empirical relation for the conductance drift,

we have dG
dt

= G(t) (−ν)
t ∝ 1

t , which means that the
conductance decay over time decreases as we advance in time.
Drift compensation strategies such as using a global scaling factor
(Le Gallo et al., 2018a; Joshi et al., 2020) could also be used in
more complex deep learning models to maintain the accuracy
over extended periods of time.

A.2.4. Non-differential PCM Experiment
A non-differential PCM configuration for the synapse was tested
in the mixed-precision training architecture to implement both
weight increment and decrement by programming the same
device in either direction and hence avoid the conductance
saturation and the associated weight refresh overhead. The non-
accumulative RESET behavior of the PCM device makes its
conductance potentiation and depression highly asymmetric and
hence this experiment also validates tolerance of the mixed-
precision training architecture to such programming asymmetry.
We conducted the same training experiment as before for the
MNIST digit classification, except that now each synapse was
realized using a single PCM with a reference level to realize
bipolar weights. The experiment requires 198,760 PCM devices.
Potentiation is implemented by 90µA, 50 ns SET pulses and
depression is implemented using 400µA, 50 ns RESET pulses. In
the mixed-precision architecture, this asymmetric conductance
update behavior is compensated for by using different ǫs for
potentiation and depression. We used ǫP corresponding to

0.77µS for weight increment and ǫD corresponding to 8µS for
weight decrement.

In order to achieve bipolar weights with non-differential
synapses, a reference conductance level must be introduced.
Ideally, this reference level could be implemented using any
resistive device which is one time programmed to the necessary
conductance level. In the case of PCM devices, due to their
conductance drift, it is more suitable to implement the reference
level using the PCM technology which follows the same average
drift behavior of the devices that represent the synapses. In
this experiment, we used the average conductance of all the
PCM devices read from the array to represent the reference
conductance level (Gref ), and hence the network weights W ∝

(G − Gref ). This reference level may be potentially realized in
a crossbar architecture by reserving a column on which all the
devices are programmed to Gref . Gref corresponds to half the
device conductance range and denotes the conductance that will
be mapped to zero weight value. The current from the Gref

column can be subtracted from the currents of the columns of
synaptic devices. For the experiment, the devices are initialized
to a distribution with mean conductance of 4.5µS and standard
deviation of 1.25µS. While a narrower distribution was desirable
(Glorot and Bengio, 2010), it was difficult to achieve in the
chosen initialization range. However, this was compensated by
mapping the conductance values to a narrower weight range at
the beginning of the training. This weight range is progressively
relaxed over the next few epochs. The conductance range [0.1,
8]µS is mapped to [−0.7, 0.7] during epoch 1. Thereafter, the
range is incremented in uniform steps/epoch to [−1, 1] by epoch
3 and is held constant thereafter. Also, the mean value of the
initial conductance distribution was chosen to be slightly higher
than the midpoint of the conductance range to compensate for
the conductance drift. Irrespective of the conductance change
asymmetry, the training in MCA achieves a maximum training
accuracy of 98.77% and a maximum test accuracy of 97.47% in
30 epochs (see Supplementary Figure 1).

A.3. Training Simulations of Larger
Networks With PCM Model
A.3.1. Simulator
The simulator is implemented as an extension to the Tensorflow
deep learning framework. The Tensorflow operations that can
be implemented on computational memory are replaced with
custom implementations. For example, the Ohm’s law and
Kirchhoff’s circuit laws replace the matrix-vector multiplications
and are implemented based on the PCM model described in
section 2.2. The various non-idealities associated with the PCM
devices such as limited conductance range, read noise and
conductance drift as well as the quantization effects arising from
the data converters (with 8-bit quantization) are incorporated
while performing thematrix-vector multiplications. The synaptic
weight update routines are also replaced with custom ones that
implement the mixed-precision weight update accumulation and
stochastic conductance update using the model of the PCM
described in section 2.2. In the matrix-vector multiplication
operations, the weight matrix represented using stochastic PCM
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devices is multiplied by 8-bit fixed-point neuron activations
or normalized 8-bit fixed-point error vectors. Since the analog
current accumulation along the wires in the computational
memory unit can be assumed to have arbitrary precision,
the matrix-vector multiplication between the noisy modeled
PCM weights and quantized inputs is computed in 32-bit
floating-point. In order to model the peripheral analog to
digital conversion, the matrix-vector multiplication results are
quantized back to 8-bit fixed-point. We evaluated the effect of
ADC precision on DNN training performance based on the
MNIST handwritten digit classification problem (Nandakumar
et al., 2018b). The accuracy loss due to quantization was
estimated to be approximately 0.1% in MCA for 8-bit ADC,
which progressively increases with reduced precision. It is
possible to reduce the ADC precision down to 4-bit at the cost of
a few percentage drop in accuracy for reduced circuit complexity.
However, we chose to maintain an 8-bit ADC precision for the
training of networks to maintain comparable accuracies with the
32-bit precision baseline. The remaining training operations such
as activations, dropout, pooling, andweight update computations
use 32-bit floating-point precision.

Hence, these operations use original Tensorflow
implementations in the current simulations and can be
performed in the digital unit of the MCA in its eventual
hardware implementation. Additional details on the simulator
can be found in Supplementary Note 6.

A.3.2. CNN
The CNN used for the simulation study has nine layers—
six convolution layers and three fully-connected layers (Kaur,
2017). A pooling layer is inserted after every two convolution
layers. Together, the network has approximately 1.5 million
parameters. ReLU activation is used at all convolution and
fully-connected layers and softmax activation is used at the
output layer. Dropout regularization technique was employed
after the pooling layers and in-between the fully-connected layers
(see Supplementary Note 7). To map the convolution kernels
to crossbar arrays, the filters are stretched out to 1D arrays
and horizontally stacked on the memristive crossbar (Gokmen
et al., 2017). The different image patches are extracted from the
input image, stretched out and finally rearranged to form the
columns of a largematrix. The convolution can now be computed
by performing the matrix-matrix multiplication between these
two matrices and subsequently, reordering the output. In other
words, the forward propagation of neuron activations and the
backward propagation of the errors can be implemented as
matrix-vector multiplications. During the extraction process of
the image patches, the original image is padded with zero pixels
at the border, to ensure that the output of the convolution layer
has the same image size as the input. Considering an input image
of size n × n and d channels and m convolution kernels of
size k × k, the dimensions of the input matrix is dk2 × n2 and
the dimensions of the matrix on the crossbar array is dk2 × m.
The convolution operation can therefore be performed in n2

matrix-vector multiplication cycles.
The FP32 baseline and the MCA implementation of the

CNN were trained using SGD with a minibatch size of 100

and cross-entropy loss function. Light data augmentation was
employed in the form of random image flipping and random
adjustments of brightness and contrast to the training dataset.
We used a learning rate of 0.03, which was dropped by a
factor of 0.1 at epoch 200. In the MCA implementation,
the weight updates computed from all the weight layers
were accumulated in χ and were subsequently transferred
to the modeled PCM devices organized in crossbar arrays
(see Supplementary Note 7). The pooling operations of the
CNN were performed in the conventional digital domain.
Conductance refresh was performed after every 51 batches in the
MCA implementation.

A.3.3. Testing of the Regularization Effect Observed

During Training of the CNN
We observed that MCA achieves higher test accuracy with
lower training accuracy compared to the FP32 training. This is
a desirable effect referred to as regularization and techniques
such as dropout are typically employed to achieve this. We
suspected that the stochastic nature of the synaptic device
prevents an over-fitting in this architecture and hence allows
to generalize better. To test this hypothesis, we ran both
FP32 and MCA training simulations using varying dropout
factors while keeping the other hyperparameters to be the
same. We scale both dropout rates (0.5 between the fully-
connected and 0.25 after the pooling layers) with a scaling
factor which takes the values 0.0, 0.2, 0.4, 0.8, 1.0, 1.2, and 1.4. The
resulting maximal test accuracies are depicted in Figure 4C. As
dropout rates are reduced, MCA training achieves higher test
accuracies compared with FP32 training, indicating the inherent
regularization achieved via MCA.

A.3.4. LSTM
The LSTM network trained using MCA for the task of character-
level language modeling contains roughly 3.3 million parameters
(Figure 4D). An LSTM cell takes as input a hidden state from the
previous time step hlt−1 and the training data xt or the hidden

state from the previous layer hl−1
t and generates a new hidden

state hlt and updates a cell state cl using the weights wl
f
, wl

i, w
l
g ,

wl
o, for l = 1, 2 according to the following relations:
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(A1)

clt = ft ⊙ clt−1 + it ⊙ gt (A2)

hlt = ot ⊙ tanh(clt) (A3)

where sigmoid (σ ) and tanh are applied element-wise and ⊙ is
the element-wise multiplication. W is obtained by stacking wl

f
,

wl
i, w

l
g , w

l
o. it , ft , ot , gt , h

l
t , and clt are of dimension n = 512

and xt is of dimension m = 50. The weight matrix, W, is of
dimension 4n×(n+m) in the first layer and 4n×2n in the second
layer. bl is a 4n-dimensional bias vector. Dropout is applied to the
non-recurrent connections (i.e., at the output of each LSTM cell)
(Zaremba et al., 2014). The output of the second LSTM cell is fed
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through a fully-connected layer with 50 output neurons and then
through a softmax activation unit.

The PTB dataset has 5.1 million characters for training, 400
k characters for validation, and 450 k character for testing. The
vocabulary contains 50 different characters and the data is fed
into the network as one-hot encoded vectors of dimension (50×
1), without any embedding. Each vector has a single distinct
location marked as 1 and the rest are all zeros.

The FP32 baseline and the MCA implementation of the
LSTM network were trained using SGD with a batch size of 32,
backpropagation-through-time steps of 100, and cross-entropy
loss function. We used a learning rate of 2.0, which was dropped
by a factor of 0.25 at epochs 40 and 80. The training performance
is evaluated using the bits-per-character (BPC) metric, which is
the average cross-entropy loss evaluated with base 2 logarithm.
In the MCA implementation, the weights in all the layers are
represented and trained using PCM device models organized
in crossbar arrays (see Supplementary Note 7). The remaining
gating operations are performed in the conventional digital
domain. Conductance refresh was performed after every 11
batches in the MCA implementation.

A.3.5. Testing the Regularization Effect During

Training of the LSTM
To study the regularization effect, the LSTM network was trained
with different dropout rates, from 0.0 to 0.25 in steps of 0.05. The
resultingminimal training and test BPC can be seen in Figure 4F.
The performance on the test dataset was less sensitive to the
dropout rate in MCA and it achieved lower BPC without any
dropout compared to FP32 based training. This result is also
consistent with previously reported studies of training LSTMs
using memristive crossbars (Gokmen et al., 2018). Considering
the rather low number of parameters in the network, the test
BPC results compare favorably with the current state-of-the-art
methods (Merity et al., 2018).

A.3.6. GAN
A multi-layer perceptron (MLP) implementation of GAN
(Goodfellow et al., 2014) was employed with approximately 4
million trainable parameters. The generator has two hidden
layers with ReLU activations and an output layer of sigmoid
activation. The discriminator has two hidden layers with Maxout
activations (maximumout of its five inputs) and a sigmoid output
layer. Due to the large number of parameters in the discriminator,
we used dropout regularization with dropout rates 20% and 30%,
respectively after its first and second hidden layers. The GAN
is trained using 50,000 images from the MNIST dataset and its
performance is evaluated using 10,000 test images. GLOSS and
DLOSS, which represent the loss functions minimized to train the
generator and discriminator respectively, are as follows:

GLOSS =
∑

log(D(G(z)) (A4)

DLOSS =
∑

(log(D(x))+ log(1− D(G(z)))) (A5)

where, x and z respectively are the MNIST images and the
random input noise. G(.) and D(.) represent the generator

and the discriminator networks and summation is over the
training samples.

The training performance of the GAN is evaluated using the
Frechet distance (FD), a metric that is robust even in the presence
of common failuremodes in GAN (Heusel et al., 2017; Lucic et al.,
2017; Liu et al., 2018). FD makes use of features extracted from a
particular layer in a CNN trained to classify the training dataset
(Shor, 2017).

FD = ||µX − µG||
2
2 + Tr(CX + CG − 2(CX × CG)

1/2) (A6)

µX and µG denote the mean values of features computed for the
train/test dataset and the generated dataset, respectively. CX and
CG are covariancematrices of features computed for the train/test
dataset and the generated dataset, respectively. Tr is the trace
operator over a matrix and ||.||2 is the 2-norm operator.

The generator and the discriminator networks were trained
using SGD with a minibatch size of 100, a learning rate of
0.1, and a momentum of 0.5 in FP32 baseline and MCA. An
exponential learning rate decay with a decay rate of 0.996 was
employed after every epoch until it reaches 10−6. In the MCA
implementation, the weights in all the layers are represented
and trained using PCM device models organized in crossbar
arrays (see Supplementary Note 7 for more details on training).
Conductance refresh was performed after every 11 batches in the
MCA implementation.

A.3.7. Study of Batch Size and Optimizer for GAN
To study the sensitivity of training GANs to the mini-batch size
and the choice of optimizer used for training, we trained FP32
(baseline) GAN implementation with two mini-batch sizes of 1
and 100 and with two different optimizer types: SGD without
momentum and SGD with momentum while keeping all the
other hyper-parameters the same. Figure 4I compares results in
these cases. Non-unity batch size with momentum was necessary
to train the GAN successfully in our case. In all the other cases
the solution seems to diverge; the discriminator loss goes to zero
and the generator loss diverges. Similar behavior is observed
frequently in generative networks (Arjovsky et al., 2017).

A.4. Energy Estimation of MCA and
Comparison
The energy efficiency of the MCA compared with a
conventional 32-bit fixed-point digital design and a digital
mixed-precision design for training was evaluated using
respective ASIC implementations in 14LPP technology (see
Supplementary Note 8). The three designs were customized to
perform the training operations of a two-layer perceptron trained
to classify MNIST handwritten digits. They also accommodated
all the necessary SRAM memory on-chip, avoiding the cost of
off-chip memory access. The network had 784 inputs, 250 hidden
neurons, and 10 output neurons as in the training experiment
presented in section 2.3. For simplicity of the ASIC design, we
used ReLU activations for the hidden layer neurons and L2SVM
(Tang, 2013) for the error computation at the output layer. The
network was trained using SGD with a batch size of 1.

Cycle-accurate register transfer level (RTL) models of the
32-bit all-digital design, digital mixed-precision design, and
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the digital unit of the MCA were developed. A testbench
infrastructure was then built to verify the correct behavior of
the models using the Cadence NCsim simulator. Once the
behavior was verified, the RTL models were synthesized in
Samsung 14LPP technology using Cadence Genus Synthesis
Solution software. The synthesized netlists were then imported
to Cadence Innovus software where the netlists were subjected
to backend physical design steps of placing, clock tree synthesis,
and routing. At the end of routing, the post route netlists were
exported with which post route simulations were carried out
in NCsim simulator. During each simulation, an activity file is
generated which contain toggle count data for all the nets in the
netlist. The activity data along with the parasitics extracted from
the netlist were used to perform an accurate power estimation
on the post route design for each stage of operation (forward
propagation, backward propagation, weight update), with the
Innovus software. For power estimation, a supply voltage of
0.72V was used in the designs while an operating frequency
of 500MHz was used to clock the fully digital designs and the
digital unit of MCA. Power numbers were then converted to
energy by multiplying by respective time windows. The energy
estimations from the digital unit were combined with those from
the computational memory to determine the overall performance
of the MCA implementation. The computational memory unit of
the MCA was designed separately with the necessary peripheral
circuits to integrate it with the digital unit of the MCA. Note
that most of the memristive device technologies including PCM
are amenable to back end of line (BEOL) integration, thus
enabling their integration with mainstream front end CMOS
technology. This allows the crossbar array peripheral circuits to
be designed in 14LPP. To support the device programming, a
separate power supply line might be necessary. Larger currents
where necessary can be supported by fabricating wider or a
parallel combination of transistors. Operating at 2GHz, the
computational memory unit used 16-bit wide bus for data
transfer, pulse width modulators to apply digital variables as
analog voltages to the input of the crossbar array, and ADCs
to read the resulting output currents. The time and energy
consumption of the peripheral circuits were obtained from circuit
simulations in 14LPP technology. The energy consumption of the
analog computation was estimated assuming the average device
conductance of 2.32µS observed from the hardware training
experiment. The average programming energy for the PCM
conductance updates in the computational memory unit was
estimated based on the SET and RESET (for weight refresh) pulse
statistics from the training experiment. The device programming
was executed in parallel to the weight update computation
in the digital unit. In contrast to the hardware experiment,
the weight refresh operation was distributed across training

examples as opposed to periodically refreshing the whole array
during training, which allowed it to be performed in parallel
with the weight update computation in the digital unit (see
Supplementary Note 8).

The details on the design of the three training architectures
and the corresponding energy estimations can be found in
Supplementary Note 8. A summary of energy and computing
time for the forward and backward data propagations and
the weight update stages for the designs are listed in Table 1.
The energy and time are reported as average numbers for
a single training example. Since the designs are operating at
different precisions, throughput is reported as training examples
processed per second. The baseline 32-bit implementation
consumed 14.35µJ with a throughput of 43k images per second.
Computational memory enabled an average energy gain of 269
and an acceleration of 9.50 for the forward and backward
propagation stages with respect to the 32-bit design. The low-
precision implementation of the outer product led to reduced
precision multipliers (3-bit compared to 32-bit) and sparse
access to the 32-bit χ memory. These factors led to 139×
improvement in energy consumption for the digital weight
update accumulation stage in MCA, with 2130 non-zero updates
to the χ memory being performed per training image. We
verified via training simulations using the PCM model that the
low-precision outer product optimization of the weight update
could maintain comparable test accuracy as that from the PCM
hardware training experiment (see Supplementary Note 8).
Energy consumption due to the PCM programming in the
computational memory was negligible compared with the energy
spent in the digital unit of MCA for the weight update stage.
Overall, the MCA consumed 83.2 nJ per image and achieved
495k images/s throughput. The digital mixed-precision design
followed a similar architecture as that of the MCA. However, the
computational memory was replaced by a multiply-accumulate
unit for the data propagation stages, optimized to use 4-bit
weights and 8-bit activations or errors. Note that activations and
error vectors have additional bit-shift based scaling factors to
represent their actual magnitude. The digital mixed-precision
design had the same reduced precision weight update scheme
as the MCA, and hence a similar energy efficiency for weight
updates. However, for the data propagation stages, the 4-bit
weights were obtained from the 32-bit weights read from the on-
chip SRAM. The requirement to read a high-precision memory
for the data propagations is avoided in the in-memory computing
architecture. As a result, MCA maintained an energy efficiency
gain of 85× during the data propagation stages, and 22× overall
with respect to the digital mixed-precision design. The fully
digital mixed-precision design consumed 1.87µJ per training
example with a throughput of 136 k images per second.
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