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Chapter 12
Human Respiratory Syncytial Virus: Biology, 
Epidemiology, and Control

Edison Luiz Durigon, Viviane Fongaro Botosso,  
and Danielle Bruna Leal de Oliveira

1  �Introduction

Acute respiratory infections (ARIs) are the most frequent infectious disease in 
humans, and the great majority of respiratory infections observed in medical prac-
tice around the world are of viral etiology [3, 34, 80]. During the period of 2000 to 
2003, an estimate of 10,600,000 children under the age of 5 years died every year, 
and ARIs were responsible for nearly 19% of these deaths. Most of these fatalities 
were caused by bronchitis and pneumonia associated with viral infections [14, 57, 
106, 119]. Viral respiratory infections are also associated with high morbidity in this 
age group worldwide. For example, 35% of hospitalized children in Brazil, 35% in 
Belgium, 22% in Italy, and 59% in the UK attending pediatric services were the 
result of viral respiratory infections [78, 84, 85, 87, 98].

Currently, the following viruses shall be considered causes of acute respiratory 
illness in children: human respiratory syncytial virus (HRSV); parainfluenza virus 
types 1, 2, 3, and 4 (PIV1, PIV2, PIV3, PIV4); influenza virus types A, B, C (IA, IB, 
IC); adenoviruses (ADV); coronaviruses HCoV-OC43, HCoV-229E, HCoV-HKU1, 
and HCoV-NL64; human rhinovirus (HRV); some subtypes of enterovirus (HEV-
68); human metapneumovirus (hMPV); human bocavirus (HBoV); and WU and KI 
polyomavirus (Fig. 12.1). However, some viruses present high rates of co-detection, 

E.L. Durigon (*) • D.B.L. de Oliveira 
Laboratory of Molecular and Clinical Virology, Department of Microbiology, Institute of 
Biomedical Sciences, University of São Paulo, São Paulo, Brazil
e-mail: eldurigo@usp.br; danibruna@gmail.com 

V.F. Botosso 
Scientific Development Division, Virology Branch, Institute Butantan, São Paulo, Brazil
e-mail: viviane.botosso@butantan.gov.br

mailto:eldurigo@usp.br
mailto:danibruna@gmail.com
mailto:viviane.botosso@butantan.gov.br


236

as is the case of rhinovirus, enterovirus, human coronavirus and bocavirus, and 
polyomavirus, being questioned for its significance in the etiology of these infec-
tions [10, 45, 49, 64, 89, 91, 96, 114].

The seasonality of respiratory viruses is described in several studies, with some 
viral infections taking place throughout the year, such as influenza virus, with a 
predominance in the winter months [96], and others occurring chiefly in the late fall, 
winter, or early spring, such as HPIV, hMPV, HCoV, and HRSV [85, 99, 105, 114]. 
Adenoviruses are found worldwide and can circulate sporadically, endemically, or 
epidemically in the winter, spring, and early summer [103, 105].

Despite the great number of viral agents involved in respiratory infections and 
their importance, the HRSV is the leading cause of acute respiratory infections and 
one of the leading causes of hospitalization and death among children under 5 years 
of age worldwide. Each year, respiratory syncytial virus (RSV) infections lead to 
2,100,000 outpatient attendances and 57,257 hospitalizations of children less than 5 
years of age in the U.S. Additionally, RSV is responsible for 177,000 hospitaliza-
tions with 14,000 deaths among adults over 65 years of age [24].

Newborns, premature infants, and those with chronic lung disease are at greater 
risk of developing severe disease by infection with HRSV [48]. Despite their impor-
tance, there is no vaccine prophylaxis against HRSV infection or effective antiviral 
therapy available. Currently, in Latin America, only palivizumab (Pz) (Synagis; 
MedImmune, Gaithersburg, MD, USA) is being used in the prophylaxis and therapy 
of these infections [68].
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Fig. 12.1  Clinical association with major symptoms of disease and respiratory viruses. In South 
America, studies conducted in different regions of the country indicate the importance of viruses 
as etiological agents of low respiratory infection (LRI). These studies revealed the presence of dif-
ferent respiratory viruses in children and adults, such as human respiratory syncytial virus (HRSV), 
influenza A and B, HPIV, HAdV, HRV, hMPV, hBoV, and HCoV; the percentage of cases among 
children for some type of respiratory viruses ranged between 28.75% and 75%, whereas positivity 
in adults was 61.8% for at least one of the viruses studied [11, 15, 35, 39, 40, 85, 105, 111, 116]
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2  �History of the HRSV

In 1955, an outbreak of respiratory illness characterized by coughing, sneezing, and 
mucopurulent discharge was described in a colony of 20 chimpanzees at the Walter 
Reed Army Institute of Research (WRAIR) (Washington, DC, USA). During that 
episode, the RSV was isolated for the first time from a swab from the throat of a 
female chimpanzee and then called the chimpanzee coryza agent (CCA) [82]. Viral 
isolation was performed in liver cells, later being inoculated in various laboratory 
animals, mice, hamsters, rabbits, rats, and chimpanzees, the latter being the only 
ones to develop specific symptoms.

One of the attendants of the chimpanzees became sick and developed symptoms 
similar to those of the animals. Although the attempt at isolation of human respira-
tory syncytial virus was unsuccessful, an increase in antibody titer by complement 
fixation against CCA was detected. Parallel seroprevalence studies conducted in a 
human general population revealed the presence of antibodies to a new CCA agent 
in teenagers and adults.

The following year, Chanock and colleagues isolated a virus similar to the CCA 
of a child with pneumonia and another with croup, in Baltimore [25, 26]. The agent 
was named human respiratory syncytial virus, HRSV, to reflect its ability to form 
syncytia in cell culture and its tropism for the human respiratory tract.

Serological studies carried out at the time indicated that the majority of children 
in Baltimore had been infected with HRSV before 4 years of age. Similar investiga-
tions in diverse parts of the world indicated that the HRSV was associated with 
diseases of the lower respiratory tract [33]. Currently, HRSV is recognized as the 
viral agent more frequently related to cases of bronchiolitis and pneumonia during 
infancy and preschool age. About 95% of the children have the first HRSV infection 
in the first 2 years of life, and the peak incidence occurs in the first few months [3]. 
Approximately 40% of children develop symptoms of lower respiratory tract 
involvement during the first infection. Although reinfections are common during a 
lifetime, the clinical symptoms in older children and adults are less severe [55].

Some groups of patients are at risk of developing serious illness resulting from 
the lower respiratory tract infection by HRSV; these include children younger than 
6 months of age, premature infants, immunodeficient children, and children with 
chronic lung disease or congenital heart disease [33]. There are also studies relating 
the HRSV to severe infections in the elderly [44, 117].

3  �Classification

The human respiratory syncytial virus (HRSV) is a member of the order 
Mononegavirales (mono, from Greek, meaning “single, simple”; nega, from Latin, 
meaning “RNA negative polarity”; virales, from Latin, meaning virus), classified 
within the Pneumoviridae family and the genus Orthopneumovirus. Other members 
of the Orthopneumovirus genus are the bovine respiratory syncytial virus (BRSV) 
and the pneumonia virus of mice (murine pneumonia virus) [125].
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4  �Structure

The virion is pleomorphic with a diameter of 150–300 nm and is composed of an 
internal nucleocapsid of helical symmetry and an envelope derived from the host 
cytoplasmic membrane; viral glycoproteins that protrude from the envelope as 11- 
to 20-nm projections, separated by intervals of 6–10 nm, are involved in the pro-
cesses of adherence and penetration of the virus. The viral genome is composed of 
a single-stranded RNA molecule, not segmented, and with negative polarity. Each 
infectious particle contains only one functional copy of the genome (Fig. 12.2) [33].

5  �Genomic Organization

The virus contains a single-stranded negative-sense RNA genome with 15,222 
nucleotides (nt), with molecular weight of 5 × 106 Da, which serves as a template 
for transcription of messenger RNAs (mRNAs), encoding for 11 proteins. The 
genome transcription takes place in the 5′ → 3′ direction. The 3′-region of the 
genomic RNA consists of a region of 44 nucleotides that presumably contains the 
viral promoter [81]. The first 30 nt in this region are highly susceptible to inactiva-
tion by the insertion or deletion of nucleotides. This region is followed by 10 genes 
that encode 11 proteins, in the following order: NS1, NS2, N, P, M, SH, G, F, M2, L. 
The last gene, L, is followed by a region that is more tolerant to the insertion or dele-
tion of nucleotides [81].

The first nine genes are separated by inter-gene regions ranging from 1 to 52 nt in size, 
which apparently do not have an important role in the modulation of gene expression and 
show little conservation among isolates [31, 71]. The beginning of each gene contains a 
conserved signal (gene start signal) composed of nine nucleotides, 3′-CCCCGUUUA, 

Fig. 12.2  Human respiratory syncytial virus (HRSV) virion structure
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except for the L gene, which presents the following differences as underlined: 
3′-CCCUGUUUUA. The genes end with a semi-conserved sign (gene end signal) com-
posed of 12 or 13 nucleotides whose sequence is 3′-UCAAUNAAAUUU, which drives 
the end of transcription and polyadenylation. The last two genes, M2 and L, have in com-
mon 68 nt. Consequently, the gene L has the initiation of the transcript inside the M2 gene 
[33]. The M2 has two ORFs (open reading frames), which give rise to proteins M2-1 and 
M2-2. The organization of the gene of HRSV is schematized in Fig. 12.3.

6  �Proteins

In cells infected with HRSV, 11 proteins have been identified. Of these, 2 are nonstruc-
tural proteins, NS1 and NS2, present in abundance in the cells, but in small amounts in 
the virion. The others are structural proteins, M (matrix) and M2-1(transcriptiol elon-
gation factor) proteins, N (nucleoprotein), P (phosphoprotein), L (large polymerase), 
and M22 nucleocapsid viral proteins, and 3 are surface glycoproteins G (attachment), 
F (fusion), and SH (small hydrophobic) [33]. The glycoproteins F and G are highly 
accessible to neutralizing antibodies, resulting in numerous changes in response to the 
host immune pressure [34] and therefore are the most studied.

The NS1 (molecular weight PM, 15.5 kDa) and NS2 (PM, 27 kDa) proteins 
have, respectively, 139 and 124 amino acids, and the genes that encode these have 
532 and 503 nucleotides, respectively. Their functions are not well understood, but 
it is presumed that they are related to the structural regulation of RNA synthesis, the 
morphogenesis of the virion, or the interaction with the host cells [33].

The proteins P, L, and N are associated with genomic RNA and nucleocapsid, form-
ing the ribonucleoprotein complex, considered as the minimum unit necessary for tran-
scription and replication of the virus. The P protein is highly phosphorylated and acidic 
and has a key role in the regulation of the transcription and replication process. It has 
241 amino acids and a molecular weight of 35 kDa, and the gene that encodes it has 
914 nucleotides. The nucleoprotein N has 391 amino acids and a molecular weight of 
43.4 kDa, and the gene that encodes it has 1203 nucleotides and is the main structural 
protein of the nucleocapsid, closely associated with the genomic RNA. The L protein, 
consisting of 2165 amino acids with a molecular weight of 250 kDa, is the largest viral 
protein. The gene that encodes the L protein has 6578 nucleotides [33].

Fig. 12.3  Organization of the gene in the genome of HRSV. The genome is 15,225 nucleotides 
long, a single-stranded RNA with negative polarity. It has 10 genes encoding 11 proteins. The M2 
gene has two products: a nucleocapsid-associated transcription factor (M2-1) and another protein 
involved in genome replication (M2-2)
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The M proteins (PM, 27 kDa) and M2-1 (PM, 22 kDa) are internal and not gly-
cosylated, possessing, respectively, 194 and 256 amino acids, and the genes that 
encode them have 958 and 961 nucleotides, respectively. The M protein mediates 
the association of nucleocapsid with the viral envelope [33], and the M2-1 acts on 
the elongation during transcription [32].

The SH protein is a small molecule (amino acids and 64 PM, 7.5 kDa), which is 
inserted in the cytoplasmic membrane of the host cell via a hydrophobic sequence, 
ranging from 14 to 41 amino acids. The function of this protein has not yet been 
clarified; however, because it is integrated in the membrane, it is assumed to be 
involved in adsorption, penetration, and denudation of the virus [33].

The glycoprotein F has 574 amino acids with a molecular weight of 70 kDa, and 
the gene that encodes it has 1903 nucleotides. Identified as a fusion protein, it is 
responsible for the attachment of the viral envelope with the plasma membrane of 
the host cell, releasing nucleocapsid directly within the cytoplasm. Also, it is respon-
sible for the fusion of the cell infected with neighbor cells, favoring the formation 
of the syncytium [33].

The F protein is synthesized as an inactive precursor called F0, which consists of 
two domains, F2 (1–130 amino acids) and F1 (137–574 amino acids), and also has 
a cleaved peptide (131–136 amino acids). The F1 subunit is anchored to the mem-
brane. The F1 subunit is relatively well preserved and is greatly affected in its func-
tion by deletions or substitutions of amino acids [33].

The glycoprotein G is a type II protein, which is anchored to the membrane next 
to its amino-terminal portion by a hydrophobic domain, non-cleaved, signal anchor 
type, that extends from residues 38 to 66 [73]. The G protein is 289 to 342 amino 
acids in length, depending on the viral strain. The G gene is composed of 918 to 
1062 (group A) or 921 to 981 (group B) nucleotides [43, 102, 108].

The glycoprotein G is the viral attachment engaged in the adsorption of virus, 
and it has been shown that antibodies against the G glycoprotein inhibited the bind-
ing of virus to the cells [72]. The glycoprotein G is of special interest for showing 
the largest variability between the viral isolates [4, 52, 67] and can support large 
deletions or multiple amino acid substitutions without loss of function [43, 102]. 
This variability among strains of HRSV is a signature feature that can alter the 
pathogenicity and adaptation of the virus and contribute to the ability of the virus to 
cause repeated infections and outbreaks by escaping the immune system. The gly-
coproteins F and G are the most important proteins involved in a protective immune 
response [8, 66], and antibodies against them show strong neutralization activity 
in vitro [2, 123].

7  �Replication

The cell receptor specific for the glycoprotein G was first identified by Krusat and 
Streckert [70], who showed that preincubation of the virus with heparin inhibited 
the infection in cell culture and that the G protein binds heparin. These results sug-
gest that heparin or other glycosaminoglycans (GAGs) similar to heparin, present 

E.L. Durigon et al.



241

on the cell surface, are involved in the binding of the virus to the cell. The binding 
site of the glycoprotein G to the heparin (or another GAG) was mapped between the 
184 and 198 amino acids of the protein G for group A and among the 183 to 197 
amino acids for group B. Martinez et al. [77] confirmed that the presence of these 
receptors is critical for the binding of the virus.

The virus enters into the cell through fusion with the cell membrane. After pen-
etration, the viral envelope remains as part of the cell membrane. The nucleocapsid 
is released into the cytoplasm and begins the process of transcription of the viral 
genome by the viral polymerase. The genes are transcribed in sense 3′ → 5′ with a 
sign promoting to the 3′-side [33]. The peak of the synthesis of mRNAs occurs 16 
h after infection, and the peak of proteins occurs at 18–20 h [6, 33]. In addition to 
the transcription and translation of proteins, another important step is the replication 
of the viral genome, which produces an intermediate positive (+ ssRNA), which will 
serve as a template to generate more copies of the viral genome (ssRNA). All the 
replication process takes place in the cytoplasm [33].

The maturation of the virus occurs in the first instance, with the combination of 
proteins N and P to the genomic RNA and subsequent addition of other auxiliary 
proteins to the nucleocapsid. The surface glycoproteins are inserted into the cyto-
plasmic membrane of the host cell. In the next step the matrix protein interacts by 
noncovalent forces to the cytoplasmic tails of the surface glycoprotein. The assem-
bled internal structures of the virus interact with this surface and drive the budding, 
with the release of the virus, when the virus acquires the lipoprotein envelope [69].

8  �Genetic Variability

The variability of the G protein is concentrated in the extracellular domain, where two 
variable regions have a high content of serine and threonine, between 69 to 164 and 
207 to 298 amino acids, with approximately 56% divergence between groups A and B 
[66, 67]. Interspersing this region of high variability, there is a conserved region with 
a small segment of 13 amino acids (164–176) and four cysteine residues (C173, C176, 
C182, C186), which are well preserved in all samples of HRSV [97, 118], suggesting 
that this region is responsible for binding the virus to a cell receptor. However, data 
about the region for genotypes that emerged after 2010 are currently lacking.

The genotyping of HRSV-A and HRSV-B is based on the variability of the 
G-protein gene. For HRSV A, 11 genotypes were reported and designated as GA1, 
GA2, GA3, GA4, GA5, GA6, and GA7 [92, 93], SAA1 (South Africa, A1) [115], 
and more recently, NA1, NA2, NA3, and NA4 [102]. For HRSV-B, 17 genotypes 
have been described and designated as GB1, GB2, GB3, and GB4 [93], SAB1, 
SAB3 [115], BA1–BA6 (Argentina) [109], BA7–BA10 (Japan) [38], and B11 
(Korea) [7]. Interestingly, strains belonging to genotype BA of HRSV-B exhibited 
duplication of 60 nucleotides (nt) in the second variable region protein gene G, but 
were not associated with more severe clinical manifestations [38, 108]. In Brazil, 
the only genotypes circulating currently from HRSV-A are NA2, NA3, and ON1 
and BA genotyping from HRSV-B.

12  Human Respiratory Syncytial Virus: Biology, Epidemiology, and Control
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In 2012, Eshaghi et al. [43] detected in group A one repetition of 72 nucleotides 
(GTCAAGAGGAAACCCTCCACTCAACCACCTCCGAAG GCTATCTAAGCCCA 
TCACAAGTCTATACAACATCCG) in the C-terminal portion of the gene (G), 
being the largest duplication described in this group. This new genotype was called 
ON1 and was found in 10% of HRSV isolates. In 2013 this ON1 genotype was 
found in 75% of all isolates in Brazil [42, 80], and in 2015 the ON1 genotype had 
attained natural dominance and become the predominant genotype circulating in 
different areas of the world [107]. This area is specifically targeted for neutralizing 
antibodies, and these types of changes of structure can lead to changes in immuno-
genicity and pathogenicity of the virus. However, additional studies are still required 
to explore the pathogenicity, transmissibility, and replication of this new variant.

9  �Epidemiology

In the 1990s several studies of molecular epidemiology were conducted based on 
partial sequences of genes G and SH and a restriction map of the N gene, enabling 
reaching some important conclusions about HRSV circulation:

	1.	 The existence of several genotypes circulating concurrently in a single outbreak, 
with a predominance of one or two genotypes which tend to decrease in subse-
quent outbreaks until its disappearance [17, 19, 20, 27, 28, 30, 65, 75, 92, 93].

	2.	 The genotypes of HRSV have worldwide distribution, and strains isolated in 
distinct communities and in different years may be more related to strains iso-
lated in the same locality in two consecutive days, demonstrating a pattern of 
temporal and not necessarily geographic circulation [18, 50].

	3.	 Within each strain (genotype) occurs a progressive buildup of amino acid 
changes [21].

	4.	 Antigenic changes detected with a panel of anti-G monoclonal antibodies can be 
correlated with the position of the viruses in the phylogenetic trees [50].

	5.	 The synonymous nucleotide substitutions have a uniform distribution over the G 
gene, and non-synonymous substitutions are accumulated in the two variable 
regions of the gene G [21, 50].

However, there are studies in which a minimal temporal variation in the gene 
encoding the G protein has been reported. A study performed in Cuba revealed the 
movement of extremely homogeneous samples during the 1994–1995 outbreaks, 
with a difference of just five nucleotides when compared to the sample long since 
isolated in 1956 [113].

The significance of the antigenic variation of HRSV groups in epidemiology is 
not yet clear. The antigenic dimorphism, although at modest rates, seems to contrib-
ute to the high incidence of reinfections during the first years of life. However, sev-
eral reinfections in children involving viruses of the same group have been reported 
[60, 83]. In addition, there is no indication that reinfection with a heterologous group 
induces more serious clinical signs than reinfection with homologous samples [110].

E.L. Durigon et al.
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The two groups (A and B) have been circulating concurrently in many epidemics 
for more than 20 years [12, 65], in diverse regions of the world, and with incidences 
that vary from year to year. Studies conducted in El Salvador, Santa Fe, and Buenos 
Aires in Argentina revealed the presence of both groups during outbreaks with prev-
alence of group A [23, 63, 121].

In some localities, such as Rochester and Boston in the U.S., Sapporo in Japan, 
and Rio de Janeiro, Porto Alegre, and Ribeirão Preto in Brazil, in addition to the 
co-circulation of the groups, the prevalence of groups A and B may switch over the 
years or show a balance of the frequencies of both groups [29, 56, 58, 104, 112].

Differences in pathogenicity between the two groups are not clear. Hall et al. [56] 
and Imaz et al. [63] verified increased severity in children infected with group A, 
although Zelaya et al. [121] found greater severity in children infected with group 
B. Other authors did not observe significant differences in pathogenicity between 
the groups [29, 104].

In a study carried out in Bogota, Colombia, a total of 13,488 samples of children 
hospitalized with a diagnosis of respiratory infection were tested for RSV during 5 
years and 4,559 (33.8%) were found positive. The average age of patients analyzed 
in the study was 9.2 ± 8.5 months, and 71.7% of cases of HRSV infection occurred 
in the period from March to May, whereas 50% of the bronchiolitis cases were diag-
nosed from April to June during the years of the study [47].

In Chile, HRSV are detected as a single pathogen at 74/124 (58.7%) samples of 
nasopharyngeal aspirate of patients, and 28/124 (22.6%) samples were co-detected 
with HRV. Hospitalization was necessary in 77% of positive cases of HRSV (57/74), 
and 44.6% of these cases were considered serious; 53.6% (15/28) of cases coin-
fected by both viruses were hospitalized, too, but this coinfection does not increase 
the severity of illness [74].

In Brazil, many studies have already been carried out to investigate the etiology 
of acute respiratory diseases [12]. During the period of 2003–2009, nasopharyngeal 
aspirates were examined in more than 2000 children less than 5 years old, and 
HRSV were found in at least 42% of positivity between respiratory viruses identi-
fied in children hospitalized with acute respiratory disease [85, 105].

In countries in southern Latin America such as Argentina and Uruguay, out-
breaks of HRSV occur predominantly during the winter months [22, 61]. In tropical 
and subtropical climates, the outbreaks are not always well defined, although in 
Ceara, located in the northeast of Brazil, HRSV caused yearly seasonal epidemics, 
generally from February until July (Moura et al. 2013). In Brazil, in the cities of Rio 
de Janeiro and São Paulo, HRSV outbreaks start in autumn (ranging from March to 
April) and extend until winter (July–August), with peak incidence occurring usually 
in May (Table 12.1) [85, 105].

Fortunately, fatalities from infection by HRSV are uncommon, and estimates 
indicate that the number of deaths is around 200–500 a year, 80% of which are of 
children under 1 year of age. However, mortality may increase significantly in chil-
dren who present some background that predisposes to more serious diseases, such 
as congenital heart diseases and lung diseases, and premature infants, in which mor-
tality by HRSV infection is around 10%, 5.5%, and 4.6%, respectively [41, 100]. 
High mortality rates may also be observed in individuals with immunodeficiency, 
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Table 12.1  Occurrence of positivity for human respiratory syncytial virus (HRSV) in different 
cities of Latin America at different times of the year

Country City Seasonality Average of HRSV positive (%)

Argentina Buenos Aires Autumn – winter 23–26
Brazil Tropical Summer – winter 21–4

Subtropical Autumn – winter 42
Chile Santiago Winter 22.6–52.7
Colombia Cali Throughout the year 33.8

Medellín Summer 41.7
Costa Rica San Jose Autumn 15–20
Mexico Mexico City Winter – spring 36–55

San Luis Potosí Autumn – winter 24.8–46.7
Venezuela Caracas Throughout the year 31.6–66
Uruguay Montevideo Winter 56
Guatemala Santa Rosa and 

Quetzaltenango
Autumn 24

congenital or induced by chemotherapy against cancer [54] or from organ trans-
plants, especially in the first 20 days after the transplant [94]. Among bone marrow 
transplant recipients, the mortality of those who become infected with HRSV can 
reach 45% [14, 57].

A study conducted in the U.S. revealed the occurrence of 14,000 to 62,000 
annual hospitalizations of the elderly with pneumonia associated with HRSV, at a 
cost of approximately 150,000,000–680,000,000 dollars to the health system and 
causing about 1,500–6,700 deaths per year (5–20 deaths/100,000) [124].

10  �Laboratory Diagnosis

The laboratory diagnosis of HRSV can be carried out by the direct detection of 
viruses, viral antigens, or the viral genome or, indirectly, based on the detection of 
specific antibodies. For the routine clinical laboratory diagnosis using respiratory 
secretions as biological samples, the procedures may include viral isolation in cell 
culture, antigen detection by immunofluorescence or enzyme-linked immunosor-
bent assay, and viral RNA detection by reverse transcriptase (RT)-polymerase chain 
reaction (PCR). The best samples are those obtained by aspiration or washing naso-
pharyngeal secretions [76, 79]. The viral particle present in the secretions is highly 
labile, and the samples should be kept refrigerated during transportation to the labo-
ratory and processing before inoculation in cell cultures.

The isolation in cell culture, regarded as the gold standard, can be carried out in a 
wide variety of human and animal cell lines, but HEp-2 and HeLa cells are the most 
used [110; Perini et al. 2007]. The cytopathic effect usually appears within 3–7 days 
after inoculation and is characterized by the presence of large syncytia resulting from 
cell fusion (Fig. 12.4). Nevertheless, as viral isolation in cell culture is difficult, the 
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Fig. 12.4  Cytopathic effect of HRSV in HEp-2 cell line shows a large syncytium resulting from a 
fusion of the cells

Fig. 12.5  Results of the indirect immunofluorescence (IFI) assay for detection of HRSV in naso-
pharyngeal aspirates. Red, negative results; green, positive detection of HRSV in the cytoplasm 
and membrane of the cell

diagnosis of infection is most often accomplished by detection of HRSV antigens in 
nasopharyngeal epithelial cells by immunofluorescence (Fig. 12.5) or enzyme-linked 
immunosorbent assay, faster methods that do not require the presence of infectious 
viral particles. These last two methods require the adequate preparation of the speci-
mens by removing excess mucus. Finally, success of the immunofluorescence tech-
nique, aside from well-trained personnel and well-prepared samples, requires a 
minimum number of infected cells to enable a correct diagnosis [110].

Hughes et al. [62] compared the three diagnostic techniques for HRSV: isolation in 
cell culture, direct and indirect immunofluorescence (IFA), and enzyme-linked immu-
nosorbent assay (ELISA). Both immunofluorescence-based methods detected more 
positive samples (showed higher sensitivity) than viral isolation. However, 15% of the 
samples found positive by viral isolation were negative by immunofluorescence, dem-
onstrating the need for the use of at least two diagnostic methods.

12  Human Respiratory Syncytial Virus: Biology, Epidemiology, and Control
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The RT-PCR technique has been used both for the diagnosis [51, 59, 117] and for 
typing a sample to group A or B [53, 122]. It is considered a highly sensitive tech-
nique, especially useful in the diagnosis of infections, in which both the sample 
amount and the viral load in the sample are small, as is the case of samples taken 
from the elderly [117]. In the past decade, the molecular methods were considered 
as a gold standard, because of their specificity and ability of simultaneous detection 
of different viruses [90]. The advances in real time-RT-PCR (quantitative (q)RT-
PCR) specificity and sensitivity for the detection of HRSV in clinical samples 
became more suitable for diagnosis in clinical laboratories [46].

The rapid antigen detection tests (RADTs) are dipstick-based immunoassays that 
allow for the rapid, qualitative detection of RSV antigen (viral fusion protein) 
directly from nasopharyngeal swab, nasopharyngeal aspirate, or nasal/nasopharyn-
geal wash specimens from symptomatic pediatric patients. The RADTs provide a 
result in 15 min, compared to approximately 90 min for a conventional IFA test and 
2–3 h for ELISA [80]. Rapid tests may also be used as a point-of-care assay. These 
methods, although effective, may present several drawbacks, including price and 
skilled personnel. All these issues pose a challenge to hospitals and pediatric clinics 
to apply the best medical management for monitoring or treatment of children with 
suspected infection.

Serological diagnoses can be made through neutralization assays, complement 
fixation, or determination of class-specific immunoglobulins (IgG, IgM) by ELISA 
or immunofluorescence techniques. The diagnosis is based on the increase in anti-
body titer between acute and convalescent titers, performed in serum or saliva [110, 
120]. The serology offers limited value in the diagnosis of primary infection in 
children less than 6 months of age because 40% of these cases present no increase 
in antibody titer. However, in infants and adults, the serology is regarded as a good 
indicator of reinfections [55]. The serology, therefore, is not the most appropriate 
method for diagnosis of infection by HRSV, having, however, great importance in 
clinical and epidemiological studies [36].

11  �Treatment and Prevention

Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide), a nucleoside analogue of 
the guanosine, licensed since 1986, is the treatment of choice for RSV. Its use is indi-
cated in the form of aerosol for the treatment of serious diseases caused by 
HRSV.  Although several studies have demonstrated the effectiveness of ribavirin in 
inhibiting replication of the virus and the improvement of clinical conditions, resulting 
in a decrease in the need for supplemental oxygen and mechanical ventilation in chil-
dren with lower respiratory tract infection, chronic lung disease, and infection in immu-
nocompromised individuals, lately there has been controversy about the benefits of its 
use. Since 1989, several studies have appeared indicating that the use of ribavirin has 
minimal effect on disease outcome caused by HRSV, not showing evidence of decreased 
duration of hospitalization or the need of supporting therapy, in addition to the high cost 
and extended treatment (12 h or more of inhalation) [13, 37].
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Several drug candidates have been studied in the past decades, including several 
inhibitors, targeting different HRSV proteins. Despite these efforts, until the present 
time there has been no antiviral drug approved for treatment (Heylen et al. 2017).

Development of an RSV vaccine has been hampered by the incidence of enhanced 
respiratory disease (ERD) following vaccination with formalin-inactivated RSV in 
the 1960s. Since its failure, multiple live virus vaccines have been developed, as 
well as other vaccine platforms, including virus-like particles, peptide-based vac-
cines, protein subunit vaccines, and plasmid DNA-based vaccines. Many of these 
vaccines have been evaluated in animals, and a few have been studied in humans. 
None, however, has shown sufficient promise to move toward licensure. It is clear 
that a better understanding of virus and host factors that contribute to both disease 
and protective immunity is still necessary to develop safe and effective RSV 
vaccines.

Alternative approaches to identify vaccine-relevant epitopes include the identifi-
cation of neutralizing RSV protein epitopes to which a protective immune response 
can be safely generated and the development of modern pre- and post-RSV fusion 
(F) protein subunits. One obstacle to developing an RSV vaccine has been the dif-
ficulty in inducing long-term protective immunity, as evidenced by the repeated 
infections throughout life and the incomplete protection afforded to recipients of 
immune prophylaxis. In addition, an immunogenic approach targeted to a single 
neutralizing epitope mapped to the site A region may generate a focused immune 
response against RSV F, but in general, the polyclonal response generated by site 
A-based vaccines has been characterized by poor binding to intact RSV F protein, 
modest in vitro neutralization, and no evidence of protection to RSV challenges 
in vivo.

Palivizumab (Pz) (Synagis; MedImmune) is a humanized IgG monoclonal anti-
body that neutralizes HRSV through interaction with the HRSV F glycoprotein. Pz 
is the only FDA-approved prophylaxis against HRSV infection [5, 101]. Five 
monthly Pz injections spanning the annual HRSV epidemic period have been shown 
to reduce hospitalizations among high-risk children in the U.S. However, the quasi-
species nature of RNA viruses allows rapid emergence of escape mutants to the 
immune pressure. The increasing use of Pz in high-risk children and immunocom-
promised patients provides opportunities for Pz-resistant mutants to arise and per-
sist among humans [1, 9, 86, 88, 123]. However, little is known of these mutations 
in patients who did not use Pz.
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