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Abstract: Nanotechnology has opened new opportunities for delivering bioactive agents. Their phys-
iochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility
and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering
β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target
tissues, but also lessens its sensitivity against environmental factors during processing. Regardless
of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modifi-
cation of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory
challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered ma-
terials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid
nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make
conventional delivery systems appear archaic and promise better solubilization, protection during
processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This
review provides information on the state of knowledge on β-carotene nanodelivery systems adopted
for developing functional foods, depicting their classifications, compositions, preparation methods,
challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks
and future prospects.

Keywords: beta-carotene; bioavailability; delivery system; encapsulation; engineered nanomaterial;
SLNs; NLCs

1. Introduction

Vitamin A deficiency is one of the most diagnosed micronutrient deficiency disor-
ders worldwide, especially in developing countries. However, its magnitude is more
widespread in the vegetarian population [1]. Across the globe, approximately 250 million
preschool children are estimated to be affected by vitamin A deficiency [2]. Furthermore, oc-
currence of disease has an intimate relationship with a low antioxidant load in the daily diet.
Furthermore, lifestyle (exercise, smoking, drinking and high consumption of meat-based
and processed foods), environment (emotional and social stress), and cultural constraints
trigger the expression of housekeeping genes to adopting genes to retain the cellular, organ
or body homeostasis [3]. The aforesaid stimuli also cause the generation of reactive oxygen
species (ROS), resulting in oxidative homoeostasis imbalance at cellular and tissue levels,
thus generating oxidative stress [4]. Oxidative stress can be defined as a phenomenon
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triggered by an imbalance between the generation and accumulation of ROS. In general,
ROS, including organic hydro peroxides, hydrogen peroxide, nitric oxide, hydroxyl radicals
and superoxide, are generated as by-products of oxygen metabolism; in addition, these
environmental stimuli (UV, pollutants, heavy metals, and xenobiotics (including antiblastic
drugs, antiallergic drugs, immunosuppressant drugs) equally contribute to ROS produc-
tion, thus causing oxidative stress [5]. Accruing scientific evidence is accumulating on the
involvement of oxidative stress in the occurrence of several health complications, which
are attributed to inactivation of metabolic enzymes and damage vital cellular components,
oxidization the nucleic acids, resulting in eye disorders, atherosclerosis, cardiovascular
diseases, joint and bone disorders, neurological diseases (amyotrophic lateral sclerosis,
Parkinson’s disease and Alzheimer’s disease) and misfunctioning of different organ in-
cluding lung, kidney, liver and reproductive system [6]. ROS are primarily generated in
mitochondria under both pathological as well as physiological conditions [7]. Cells activate
an antioxidant defensive system which primarily includes enzymatic components such
as superoxide dismutase, glutathione peroxidase, and catalase in order to minimize the
oxidative stress cell [8].

1.1. Oxidative Stress and Antioxidants

ROS generation is attributed to both nonenzymatic and enzymatic reactions. Enzy-
matic processes that have intricate involvement in the respiratory chain, phagocytosis,
prostaglandins biosynthesis, and cytochrome P450 system are responsible for ROS genera-
tion. Superoxide radicals produced as the result of enzymatic action of NADPH oxidase,
peroxidases and xanthine oxidase initiate the chain reaction for ROS formation including
hydrogen peroxide, hydroxyl radicals, peroxynitrite, hypochlorous acid and so on [9].
Hydroxyl radicals (•OH) are considered as the most reactive among all ROS in vivo and are
produced as a result of catalysis of H2O2 in the presence of Fe2+ or Cu+ (Fenton reactions).

In addition, some nonenzymatic processes also contribute to ROS generation, espe-
cially when oxygen is either exposed to ionizing radiations or reacts with organic com-
pounds. ROS are produced due to exogenous and endogenous sources. Exogenous sources
of ROS include inflammation, immune cell activation, infection, ischemia, cancer, mental
stress, excessive exercise and aging [4,10]. Exogeneous ROS generation relies on exposure
to radiation, heavy metals [11], environmental pollutants [12], certain drugs (bleomycin,
cyclosporine, gentamycin, tacrolimus) [13], toxic chemical and solvents [13], food process-
ing (used oil and fat and smoked meat) [14], cigarette smoking and alcohol consumption,
among other [10]. ROS are essential part of several biological processes when they remain
at low or moderate concentrations. For instance, these ROS are obligatory for synthesis of
some cellular structures, which have vital role in the host defense system, i.e. in the defence
of pathogens [14,15]. In fact, macrophages synthesize and store ROS to kill pathogenic
microbes [16]. The critical role of ROS in the immune system is well recognized as patients
unable to produce ROS are more prone to pathological infections [17]. In addition, ROS are
also integrated in an array of cellular signaling pathways as they play a regulatory role in
intracellular signaling cascades, including endothelial cells, fibroblasts, cardiac myocytes,
vascular smooth muscle cells and thyroid tissue. Nitric oxide (NO) is considered as a key
cell-to-cell messenger, which plays a vital role in cell signaling and is intricately involved in
several processes, such as blood flow modulation, thrombosis and normal neural function-
ing [18]. Nitric oxide also demonstrates close association with nonspecific host defense in
eliminating the tumor cells, as well as intracellular pathogens [19]. In addition to beneficial
effects, ROS also pose several negative impacts by affecting cellular structure, including
plasma membrane, proteins, lipoprotein, proteins and nucleic acids (deoxyribonucleic acid,
DNA; ribonucleic acid, RNA). Oxidative stress is a result of ROS imbalance between its
rate of generation and rate of clearance within the cell [20]. These excess ROS thus cause
damage in the plasma membrane by lipid peroxidation and form malondialdehyde and
conjugated dienes which are cytotoxic and mutagenic in nature. Being a chain reaction
cascade, lipid peroxidation spreads very rapidly, damaging a significant number of lipids,
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proteins and nucleic acids, hence hampering their functionalities [21]. In summary, ROS
impart beneficial effects when they are maintained at low or moderate concentrations while
they negatively affect several cellular structures at higher concentrations.

The human body adopts several strategies to combat the negative effects generated
due to oxidative stress, including enzymatic (superoxide dismutase, glutathione peroxidase
and catalase) or nonenzymatic (L-arginine, glutathione, coenzyme Q10 and lipoic acid)
antioxidant molecules. In addition to the aforesaid molecules, several exogenous antioxi-
dants molecules from animal or plant origins are deliberately incorporated, i.e. fortified,
into the diet [5].

1.2. Mode of Action of β-Carotene against Oxidative Stress

β-Carotene, a key member of the carotenoid family, is recognized as one of the most
potent antioxidants [22] and the major provitamin A carotenoid available in the human diet.
The health benefits of β-carotene are attributed to its given biological properties [21]: (a) as
antioxidants that scavenge and quench ROS of oxidative metabolism, (b) as provitamin A
compounds that activate retinol-mediated pathways, (c) as electrophiles that boost endoge-
nous antioxidant systems, (d) by hampering inflammation-related processes mediated by
nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) pathway, and/or (e) by
directly binding nuclear receptors (NRs) and other transcription factors in target cells.

Retinoic acid acts as ligand for the retinoid X receptors (RXRs) and canonical retinoid
acid receptors (RARs), which influence the expression of a number of responsive genes
and have intimate relationships with fatty acid, cholesterol, Ca2+ and phosphate home-
ostasis [23]. β-Carotene also demonstrated tumor cell suppression activity and enhanced
intercellular communication at gap junctions [3]. It is believed that consumption of β-
carotene may cause low incidence of hepatic oxidative stress and lipid oxidation. The
assumption was supported by a mice model study where expression of 1207 genes (ap-
proximately 4% genes) of a total of 30,855 genes in a hepatic transcriptome was influenced
when mice were fed with β-carotene as compared to control mice [24]. Remarkably, numer-
ous differentially expressed genes were intimately involved in energy metabolism, lipid
metabolism, and mitochondrial redox homeostasis.

β-Carotene is the main contributor to vitamin A in human beings, if preformed vita-
min A intake is insufficient. It acts as a precursor of vitamin A, with the potential to yield
two retinal molecules following cleavage by beta-carotene oxygenase 1 in the intestine, as
compared to other carotenoids which generally yield only one retinal molecule. Despite
its indispensable role in vision, it may furthermore play a role as a bioactive compound,
due to its potential antioxidant effects [25], and its interaction with nuclear receptors,
mainly RAR/RXR, which is important for cell differentiation and immunity [26]. These
properties make β-carotene one of the most investigated biological molecules, both in
academia and industry. Though its multifunctionality in humans is yet to be fully under-
stood, several epidemiologic studies have demonstrated its relationship to a decreased
incidence of chronic diseases such as blindness [27], xerophthalmia [28], cancer [29], car-
diovascular diseases [30], diabetes [31] and premature death [32] and found to have an
antioxidant component.

1.3. Challenges Associated with β-Carotene Food Fortification

β-Carotene is naturally found in various foods and is also commonly used as a natural
pigment in food, pharmaceutical and cosmetic industries. This lipophilic molecule is
characterized by the presence of a polyene structure with 11 conjugated double bonds
with two β-ionone rings. Under environmental stress (temperature, humidity, pH, ionic
strength and radiation), β-carotene may undergo transformation, resulting in the formation
of different isomers such as 15-cis-β-carotene, 13-cis-β-carotene and 9-cis-β-carotene and
several trans-β-carotenes [33,34]. Cis-isomers have bent structures and are likely to be more
readily solubilized and adsorbed compared to trans-β-carotene which possesses a linear and
rigid structure and has a high tendency to crystallize and aggregate as compare to the cis-
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isomers [35,36]. The unsaturated structure makes β-carotene prone to oxidation, resulting
in the loss of its vitamin A functionality. Furthermore, β-carotene is also susceptible to
isomerization when confronted with acidic conditions, high-salt, temperature, metal ions,
peroxides and radiation during food processing and storage before consumption [36]. In
addition, naturally occurring β-carotene is often complexed with protein molecules which
limit its solubility and distribution in the food matrix, as well as its adsorption in human
body [37].

Currently, β-carotene is one of the most exploited carotenoids and is usedto develop
functional foods [38], formulate pharmaceutical supplements and prepare cosmetic prod-
ucts. However, food fortification, i.e., incorporating β-carotene within functional foods, is
recognized as the most natural, appropriate and safe methods as compared to other drug
administration routes including intravenous, intramuscular and subcutaneous ones [39].
However, within these functional food products, β-carotene is prone to physicochemical
degradation during the production, processing and storage before food consumption.
These limiting factors, in addition to its low bioavailability within the human gastroin-
testinal tract, make β-carotene difficult to incorporate into the food matrix and hence
significantly impact its efficacy as a health beneficial plant compound.

Nanotechnology seems to be a logical solution to address these limiting factors, as it
has demonstrated its potential to encapsulate, protect and delivery bioactive compounds
using several delivery systems to improve their physicochemical stability, solubility, dis-
persibility and bioavailability upon ingestion [40–44]. Researchers have nanoengineered
various kinds of delivery systems, such as microemulsion, liposomes, solid lipid carriers,
nanostructured lipid carriers, nanocapsules and nanospheres to encapsulate and deliver
bioactive compounds. These delivery systems are capable of improving stability, disper-
sity and bioavailability of bioactive compounds within the target food matrix. Although
several excellent reports have already been published emphasizing the factors affecting
the chemical stability of carotenoids [45], encapsulation techniques to protect them against
environmental stress [46], production methods to prepare nanoengineered delivery sys-
tems [47] and delivery systems to improve their solubility or bioavailability [48], there is
lack of reviews regarding β-carotene delivery systems, in particular with food applications.

The present article aims to contribute to the state of knowledge on the delivery systems
used for β-carotene to improve its stability, solubility, dispersibility, bioavailability, as well
as the development of functional foods. Before opting for designing an oral delivery system
for β-carotene, it is paramount to understand its metabolism (digestion and absorption)
as well as the factors affecting the physicochemical attributes of delivery system and
their health risk and safety issues. Additionally, this review article will lead to a better
understanding of the evolution of delivery systems for the encapsulation of β-carotene in
food science.

2. Methodology

To search the literature, three most popular search engines of food and medical
sciences, Google Scholar, Science Direct and PubMed as well as Scopus database were em-
ployed with the keywords “β-carotene”, “β-carotene encapsulation”, “β-carotene delivery
system”, “engineered nanomaterial and β-carotene”, “β-carotene bioavailability”, “oxida-
tive stress and β-carotene”. The timeline search (year) was: (a) 1900–1990, (b) 1991–2000,
(c) 2001–2010 and (d) 2011–2020 in these search engines. After searching each keyword
in the mentioned timeline, the first 100 most relevant entries were screened with direct
observation. Adopting this method of literature search, nearly 2400 articles were screened
and, based on the relevance of the topic, nearly 400 articles were summarized in the present
review. The articles on food applications were prioritized in this review.

3. β-Carotene Metabolism

The fate of β-carotene in the human gastrointestinal tract (GIT) is determined by vari-
ous factors, including the complexity of the ingested food matrix, its release from the food
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matrix, the transfer of the released molecule to the oil phase, its incorporation into mixed
micelles, the entrance route into enterocytes and its incorporation into chylomicrons [49].
In the following, these processes are briefly explained.

3.1. Release of β-Carotene from the Food Matrix

Release of β-carotene from the food matrix is a multistage process, which begins
by mastication in the mouth, followed by enzymatic and physiochemical process in the
stomach and the small intestine [49]. The release of β-carotene begins with the physi-
cal disruption of ingested food particles in the buccal cavity of GIT to make β-carotene
bioaccessible for absorption.

Bioaccessibility is defined as the quantity or extent of β-carotene that is released
from food matrices in the gastrointestinal tract and remains bioavailable for absorption
in intestine;

Bioaccessibility =
Br × 100
Bt − Be

where, Br represents quantity of β-carotene released in GIT fluid in consequence to food
matrix digestion, Bt: total quantity of β-carotene existing in the food matrix, and Be:
β-carotene secreted in the duodenal compartment along with bile salt.

The complexity of the food matrix has a great impact on the bioaccessibility as well as
bioavailability of β-carotene, as its release from food the matrix is the major limiting factor
for its bioavailability [37,49–52].

The bioavailability of lipophilic compounds such as β-carotene can be defined as
the part of the ingested β-carotene that is eventually recovered in the systemic (blood)
circulation as an active form. Only then will β-carotene be available to travel to the target
tissues and organs where it can exert beneficial health effects. For ingested β-carotene, there
are several limitations that limits the amount that is distributed in the systemic circulation
in its native form—e.g., chemical instability during the digestion process, poor solubility
in the gastrointestinal tract (GIT), slow uptake from the GIT, cleavage by BCO1 in the
enterocyte (producing 2 retinal molecules) [53], and first-pass metabolism (Figure 1). The
oral bioavailability (F) of encapsulated β-carotene in delivery systems can be determined
by the following equation:

F = FB × FA × FM

where, FB is the fraction of consumed β-carotene that survived passage through the upper
GIT and is released from the food matrix/delivery system into the GIT, thus becoming
bioaccessible for uptake by brush-bordered enterocytes. FA is the fraction of the bioaccessi-
ble β-carotenethatis eventually absorbed by the enterocytes and then reaches the portal
blood or, rather the lymph (and thus the systemic circulation). FM is the proportion of
absorbed β-carotene, which is preserved in its active form after first-pass metabolism in
the GIT and the liver (and any other forms of metabolism or breakdown).

Naturally, β-carotene is present in different physical forms within chloroplasts and
chromoplasts. In the chromoplasts, β-carotene is available either in crystalline form (e.g.,
in carrots and tomatoes) or in oil droplets (mango and papaya). It was noticed that bioac-
cessibility of β-carotene dissolved in oil droplets (10.1% for mango and 5.3% for papaya)
was higher as compared to the crystalline form (3.1% for tomato and 0.5% carrot) [54].

The release depends on the degree of structural disruption of the food matrix, which
can be enhanced by subjecting various food processing techniques (mechanical and ther-
mal) before ingestion. It is believed that mechanical processing (homogenization, cutting,
crushing and pureeing) may significantly improve bioavailability as it reduces food particle
size, hence offering a greater surface to volume ratio for digestive fluids and enzymes to
act upon, resulting in a higher release of β-carotene [49]. An 18% higher bioavailability
(in vitro) in homogenized carrot as compared to chopped raw carrot supports this assump-
tion [55]. Similarly, a two-fold higher bioaccessibility (in vitro) was witnessed for a 125 nm
particle size as compared to a particle size of 126–160 µm [55].
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Figure 1. Schematic diagram of the human digestive system and the various physiochemical and physiological processes
involved in the digestion and absorption of β-carotene.

Thermal treatments are also considered to be a good option for improving bioavail-
ability, as they facilitate softening and disintegration of plant tissues and denaturation of
β-carotene–protein complexes. Rock and team observed 3-fold increases in β-carotene
serum levels when spinach was incubated for 40 min at 120 ◦C after canning and steril-
ization [56]. Similarly, commercially available carrot puree (subjected retort processing
after cooking) has shown a higher bioavailability (in vivo) as compared to the carrot puree
meshed in a grinder after 40 min of boiling [57]. Additionally, carrot that was finely peeled
and chopped after boiling at 100 ◦C for 15 min was found to be more effective in raising
the β-carotene serum level as compared to raw carrot [58]. Differences between the bioac-
cessibility observations from in vitro and in vivo bioavailability studies, such as higher
bioavailability found in vivo, may be attributed to differences in food preparation methods
and gastrointestinal simulation methods chosen, plus the inherent limitations of all in vitro
methods [36].

Comparing various treatments, the thermal treatments were found to be often more
effective in improving the bioavailability ofβ-carotene versus mechanical processing [59]. It
was also assumed that the simultaneous application of thermal and mechanical processing
may offer better release of β-carotene from food matrix. This assumption was supported
when researchers observed a higher increase in β-carotene serum levels when fed with food
subjected to homogenization and thermal treatment as compared to thermal processed
or mechanical process food alone [60]. From the above observation, it can be postulated
that the bioavailability of β-carotene is a function of particle size as well as of thermal
processing. The improved bioavailability of β-carotene after simultaneous application
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of thermal and mechanical processes could be attributed to a reduction in particle size
due to homogenization and degradation of β-carotene–protein complexes by thermal
processing [37,60].

3.2. Mass Transfer to Oil Phase

Once β-carotene is released from the food matrix, it is either solubilized into oil phase
or forms emulsion before the absorption. Several factors drive the transfer of released
β-carotene into the oil phase [50,61]. The availability of the oil phase in the digesta is
the primary limiting factor for the mass transfer of β-carotene into the oil phase, which
may not accessible due to incomplete digestion of ingested food in the stomach resulting
in incomplete release of oil phase [62]. Reduced particle size also improves its transfer,
as it offers a greater surface to volume ratio, hence facilitating the partition of released
β-carotene into the oil phase of the digesta [50,63]. In contrast, soluble proteins may
limit the bioavailability of β-carotene as they hinder the incorporation of β-carotene into
emulsions resulting after gastric digestion. Addition of 30% and 60% raw supernatants,
containing soluble proteins, to blanched carrot juice resulted in 10% and 20% reductions in
β-carotene transfer to the oil phase [63]. Further, it was also observed that the decrease in
surface charge on emulsions (by reducing pH) improved the solubilization of β-carotene
in the oil phase. Moreover, it is believed that low pH reduces the solubility of soluble
proteins, resulting in acceleration in the rate of transfer of β-carotene to the oil phase.
Rich and team recorded a one-hour increased transfer to oil in case of in vitro digested
digesta at pH 2.1 as compared to in vitro digested digesta at pH 6.2 [64]. However, it has
also been reported that under some conditions, proteins can aid in the emulsification of
carotenoids including β-carotene in the digesta, improving its transfer into lipid droplet
and thus later intestinal bioaccessibility [53]. This seemed to be the case especially under
marginal digestion conditions—i.e., under low enzymatic digestive activity. It appears that
both positive (emulsifying) and negative effects (by hampering, e.g., enzymatic access to
protein-coated lipid droplets) are present, and depend on individual digestive conditions,
testmeals, and carotenoids, whose effects overwhelm others [65].

In addition, the solubility of β-carotene in the oil phase, the amount of β-carotene in
the digesta, quantity of oil ingested and foodmatrix aspects equally determine the amount
and rate of transfer of β-carotene to the oil phase [64]. For example, dietary fiber is alleged
to be a vital factor limiting the transfer of released β-carotene as it causes interference
which: (i) hinders micelle formation; (ii) affects triacylglycerol lipolysis and emulsification
of fat-soluble food compounds which facilitate the transfer of released β-carotene; (iii)
limits the release of lipophilic nutrients from the fat droplets (oil phase); (iv) raises the
viscosity of chyme, restraining the diffusion of lipophilic β-carotene from micelles into
enterocytes [62,66].

3.3. Micelle Generation

The passage of the digesta into the small intestine stimulates the secretion of bile
salts [50,67]. These bile salts (cholic, chenodeoxycholic, deoxycholic and lithocholic acids)
have high surface activity, which aids in converting small lipid droplets into mixed micelles.
The surface-active nature of these bile salts further improves the incorporation of β-carotene
into mixed micelles by reducing their sizes to about 80 Å [68]. The incorporation of β-
carotene into mixed micelles is regarded as obligatory for its uptake by the intestinal
epithelium, as it ensures aqueous solubility and the diffusion to the unstirred water layer.
Hence, factors affecting mixed micelle formation can significantly impact the bioavailability
of β-carotene. An array of factors affecting the formation of micelles has been reported,
including the amount of lipids in the digesta [56,69,70], type of fatty acids [71], degree of
unsaturation and length of fatty acid [71], presence/absence of dietary fibers [49], and the
presence of high amounts of minerals [72,73].

Dietary fat is one of the most important factors, as it not only facilitates the incorpora-
tion of β-carotene into mixed micelles, but also stimulates the secretion of bile salts. Prince
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and Frisoli [74] reported a 2.5-fold increase in β-carotene serum levels 40 h postprandial
when β-carotene was ingested along dietary fat as compared to β-carotene ingested with-
out dietary fat [74]. Furthermore, a rise in β-carotene serum levels (and other carotenoids)
was also recorded when salad was ingested along with avocado oil (24 g) or avocado (150 g
avocado) compared to salad alone [75]. A rise in β-carotene serum level of human subjects
was also noticed when they were fed with β-carotene (8 mg) along with increasing quantity
of hot bread spread (from 3 g to 36 g) [69]. In total, these results clearly indicate that there
must be a minimum threshold for the amount of dietary fat present in test meals to enable
optimal β-carotene absorption, an amount which is likely at least 3 g of dietary fat for the
uptake of β-carotene for a typical meal containing approx. 8 mg of carotene. Nevertheless,
the proposed threshold (3 g fat for 8 mg β-carotene) still remains a matter of debate and
is likely to depend on matrix factors and perhaps host factors. Moreover, Castenmiller
and his team proposed 5 g of fat per meal for optimal absorption of β-carotene [70]. This
proposal was also supported by Hedren et al. [55] when adding 20% of cooked oil into
homogenized carrot pulp improved β-carotene in vitro bioaccessibility by 27% [55]. In
addition to the amount of dietary fat, the chain length of fatty acids equally influences
micelle formation, as well as β-carotene incorporation within the mixed micelles. Hugo
and team registered a significant increase (4.9 to 8.6 to 14.9%) in micelle efficiency with
increased fatty acid chain length from butanoic acid (4) to octanoic acid (8) to oleic acid
(18), respectively. This may not be surprising, given that short- and even medium-chain
fatty acids can be absorbed via the portal vein [76], and do not necessarily contribute to
mixed micelle formation. Moreover, the degree of unsaturation in fatty acids has also
shown significant impact on bioavailability—e.g., a higher bioavailability of β-carotene
was observed when it was ingested along with unsaturated vegetable oil when compared
to saturated vegetable oil [77]. In contrast, the micelle efficiency was not significantly
influenced with increase in degree of unsaturation from 1 (oleic acid, c18:1) to 3 (linoleic
acid, c18:3) [77].

As for matrix release and oil droplet incorporation, dietary fiber is thought to limit β-
carotene bioavailability. The inhibitory effect of dietary fibers on β-carotene bioavailability
has been demonstrated by several in vivo and in vitro studies [67,78–80]. These could be
attributed to a number of factors, including hindrance in micelle formation, alteration on
triacylglycerol lipolysis and emulsification of lipophilic compounds, and finally, restraining
the diffusion of β-carotene from mixed micelles to enterocytes.

3.4. Absorption

Following diffusion through the mucus layer in the small intestine, micelles incorpo-
rating β-carotene come into contact with enterocytes, eventually resulting in the uptake
of β-carotene into the cytosol of the enterocyte. Absorption of β-carotene is thought to
be a concentration dependent process—i.e., at lower concentrations it absorbs via protein
transporters including cluster determinant 36 (CD 36) and scavenge receptor class B type 1
(SR-BI), while at higher concentrations it follows passive diffusion [81].

Passive diffusion is thought to be the primary mechanism for β-carotene absorption
and is mediated by the difference between micelles and plasma membranes of entero-
cytes [49,50,81]. Viscosity is also thought to be a limiting factor for this diffusion process,
as it interferes with the mobility of the mixed micelles [82]. Several other factors, such
as physiochemical state of β-carotene (molecular forms, potency and their physiological
linkages), presence of lipophilic compounds, phytosterols, soluble proteins, surface-active
compounds (phosopholipids/surfactant), inhibitor/enhancer β-carotene and host-related
factors (age, disease, surgery, obesity, genetic variation) are equally responsible for in-
fluencing the bioavailability of β-carotene, by a variety of factors such as competitive
mechanisms, SNP expression, available surface for absorption etc., which have been com-
prehensively reviewed in our previous articles [49,83]. After absorption, β-carotene needs
to be incorporated into chylomicrons before entering the lymphatic system and systemic
circulation [37,61]. The transport through the cells has been the topic of some discussion
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but has not been fully elucidated. It may include unidentified transport proteins, BCO1,
retinol binding proteins, and others [84–86].

4. Bioavailability Assessment

Determining the bioavailability in human subjects is considered to be ideal, but it
seems to be impractical in many cases as the results of bioavailability studies may vary due
to large variations among the population, cost issues, non-compliance of ethical restriction
and time-consuming nature of experimentation. In vitro digestion models are gaining
popularity as they are reproducible, rapid and allow handling of a large number of samples
in parallel. Even though in vitro digestion protocols to evaluate the bioavailability of
bioactive agents (including β-carotene) have been developed and advanced in the last
decade, there are still some controversies around standard digestive models that can be
used for assessing β-carotene bioavailability.

Selection of a suitable in vitro digestion model is the first stage for evaluation of the
bioaccessibility of a nutrient. Currently, two types of in vitro digestion models—static
and dynamic models—are primarily employed for determination of the bioavailability of
bioactive compounds [49,51]. The static digestion models rely on a set of physicochemical
conditions (pH, bile salt concentration, enzyme) occurring during the digestion process
without imitating peristalsis, fluid flow and thorough mixing occurring during digestion.
Dynamic models rely on mechanical forces that occur during digestion along with imitation
of the enzymatic and chemical changes (changes of enzyme, mineral and bile concentra-
tions and pH) over time and between the different compartments. Dynamic models offer
better control over pH, enzyme concentration and mechanical forces, but are more difficult
to set up. Selection of suitable digestion models solely relies on the scope of measurements
as well as the nature of samples to digest. Discrepancies in the measurement of β-carotene
bioaccessibility between such methods have been reported—e.g., from almond butter by
dynamic in vitro digestion (87.1%) versus a static model (51.0%) [87]. These observations
suggested that static in vitro models suit simpler samples with perhaps higher throughput,
while dynamic in vitro digestion models are more suitable for solid or semisolid food
matrices. Several in vitro models (gastric as well intestinal) have been applied to determine
β-carotene bioavailability, which were primarily derived from the model proposed by Gar-
ret [88]. Each model has its advantages and limitations, which have been comprehensively
reviewed in our previous article [49]. However, a huge step forward was made with the
proposed INFOGEST consensus model, published in 2014 [89] with a follow-up update a
few years later [90], which was based on both physiological meaningful conditions as well
as practicability aspects.

Several factors, including food composition, complexity of the matrix, degree of
processing and genetic variations play vital roles in the bioavailability of β-carotene [36,83].
Generally, when β-carotene is released from food matrix, it has to be incorporated into
oil droplets, either formed during lipid digestion or present in the original food (e.g.,
emulsions). The attachment of lipases from digestive juices at the oil droplet surface
initiates lipid digestion. The digested lipid products, particularly some free fatty acids
and monoacylglycerols, take part in the formation of mixed micelles (also containing bile
salts and phospholipids), which behave as carriers to solubilize β-carotene and transport
it to the epithelium cells before adsorption [61]. Therefore, the ingestion and hydrolysis
of lipids have been regarded as essential steps in the bioavailability of β-carotene [91,92].
Technically, any factor that influences lipid digestion would affect the bioavailability of
β-carotene.

Improving Bioavailability of β-Carotene by Encapsulation

A variety of foods are being fortified with β-carotene. Direct addition of β-carotene
in food may result in inescapable interactions that lead to compromises regarding food
quality, taste, appearance and the bioavailability of β-carotene that can significantly di-
minish its efficacy as a disease-combating agent [93,94]. In addition, the obligatory role in
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human health and the mentioned physico-chemical challenges of β-carotene drive the de-
velopment toward more efficient, biocompatible, and safer delivery systems, with greater
patient compliance, such as using nanotechnology for better incorporation in target foods
(Figure 2) [95]. These challenges open new windows of opportunity to food technologists
to utilize nanotechnology and to develop β-carotene delivery systems that do not com-
promise food quality. Encapsulation is regarded as an indispensable process to fabricate
delivery systems with improved bioavailability, by stabilizing β-carotene in the target
foods and also during gastrointestinal (GIT) passage, improving its solubility in digestive
fluids, hence enhancing its absorption from the GIT, and possibly even evading first-pass
metabolism loss in various tissues. The bioavailability of encapsulated lipophilic com-
pounds including β-carotene is compromised by a range of factors and has been reviewed
by various researchers in excellent reviews [46,48,51,55,96–99].

Figure 2. Strategy to improve the bioavailability of lipophilic constituents in foods.

In order to attain the desired solubility, dispersity, stability and bioavailability for
β-carotene, a range of delivery systems, differing in design, structure, composition and
production processes, have been tested to validate their potential to encapsulate β-carotene
and to be an efficient carrier for β-carotene delivery in food systems [51]. From the origins
of nanostructures such as delivery systems for β-carotene to the present date, the number
of publications based on delivery systems has significantly increased. There are three
major reasons that can explain their success: (i) the improvements in delivery system
development; (ii) advancements regarding innovative technologies for delivery system
synthesis avoiding organic solvents; (iii) applications of newly developed drug delivery
systems for food applications.

The success of the inclusion of delivery systems encapsulating lipophilic compounds
such as β-carotene in food items solely relies on the following targets [100,101]: (i) reduction
in solubility complications between β-carotene and the food matrix; (ii) protecting β-
carotene against pH, temperature, moisture, oxidation and other detrimental external
environment conditions; (iii) demonstrating improved bioavailability, also considering the
potential for controlled and site-specific release of encapsulated β-carotene; (iv) avoidance
of interferences with desired physiochemical properties of the food system.
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5. Delivery Systems for β-Carotene

β-Carotene is often used as a natural colorant and additive in food in spite of having
poor water solubility, a high melting point, susceptibility to environmental conditions,
chemical instability, heterogenous distribution in food matrices, and low bioavailability—
all factors that limit its potential for the food industry. In this regard, encapsulation
techniques have allowed researchers to develop a range of delivery systems with desired
functionalities, such as enhanced stability, high dispersibility, improved solubility and
targeted/controlled release and improved bioavailability [102,103].

Delivery system is the technology where a bioactive ingredient is enclosed in nano-
/microstructure not only to protect bioactive compounds against environmental degra-
dation (oxidation, pH and enzyme), but also to release them at a particular target site
in a defined rate [51]. At present, the most investigated delivery systems adopted for
β-carotene can primarily be categorized into two groups: polymer-based delivery systems
(PBDSs) and lipid-based delivery systems (LBDSs).

5.1. Polymer-Based Delivery Systems

Polymer-based delivery systems use the intrinsic diversity of polymers to develop
encapsulating bioactive compounds in nanodelivery with improved functionalities. The
long-term health risks of PBDSs either fabricated with a synthetic polymer or made up
of natural polymers, such as proteins and carbohydrates, are regarded as minimal. How-
ever, the latter are either hard to scale-up as they require several heat and often complex
treatments which are hard to control or result in porous micro-/nanoparticles, thereby not
achieving the objective of encapsulation. A range of PBDSs have been reported in the liter-
ature. In the present review, we have included only those PBDSs which are derived from
either natural food grade materials or are generally recognized as safe polymers. Typical
PBDSs include nano-/microspheres, nano-/microcapsules, hydrogel micelles, colloidal
nano-/microemulsions and nanofibers, all of which mainly consist of synthetic or natural
polymers (Figure 3A,B).

5.1.1. Inclusion Complexes

Inclusion complexes are one of the most adopted delivery systems for encapsulating
bioactive compounds. The complex formation between the bioactive compound and the
host molecule occurs only in the presence of water. Cyclodextrin molecules are the most
widely used host molecules for the preparation of molecular complexes. Cyclodextrins
are macrocyclic oligosaccharides comprised of α(1,4)-linked glucopyranose subunits that
contain a distinctive hydrophilic outer surface and a lipophilic central cavity [104]. This
molecule offers a cage-like supramolecular structure, which can interact with the structures
of various lipophilic bioactive agents. Utilizing their ability to form inclusion complexes
with a range of “guest” molecules, cyclodextrins are recognized as being among the most
important supramolecular host molecules [105].

The literature describes various methodologies such as solvent evaporation, chemical
modification and isoelectric precipitation-fabricated inclusion complexes [106–111]. This paper
focusses on those methodologies which allow the formation of β-carotene inclusion complexes
(Table 1). Both human and animal studies suggest that cyclodextrins can be used to enhance
lipophilic bioactive compounds such as β-carotene in food matrices [104,112–114]. There is only
a single report on β-carotene encapsulation in cyclodextrins which was published in 2011 and
assessed the solubility of cyclodextrincomplexes encapsulating β-carotene [113]. Furthermore,
researchers have also utilized maltodextrin’s ability to encapsulate β-carotene [115]. Moreover, a
research team also validated the suitability of the amylose molecules to encapsulate lipophilic β-
carotene [116]. For this purpose, they encapsulated β-carotene in spherical microparticles (mean
diameter—8 mm) using an emulsion method and carried out stability studies against oxidative
stress (FeCl3), photodegradation and release kinetics in simulated digestive fluid (gastric as well
as intestinal fluid) [116]. These amylose microparticles were not only able to retain β-carotene
activity upto 70% as compared to nonencapsulated β-carotene after 7 h of UV exposure but
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also had higher stability (75% retention) as compared to nonencapsulated β-carotene (18%)
after 7 h of FeCl3 exposure [116]. Further, simulated digestion studies also suggested that
amylose microparticles were resistant to acid conditions (resistant to gastric digestion) but
demonstrated high release (25% of encapsulated β-carotene) in simulated intestinal fluid during
3 h treatment [116].

Figure 3. (A) Historical event in the evolution of polymer-based delivery systems; (B) historical event in the application of
polymer-based delivery system for encapsulating β-carotene; (C) historical event in the evolution of lipid-based delivery
systems; (D) historical event for applying lipid-based delivery system for encapsulating β-carotene.
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Table 1. Engineered nanoparticle-based delivery systems for enhancing the bioavailability of β-carotene.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

Lipid-derived
delivery systems

Self-assembled
delivery system

Liposome

• Hydrogenated
soybean PC

• Lipoid

Ethanol injection
method

FTIR, SEM, Raman
microspectroscopy,
UV-vis irradiation

NA NA NA NA NA [117]

• PC Dehydration/rehydration
method NA NA NA NA Microsomes/Rat pharmaceutical [118]

• Hydrogenated soy
PC

• Lipoid GmbH
• Xanthan gum

Spray-drying

DSC, small-angle
X-ray scattering

(SAXS), TEM, DLS,
ELS

NA NA 700–3000 nm NA NA [119]

• Gama-oryzanol Modified thermal
method FTIR NA NA 64–500 nm NA NA [120]

• PC
• PS
• PEA

Dehydration/rehydration
method NA NA NA NA Hamster pharmaceutical [121]

• Phospholipids
(Lipoid S-100-H and
Lipoid S-40, Lipoid
GmbH)

• Sucrose

Spray-drying DLS, ELS, XRD, SEM NA NA 285–1695 nm NA NA [122]

• Egg yolk
phospholipid

• Tween 80

Thin-film evaporation
method DLS, AFM NA SGF, SIF 600 nm NA NA [123]

Niosome
• Spans 40, 60, 80
• Tween 20, 40, 60
• Cholesterol

Dehydration/rehydration
method DLS, EE, TEM 16.0–51% NA 273.2–367.9 nm

RAT-1
immortalized

fibroblasts
pharmaceutical [124]

Particulate delivery
systems

Solid lipid
nanoparticles

• Hydrogenated
canola stearin

• Polyoxyethylene
• Sorbitan

monolaurate

Hot homogenization DLS, DSC, ELS, Cryo
TEM, NMR, XRD NA NA 111.7–170.8 nm NA NA [125]

• SC
• WPI
• SPI

Microfluidization DLS, TEM 99.1%,98.8%, NA 77.8–190.9 nm Caco-2 cells NA [126]

• Tripalmitin
• Phospholipid
• Polyethylene glycol

sorbitan monooleate

Hot high-pressure
homogenization DLS, ELS, DSC NA NA 0.16–0.27µm NA NA [127]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• WPI
• Corn oil Homogenization DLS, ELS, TEM, SEM NA NA <200 µm NA NA [128]

• SPI
• Xanthan gum
• Palm stearin

Hot homogenization DLS NA NA 1.20–1.70 µm NA Food application
(ice creams) [129]

• Brij 30
• Octadecane

Phase-inversion
temperature DLS, DSC NA NA 109 and 128 nm NA NA [130]

• Tristearin
• Sunflower oil
• Hydrogenated soy

lecithin
• Tween 80

Hot pressure
homogenization DLS, ELS, DSC NA NA NA NA NA [131]

• Hydrogenated palm
oil

• Cocoa butter
• Tween 20

Hot high-pressure
homogenization

method
DLS, DCS, NMR NA NA 168–227 nm NA NA [132]

• Polyoxyethylene
• Tween 80

Phase-inversion
temperature AFM, DLS, DSC, XRD NA NA <400 nm NA NA [133]

• Stearic acid
• Sunflower oil
• Tween 80

Hot agitation DLS, DSC, XRD NA NA <5 µm NA NA [134]

Nanostructured
lipid carriers

• Glyceryl tristearate
• High oleicsunflower

oil
• Tween 80

Solvent displacement
technique DLS, DSC NA NA 500 nm NA NA [135]

• Propylene glycol
monostearate

• Propylene glycol
mono- and
distearates

• Propylene glycol
mono- and
dipalmitates

• Sunflower oil

Hot homogenization DLS, DSC NA NA 82–217 nm. NA NA [136]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• Tween 80
• Tween 60
• Tween 80
• Phosphatidylcholine
• Grape seed oil

Hot homogenization DLS, ELS, DSC, TEM 65.26–74.35% NA 85.2–129.2 nm NA NA [137]

• Cremophor RH40
• Span 80
• Cupuacu butter

Phase-inversion
temperature DLS, DSC, TEM NA

Gastric fluid,
Duodenal fluid,

Jejunal fluid,
Ileal fluid

31.6–34.08 nm NA NA [138]

Microemulsion

• Span 80
• Span 40
• Tween 80
• virgin coconut oil
• Palm oil

Spontaneous
emulsification method DLS, ELS NA NA 20–22.60 nm NA NA [139]

• Lactoferrin
• B-Lactoglobulin Microfluidization DLS, ELS NA NA <250 nm NA NA [140]

• Sucrose
monolaurate

• Lactoglobulin
• Whey proteins

Microchannel Device DLS NA na 27.9 µm NA NA [141]

• Hydrogenated
canola stearin

• Tween 20
Hot homogenization DLS, DSC, ELS, Cryo

TEM, NMR, XRD NA na 115 nm NA NA [125]

• Tween 20
• Corn oil Microfluidization DLS, CFFM NA SSF, SGF 0.21–23 µm NA NA [142]

Nano emulsion

• Corn oil
• Lemon oil
• Sucrose
• Ponopalmitate
• Lysolecithin

Microfluidization DLS NA
SSF,
SGF,
SIF

<150 nm NA NA [91]

• Long-chain
triglyceride

• Medium-chain
triglyceride

• Tween 20

Microfluidization DLS NA
SSF,
SGF,
SIF

140–170 nm NA NA [92]

• Corn oil Hot homogenization DLS NA
SSF,
SGF,
SIF

<200 nm NA NA [143]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• MCT oil Microfluidization DLS, ELS NA NA 97.2–416.0 nm NA NA [144]

• Tween 80 Supercritical fluid DLS NA NA 50–150 nm NA NA [145]

• Corn oil
• Tributyrin Homogenization DLS NA

SSF,
SGF,
SIF

1.25–1.34 µm NA NA [146]

• Tween 80
• Stearic acid

High-speed
homogenization DLS NA NA 418.8–1689.0 nm NA NA [147]

• Tween 20
• Corn oil Microfluidization DLS, DSC NA

SSF,
SGF,
SIF

0.2–23 µm NA NA [142]

• Compritol
• Poloxamer 407

Hot-high shear
homogenization DLS, ELS NA NA 79–115 nm NA NA [148]

• Miglyol 812 (MCT)
• Corn oil (LCT) Microfluidization DLS, ELS, DSC NA

SSF,
SGF,
SIF

146 to 415 nm, NA NA [149]

• Sunflower lecithin
• Tween 20
• Peppermint oil

Heating and stirring DLS NA NA <10 nm NA NA [150]

• Orange oil
• B-lactoglobulin
• Tween 20

Microfluidization DLS NA NA <100 nm NA NA [151]

• Miglyol-812
(caprylic/capric
triglycerides

Spontaneous
emulsionfication

method
DLS, SEM NA NA 100–300 nm NA NA [152]

Polymer-derived
delivery systems

Self-assembled
polymer-derived
delivery systems

Starch-based
emulsion

• NaCMC
• Kappa-carrageenan Cross-linking SEM NA NA 700 nm NA NA [153]

• Medium-chain
triacylglycerol

• MCT oil
• OSA-modified

starches

Spray-drying DLS, ELS, SEM NA NA 114–118 nm, NA NA [154]

• Lactoferrin
• B-Lactoglobulin Microfluidization DLS, ELS NA NA 208–385 nm NA NA [140]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• Modified starches High-pressure
homogenization DLS NA SGF,

SIF 17 nm NA NA [155]

• OSA-starch Ultrasound
emulsification SEM NA NA 300–600 nm NA NA [156]

• SSPS
• Beetpectin

Layer-by-layer
electrostatic

deposition method
DLS, ELS NA NA 250.0–306.3 nm

304.5–466.6 nm NA NA [157]

• OSA-modified
starch

• MCT
Microfluidization DLS NA SGF,

SIF 80.0 ± 1.3 nm NA NA [158]

Protein-based
emulsion

• SC
• WPC

Solvent-displacement
method DLS, ELS NA NA 45–127 nm NA NA [159]

• SC Spontaneous
emulsification DLS, SEM 100 ± 1% NA 50–500 nm NA NA [160]

• A-lactalbumin
• Catechin Microfluidization CD, DLS, ELS NA NA 158.8 and 162.7

nm NA NA [161]

• Protein powders
• Sucrose syrup Homogenization DLS, DSC NA NA 0.48–0.66 µm NA NA [162]

• Sunflower oil
• Hydrogenated palm

kernel oil
• WPI
• SC

High speed
homogenization DLS, XRD NA NA 0.46–0.50 µm NA NA [163]

• WPI pH-cycling method DLS, ELS, FTIR, SEM NA SGF,
SIF 409.7 nm NA NA [164]

• Beta-lactoglobulin
• Catechin Microfluidization DLS, ELS NA NA 160–170 nm NA NA [165]

• WPI
• sunflower oil
• Gum arabic

Layer-by-layer
electrodeposition

technique

DSC, Dynamic
Mechanical Analyses

(DMA)
NA NA NA NA NA [166]

• SC
• Corn oil Microfluidization DLS NA NA 124–368 nm NA NA [167]

• SC
• Tween 20

Solvent displacement
technique DLS, ELS NA NA 30–206 nm NA NA [168]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• Lactoferrin
• MCT Homogenization

CD, DLS, ELS,
FSS (Fluorescence

spectroscopy)
NA NA 302–583 nm NA NA [169]

• SC
• Alginic acid Microfluidization DLS, ELS, FSS NA SGF, SIF 0.48–1.87 µm NA NA [170]

• Corn oil
• Canola oil
• Olive oil
• SC

Microfluidization DLS 70.9% SGF, SIF 167.4–178.8 nm Caco-2,Cell toxicity Pharmaceutical [171]

Carbohydrate-
based

emulsion

• SA
• Tween 80

Sonication and hot
homogenization DLS, ELS, CFSM NA SSF, SGF, SIF 0.2–23 µm NA NA [172]

• Mannitol
• Gelatin Freeze-dryer DSC NA NA NA NA NA [173]

Micelle

• SC
• Whey protein

hydrolysate
Solvent displacement DLS, ELS, FSEM NA NA 13–171 nm NA NA [174]

• SC Spontaneous
emulsification DLS, SEM 100 ± 1% NA 50–500 nm NA NA [160]

• Hydroxyethyl
cellulose

• Lionic acid
Sonication DLS, FTIR, NMR,

SEM, TEM 84.67% SSF, SGF, SIF 20–50 nm NA NA [175]

• Casein Microfiltration DLS, FTIR, TEM NA NA 0.04–0.4 µm NA NA [176]

• Chitosan
• PLA Polymerization DLS, FTIR, NMR,

XRD, TEM NA NA 14 nm NA NA [177]

• Soybean oil
• Tween 20
• Tween 40
• Tween 80
• Glycerol

monocaprylocaprate
• Propylene glycol di-

caprylate/dicaprate
• Caprylic/capric

triglyceride

Homogenization DLS, ELS, TEM NA NA 12–100 nm. Caco-2, Cell
toxicity study Food application [178]

• PLA
• Tween 80

Solvent displacement
method DLS, ELS NA NA 0.087–1.158 µm NA NA [179]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

Particulate
nanoparticles

Molecular complex

• Γ-cyclodextrin
Co-precipitation and

physical mixture
techniques

FTIR, FESEM NA NA NA NA NA [113]

• Sunflower seed oil
• acacia gum
• Maltodextrin

Spray-drying SEM NA PBS NA NA NA [115]

• Amylose Sonication DLS, TEM, SEM, XRD 65% NA 12 ± 3 nm NA NA [116]

Nanosphere

• PLA
• Stearyl amine
• Stearoyl polyoxyl-32

glycerides

Nanoprecipitation
method DLS, ELS NA PBS 117.1 ± 4.6 nm

MCF-7 breast
cancer cells, Cell
toxicity studies

Pharmaceutical [180]

• Rice protein isolate Homogenization CD, DLS, FTIR, CLSM NA SGF, SIF 300−400 nm NA NA [181]

• Zein Microfluidization DLS, ELS, TEM NA SGF, SIF
32.44 ±

0.87–168.17 ±
22.36 nm

NA Food application
(milk) [182]

• Sunflower oil
• WPI
• Trehalose
• Gum Arabic

Microfluidization DLS, ELS,
Raman-FIB-SEM NA NA

46.77 ±
0.17–48.23 ±

0.13 µm
NA NA [183]

• Corn starch Nanoprecipitation
method DLS, DSC, XRD NA SIF 0.77–0.89 µm NA NA [184]

•
Poly[poly(oxyethylene-
1500)-Oxy-5-
dodecanyloxyisoph-
thaloyl

• Poly
[poly-(oxyethylene-
1500)-oxy-5-
hydroxyisoph-
thaloyl]

Homogenization DLS, SEM, TEM,
NMR 22.60–28.08% Water,

Buffer <100 nm NA NA [185]

• OSA -modified
starches

• OSA-dextrin

High-temperature,
high-pressure

emulsification and
antisolvent

precipitation

DLS 70–80% NA 137–135,900 nm NA NA [186]

• SC
• WPI
• SPI

Homogenization-
evaporation

method

DLS, DSC, ELS, FTIR,
XRD NA SGF,

SIF NA Caco-2 cells NA [187]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

Microsphere

• OSA-modified
starches

• OSA-dextrin
Precipitation DLS, SEM 65–90% NA 300–600 nm NA NA [188]

• K-carrageenan
• Oil Ionic gelation DLS NA SGF,

SIF
80–94 nm,
91–106 nm,
128–134 nm

NA NA [189]

• WPI
• Dextran

Glycosylation
conjugation CD, DLS, ELS NA SGF, SIF 165.6–176.0 nm NA NA [190]

• Hydroxypropyl
methylcelluloses

• Kosher gum acacia

High pressure
homogenization DLS NA NA 1.38–1.96 mm. NA NA [191]

• SC
• Arabic gum

Electrostatic
complexation DSC, FTIR NA NA NA NA NA [192]

• Shellac Syringe
microfluidization SEM NA NA 19–84 µm NA NA [193]

• Casein
• Maltodextrin

Microfluidization and
Spray-drying DLS, ELS NA NA 230–277 nm NA NA [194]

• Canola oil
• Ethylcellulose Ionic gelation Lipid lipolysis NA NA NA NA NA [195]

• SPI Freeze-drying AFM DLS, ELS NA SGF, SIF 55 nm NA NA [196]

• Poly (methyl
methacrylate)

Spontaneous
emulsification DLS 14.18–64.39% NA 655–3418 nm NA NA [197]

• PLA Electrospinning SEM NA NA NA NA NA [198]

• Casein Microfiltration DLS, FTIR, TEM NA NA 0.04–0.4 µm NA NA [176]

• Almond gum
• Gum Arabic

Spray-drying and
freeze-drying DLS 66–70% Sunflower oil 1.20–2.30 µm NA NA [199,200]

• Almond gum
• Gum Arabic Freeze-drying DLS 66–70% Sunflower oil 2.10–3.2 µm NA NA [200]

• Caseins Spray-drying Photodegradation
study NA NA NA NA NA [201]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• OSA-modified
starches

• Flax seedoil
Microfluidization DLS, ELS, FESEM 90% NA 165.0–129.1 nm NA NA [202]

• Casein
• Dextran Dry heating method DLS, DSC, FSM 73.64–74.53 SGF,

SIF 111.1–127.3 nm NA NA [203]

• WPI
• Corn oil Microfluidization DLS, ELS NA NA 0.14–0.16 µm NA NA [204]

• MCT
• coconut oil
• Corn oil
• span 20
• Monostearin

High pressure
homogenization DLS NA NA 176.3–228 nm CACO-2 CELLS,

RATS
PHARMACEUTICAL

AND FOOD [205]

• WPI
• SC

High-pressure
homogenization DLS, ELS NA SGF,

SIF
142 ± 6–160 ±

10 nm CACO-2 CELLS NA [206]

• SC
• Maltodextrin

High-pressure
homogenization DLS, LD, TEM NA NA

262.8 ±
4.10–307.1 ±

5.40 nm
NA NA [207]

• Xanthan
• Gum
• Palm stearin
• Hydrolyzed SPI

Homogenization DLS, DSC, ELS, FFS NA NA 1–1.5 µm NA NA [208]

• Chitosan Cross-linking and
sonication DLS, SEM NA NA 1570.0 nm. NA

Food application
(hamburger

patties)
[209]

• Soybean oil
• Ulva fasciata

polysaccharide
Microfluidization DLS NA SSF, SGF, SIF 0.82 µm NA NA [210]

• Zein
•

Carboxymethylchitosan
Rotating evaporation DLS, DSC, ELS, FTIR,

SEM 56.5–92.7% SGF, SIF
70.41 ±

0.67–420.9 ±
2.34 nm

NA NA [211]

• OSA-modified
starch

• Tween-80
• Flax seed oil
• MCT

Microfluidization DLS, ELS NA NA 123.9–207.2 nm NA NA [212]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• Flax seed oil
• MCT
• OSA modified

starch
• Tween-80

Microfluidization DLS, ELS NA NA 123.9–207.2 nm NA NA [212]

• Carrageenan
• Tween 20 and 80 Polymerization DLS NA SGF, SIF 127–149 nm NA NA [213]

• Casein
• Guar gum

Homogenization and
coacervation pr DLS, ELS, FTIR, SEM 65.95 ± 5.33% SGF, SIF 176.47± 4.65 µm NA NA [214]

• Egg protein High-pressure
homogenization DLS NA NA 10.1 ± 0.7–14.5

± 0.6 nm NA NA [215]

• Tween 20
• Corn oil
• Sucrose

High-pressure
homogenization DLS NA SGF, SIF 170 nm NA NA [216]

• Soybean oil
• WPI

High pressure
homogenization

Effect of digestion on
particle size NA SSF, SGF, SIF NA NA NA [217]

• Maltodextrin
• Gum arabic
• Gelatin

Spray-drying Stability of carotene in
powder NA NA NA NA Food application [218]

• Poly(D, L-lactide-co-
glycolide) Solvent evaporation DLS 14% NA 260 nm NA Pharmaceutical [219]

• Calcium caseinate
• SA

Homogenization and
sonication DLS, SEM 79.63 ±1.41–84.32

± 1.08% SGF, 210.5 1.23 nm NA NA [220]

• Soybean-soluble
polysaccharides

• Chitosan
Homogenization DLS, ELS NA NA 0.52 µm. NA NA [221]

• Poly-(3-
hydroxybutyrate-co-
3-hydroxyvalerate)

Supercritical carbon
dioxide micronization

technique
NA NA organic solvent NA NA NA [222]

Capsular
nanoparticles Microcapsule

• Maltodextrin
• Tween 80 Freeze-drying CFLM, DLS, ELS NA SGF, SIF 0.23 ± 0.02–0.24

± 0.01 µm NA NA [115]

• Hydrolyzed starch Homogenization Stabilitystudy NA NA NA NA NA [223]
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Table 1. Cont.

Class of Delivery
Systems

Subclass of
Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• Arabic gum Spray-drying NA NA NA NA NA NA [224]

• Medium-chain
triacylglycerol

• MCT

High speed
homogenization,

spray-drying
DLS, SEM NA NA 114–159 nm NA NA [154]

• Gum arabic Spray-drying DLS, SEM NA NA 19.69–20.98 µm

mouse bone
marrow and

peripheral blood
cells/Wistar albino

rats,

Pharmaceuticals [225]

• Poly-ε-caprolactone
Emulsification–

diffusion
method

DLS, ELS, SEM NA NA 250–650 nm. NA NA [226]

• Casein
• Gum Tragacanth Complex coacervation CLSM, DLS, FTIR,

SEM, TGA, XRD 79.36±0.541% SGF 159.71±2.16 µm NA NA [227]

• Chitosan
• SA Spray-drying DLS 34–55% SIF 852–958 µm NA NA [228]

• Soybean oil
• SPI Homogenization CLSM NA NA 0.23 ± 0.02–6.68

± 0.65 lm NA NA [229]

•
Poly(hydroxybutirate-
co-hydroxyvalerate)

Supercritical fluid SEM NA NA NA NA NA [230]

•
Poly(hydroxybutirate-
co-hydroxyvalerate)

Supercritical fluid SEM 0.95–55.54% NA 1.3–51.9 µm NA NA [231]

• Chitosan
• Oleic acid
• Fe3O4

Solvent displacement
technique SEM, XRD 78.74–81.2% PBS NA NA NA [232]

• Dextrin Precipitation DLS, DSC, TEM, XRD NA SGF 16–30 nm NA NA [233]

• Gum arabic
• Gelatin
• Maltodextrin

Freeze-dryer DSC NA NA NA NA NA [234]

• Oil
• Tween 20

Homogenization and
evaporation CFLS, DLS NA NA

161.98 ±
17.19–189.45 ±

22.69 nm
NA NA [235]
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Table 1. Cont.

Class of Delivery
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Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• WPC
• Tween 20

Membrane
emulsification DLS NA NA 1.28 ± 0.02–1.69

± 0.49 µm NA NA [236]

• Pea protein
concentrate

• Maltodextrin
Spray-drying DLS, SEM NA Water 4.9 + 2.4–6.0 +

3.0 µm NA NA [237]

• Lactose
• Trehalose Spray-drying DLS, DSC NA NA 0.2–0.8 µm NA NA [238]

Nanocapsule

• Poly-ε-caprolactone
Emulsification–

diffusion
method

DLS, ELS, SEM NA NA 250–650 nm NA NA [226]

• Poly-ε-caprolactone
polymer

• Tween 80
• Triglycerides of the

capric and caprylic
acids

polymer
method

(Nanoinjection and
stirring)

DSC, ELS, TEM 99.65–99.75% NA 142.33–190.33
nm NA NA [239]

• Lecithin
• Tween20

Homogenization and
ultrasonication DLS, DSC, SEM, XRD 2.23±1.42% PBS 255.9±1.63 nm NA NA [240]

Fibrous
nanoparticles

Nanofiber

• Polyethylene Electrospinning DSC, FTIR, SEM NA NA NA NA MA [241]

• Maltodextrin
• Alginate
• Chitosan

Spray-drying DLS, SEM NA
SSF,
SGF,
SIF

10.5–942.8 µm NA Food application [242]

• PLA Electrospinning SEM NA NA NA NA MA [198]

Nanotube
• PVA
• Polyethylene oxide Electrospinning FTIR, SEM, RSM NA NA 250 nm NA NA [117]

Gelatinous
nanoparticles Hydrogel

• SA
• Calcium alginate Freeze-drying SEM NA PBS NA NA NA [115]

• Sodium
carboxymethyl
cellulose

• Kappa-carrageenan

Cross-linking SEM NA SGF NA NA NA [153]

• SC Solvent-displacement
method DLS, ELS NA NA 45–127 nm NA NA [159]
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Table 1. Cont.

Class of Delivery
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Delivery System Delivery System Ingredients Technique/Preparation

Method
Physiochemical

Studies
Encapsulation

Efficiency Release Studies Particle Size Cellular/Animal
Studies Applications References

• WPI
• Alginic acid Microfluidization CFLS, DLS, ELS NA

SSF,
SGF,
SIF

285–660 mm NA NA [243]

• Rice starch
• Xanthan gum
• WPI

Microfluidization CFSL NA
SSF,
SGF,
SIF

450 nm NA NA [244]

• Ethylcellulose
• Canola oil Heating and stirring Bioaccessibility NA

SSF,
SGF,
SIF

NA NA NA [245]

• Pea protein isolate
• Sunflower oil Microfluidization DLS NA

SSF,
SGF,
SIF

3.16–22.1 µm NA NA [246]

• Codium alginate
• ∆-glucono-lactone
• Tween 80

Spontaneous
emulsification Bioaccessibility, DLS NA

SSF,
SGF,
SIF

79–138 nm NA NA [247]

• WPI Ultrasonic
emulsification CFSL, DLS, ELS NA SGF 78–252 nm NA NA [248]

• Soy glycinin Microfluidization CFLS, DLS NA NA 1.5–9.7 µm NA NA [249]

• Corn oil, WPI
• Rice starch Hot homogenization CFSL,

Bioaccessibility NA SSF, SGF, SIF NA NA NA [250]

NA: not applicable, AFM: atomic force microscopy, CFM: confocal fluorescent microscope, CLSM: confocal laser scanning microscopy, DLS: dynamic light scattering (used for size determination), DSC: differential
scanning calorimetry, EE: encapsulation efficiency, ELS: electrophoretic light scattering (used for zeta potential determination), FRF: fractional residual fluorescence, FSM: fluorescence spectrophotometer, FTIR:
Fourier transform infrared spectroscopy, NMR: nuclear magnetic resonance, PBS: phosphate buffered saline, SEM: scanning electron microscope, SGF: simulated gastrointestinal fluid, TEM: transmission electron
microscope, XRD: X-ray diffraction, FSP: Florescence spectrophotometry, CM: confocal microscopy, FRF: fractional residual fluorescence, SRB: cellular proliferation assay (colorimetric) and MTT: cellular viability
assay (colorimetric).
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Despite the high stability of entrapped bioactive compounds, molecular inclusion has
several limitations, including poor release of the encapsulated bioactive compound, low
loading capacity, as well as high cost and failure of legislative compliance, as cyclodextrins
are not legally permitted in food systems in some countries. To deal with regulatory
compliance, researchers have come up with specific carbohydrate molecules (amylose and
maltodextrin) which display unique binding properties to lodged lipophilic ligands in their
hydrophobic patches. These molecules (amylose and maltodextrin) offer high encapsula-
tion and protection against oxidative, and chemical and photodegradation for β-carotene
could be attributed to a three-way interaction: (i) the helical cavity/hydrophobic patches
of these carbohydrate molecules demonstrate greater affinity for lipophilic β-carotene
possibly due to their “slim” and hydrophobic alkyl chains and (ii) altered microparticles
matrices’ viscosity profiles resulting in the formation of a soluble high molecular weight
nanocomplex, and they (iii) offer better linkage for carbohydrate-surfactant-encapsulant
compounds (β-carotene) in ternary structures [251].

5.1.2. Micro-/Nanospheres

Micro-/nanospheresarederived from natural or synthetic polymers having particles
size between 1–1000 µm (microspheres) and or 1–1000 nm (nanospheres). These are
water-soluble polymer or mixture of polymers dispersed in an organic phase to form
spherical structures in the presence of cross-linking agents. Bioactive compounds can be
encompassed into the inner hollow core of nanospheres or entrapped in the polymeric
matrix of a solid micro-/nanosphere.

Several methodologies for the preparation of nano-/microspheres, such as single
emulsion, double emulsion, coacervation phase separation, and polymerization have been
adopted for encapsulating various bioactive compounds [180,188–190]. These delivery
systems are renowned for their ease of optimization to obtain the desired functionalities for
pharmaceutical needs, including targeted and temporal control of release of encapsulated
drug, efficacy and in vivo stability as well as biocompatibility.

In spite of the great potential in the pharmaceutical field for drug delivery, nano-
/microspheres remain underutilized for β-carotene encapsulation. In order to obtain
better knowledge about the role of nano-/microsphere for β-carotene delivery, we have
discoursed about those methodologies that are involved in β-carotene encapsulation.
The encapsulation of β-carotene in micro-/nanosphere was first carried out with a car-
rageenan/carboxymethyl cellulose-based microsphere to determine the release kinetics of
encapsulated β-carotene from genipin-cross-linked kappa-carrageenan/carboxymethyl
cellulose [153]. During course of time, several studies were carried out to evaluate the
potential of polymeric micro-/nanospheresas an alternative delivery system for β-carotene
encapsulation [188,191–197,252]. Nevertheless, there is a scarcity of data on the use of nano-
/microsphere for the purpose of β-carotene fortification in food systems. Though, these
micro-/nanospheres are relatively easy to scale-up as they do not require sophisticated
instrumentation. However, several challenges such as poor loading capacity [253], prema-
ture release and degradation by enzymes [254] could be the reason for micro-/nanospheres
not being among the more accepted species for the encapsulation of β-carotene.

5.1.3. Nanohydrogels

Nanohydrogels, three-dimensional soft gels, are generally made by cross-linking the
water-soluble material, which is comprised of a wide range of chemical compounds and
bulk physical properties. The use of hydrogels as a delivery system results in a number
of advantages, including reduced systemic side effects [255], sustained and site-specific
drug delivery under desired external stimuli (thermal, pH or mechanical changes) [256]
and reduced systemic side effects attributed to loss in encapsulated bioactive compounds
(β-carotene) during digestion and inevitable interaction with other components of food
matrices, hence offering improved bioavailability [257]. The literature has been updated
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with excellent reviews on preparation methods for nanohydrogels including sonication
methods, cross-linking and inverse-suspension polymerization [258–260].

Chu et al. [159] compared the suitability of sodium caseinate- (SC) (mean diameter
17 nm) and whey protein-based (mean diameter 45–127 nm) hydrogels to protect encap-
sulated β-carotene against physicochemical stress including heat, salt and pH [159]. It
was observed that β-carotene encapsulated within sodium caseinate-based hydrogels had
higher stability (minimal change in particle size and zeta potential) as compared to whey
protein-based hydrogels against various stress conditions [159]. Similarly, β-carotene-
loaded κ-carrageenan hydrogel was also synthesized and tested for photodegradation,
thermal stability and simulated digestive release kinetics. It was observed that approxi-
mately 75% of encapsulated β-carotene was retained in κ-carrageenan hydrogel after 24 h
of UV exposure, while approximately 89% of encapsulated β-carotene was found to be
retained when they were incubated at 4 ◦C as compared to hydrogel incubated at 25 ◦C
(>35%) [261]. Further, alginate nanohydrogel was found to be more effective in providing
stability to β-carotene under accelerated storage conditions (55 ◦C), bioaccessibility and
bioavailability as compared to β-carotene encapsulated in nanoemulsion [243]. The high
structural and chemical stability of the developed hydrogel system against pH, heat and
salt, encouraged further progress in designing hydrogels as an efficient delivery system for
β-carotene (Table 1) [115,153,243–248,262]. Nevertheless, the great potential hydrogel also
carries several limitations including poor loading capacity [257], premature release and
oxidation of β-carotene [153,223]. These could be among the reasons that hydrogels have
not been well adopted as species for the encapsulation of β-carotene for food applications.

5.1.4. Micro-/Nanocapsules

Micro-/nanocapsules belong to the vesicular system family in which the bioactive
compound is situated within a cavity comprised of an inner liquid core fenced by a
polymeric membrane, with a range of sizes, microspheres (1–1000 µm) and nanospheres (1–
1000 nm). Solvent displacement and spray-drying are some of the well adopted techniques
for fabricating nano-/microcapsules. These delivery systems are recognized as substitutes
to liposomes due to its cost-effective and triggered release under specific stimuli.

The first report on the use of microcapsules to encapsulate carrot-derived β-carotene
was published on β-carotene-loaded microcapsules which were prepared by using spray-
drying to evaluate the effectiveness of microcapsules to retain encapsulatedβ-carotene [223].
In the following, a research team developed β-carotene-loaded nanocapsules (different
in gum Arabic concentration 15 to 30%) to study the impact of the effect of increased
gum Arabic concentration (15 to 30%) on the stability of β-carotene and it was found
that microcapsules fabricated with 25% gum Arabic had highest retention capacity for
β-carotene [224]. Thereafter, various reports have been published on the production of
micro-/nanocapsules [154,225–227,239,263,264] (Table 1).

Despite these gained insights, only few food technologists have prepared β-carotene-
loaded nanocapsules that are suitable for the purpose of food applications [150–154,225–
227,239]. This could be because of their operative limitations such as complexity in their
fabrication process [265], the use of synthetic polymers [266] and the susceptibility for
leakage of β-carotene which is adsorbed on their surface or can be imbibed within the
polymeric membrane [267]. These limitations are also further aggravated by the failure of
technology to resolve stability issues such as aggregation, fusion, leakage and sedimen-
tation. Once these aforementioned limitations are addressed and solved, there is great
potential for micro-/nanocapsules to act as efficient delivery systems for β-carotene in
food applications.

5.1.5. Nanofibers

The exclusive properties of nanofibers such as their nanoscale dimensions, quick wet-
ting properties, rapid release and temperature independence nature makes nanofiber-based
delivery systems a good technique for the delivery of heat sensitive bioactive agents such
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as β-carotene [268]. Electrospinning, freeze-drying and centrifugal spinning are extensively
adopted encapsulation techniques for heat susceptible bioactive compounds [269,270].
A range of wall materials are used to fabricate nanofibers broadly categorized into two
classes—(i) natural and (ii) synthetic. Natural wall materials involve cellulose, chitosan,
pullulan, cyclodextrins, starch, gelatin, zein protein, egg albumin, soy protein, and whey
protein while synthetic wall materials include polyvinyl alcohol, cellulose acetate, hydrox-
ypropyl methyl cellulose, ethyl cellulose, methyl cellulose [271,272].

Despite these promising properties, nanofibers have remained untapped for encap-
sulating β-carotene. It is evident that there is a scarcity of reports addressing β-carotene
encapsulation in nanofibers [117,198,241,242,273]. One major reason is that the porous
nature of nanofibers makes them liable to oxidative degradation of β-carotene, which
makes it unfit as a delivery system for β-carotene encapsulation [271].

5.2. Lipid-Based Delivery Systems

Lipid-based delivery systems (LBDSs) involve delivery systems which are principally
composed of physiological lipid analogs such as surfactants as stabilizers (Figure 3A,B).
LBDSs have been recognized for their promising biocompatibility, competency in GIT
penetration, easy to scale-up and broad application [102,274]. LBDSs have been admired
for their potential for drug delivery through various administration routes, particularly
for the oral delivery of lipophilic drugs, because of their competence to mimic the food
lipids during the digestive process [275,276]. With their properties, lipid-based delivery
systems offer an array of advantages over polymer-based systems as shown in Table 2.
Some of these advantages of lipid-based nanodelivery systems entail: (i) biocompatibility
and use of nontoxic excipients [274,277]; (ii) high drug payload [143]; (iii) viability of
incorporating both lipophilic and hydrophilic bioactives [274]; (iv) prospect of controlled
release and drug targeting; (v) improved drug stability [278]; (vi) averting of organic
solvents [279]; (vii) cost-effectiveness [280]; (viii) ease of scale-up during production and
sterilization [95]. Over the course of time, a range of lipid-based delivery systems have
been developed for encapsulating bioactive compounds such as micelles, micro- and
nanoemulsions, liposomes, niosomes, solid lipid carriers, nanostructured lipid carriers,
bilosomes, cubosomes, etc. [281]. However, in the present review, the emphasis has given
those LBDSs which have been adopted for encapsulation β-carotene are discussed in the
following sections.

5.2.1. Micelles

Micelles are distinguished as colloidal dispersions (with particle sizes ranging between
5 to 100 nm), related to a large family of dispersed systems containing particulate matter
(called the dispersed phase), distributed within a continuous phase [282]. The hydrophobic
regions of amphiphilic molecules form the core of the micelle while hydrophilic regions
form the micelle’s shell. When micelles are used as delivery systems for lipophilic β-
carotene in aqueous phases (food items and beverages), fat-soluble molecules are imbibed
on the micelle surface [283].
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Table 2. Various factors that need to be considered prior to selecting a delivery system for encapsulating any bioactive agent.

ENMS Class of
DeliverySystem

Subclass of
Delivery System

Ability to Deliver
Lipophilic and
Lipophobic BA

Physical Stability Biological
Stability Biocompatibility Drug Targeting Drug Loading

Feasibility to be
Delivery System
for β-Carotene

Lipid-derived
delivery system

Self-assembled
delivery system Liposome Yes poor Poor Good Moderate Low to moderate Poor

Niosome Yes moderate Poor Moderate Moderate Moderate Poor

Particulate Solid lipid
nanoparticles Only lipophilic Good Moderate Good Moderate Moderate Moderate

Nanostructured
lipid carriers Only lipophilic Good High Good Moderate High Good

Emulsion Microemulsion Yes Moderate Moderate Good Poor High Good

Nanoemulsion Yes poor Moderate Good Poor High Poor

Polymer-derived
delivery system

Self-assembled
delivery system

Starch-based
Micelle Yes Good Good Moderate Poor Poor Good

Protein-based
micelles Yes Poor Good Moderate Moderate Poor Good

Carbohydrate Poor

Hydrogel Yes Good Good Poor Poor Poor Good

Colloidal
nanoemulsion Yes Moderate Moderate Good Poor High moderate

Nanoemulsion Yes poor Moderate Good Poor High Poor

Molecular
complexes Only lipophilic Good Moderate Poor Poor Low Poor

Particulate Protein inclusion
complexes Yes Good Moderate Moderate Moderate Low Poor

Nanosphere Yes Good Moderate Moderate Moderate Moderate Poor

Microsphere Yes Good Moderate Moderate Moderate Low Moderate

Fibrous Nanofiber Yes Good Moderate Moderate Moderate Low Poor

Capsular Microcapsule Yes Good Moderate Moderate Moderate Low Poor

Nanosphere Yes Good Moderate Moderate Moderate Moderate Poor
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Several researchers have reproduced excellent reviews highlighting the chronological
developments in the design, preparation, characterization and evaluation of polymeric
micelles to attain efficient delivery of lipophilic drugs [284–287]. Micelles promise an array
of advantages over polymeric nanoparticles, such as higher water solubility to lipophilic
bioactive compounds [288], better penetration across physiological barriers [289], reduced
toxicity and other adverse effects and effective bioactive drug distribution among tissues as
well as organs [47,290]. These attractive attributes fascinated food technologists to exploit β-
carotene encapsulation. Chu et al. [174] encapsulated β-carotene in sodium caseinate-based
micelles to correlate the changes in the particle size and ζ-potential of the nano dispersions
with their composition [174]. These β-carotene-loaded micelles displayed a better stability
than that of empty micelles [174]. β-Carotene-loaded α-lactalbumin micelles was not only
found to be effective in protection of β-carotene (40% to total encapsulated β-carotene)
against thermal degradation (after 24 h of incubation at 60◦C) but also demonstrated high
cellular uptake of micelles encapsulating fluorescent dye by Caco-2 cell which also signifies
higher absorption of encapsulated β-carotene [291]. These observations attracted food
technologists to encapsulate β-carotene in micelles, using different food grade ingredients
including casein, α-lactalbumin, and β-lactoglobulin [160,175–178]. Low loading capacity,
premature release of drugs and poor stability has nevertheless limited the use of micelles
in food applications [47].

5.2.2. Micro/Nanoemulsions

Oil-in-water nanoemulsions and microemulsions are two basic colloidal dispersion
systems suitable for the delivery of lipophilic β-carotene for food applications. The liter-
ature also reports several techniques for the preparation of micro/nanoemulsions, such
as emulsion phase inversion [292], high-pressure homogenization [293], microfluidiza-
tion [144,294], supercritical fluid methods [145,295], spontaneous emulsification [296] and
phase-inversion temperature [297].

Micro/nanoemulsions are recognized as colloidal dispersion systems of small liquid
droplets, depending on the size (≤100 nm for microemulsion and ≤50 nm for nanoemul-
sion) [298]. The main difference between these two kinds of colloidal systems is thus
their thermodynamic stability—i.e., microemulsion being thermodynamically stable while
nanoemulsion being thermodynamically unstable [298]. It is assumed that the type of
carrier oil and degree of saturation have significant impact on the β-carotene bioacces-
sibility. For this purpose, β-carotene was encapsulated in three different nanoemulsion
differing in their carrier oil (long-chain fatty acid, medium-chain fatty acid and orange
oil) and it was found that nanoemulsion derived from long-chain fatty acid had higher
bioaccessibility (≈66%) as compared to medium-chain fatty acid (≈2%) and orange oil
(negligible) [92]. Teapolyphenols (TPs) nanoemulsion was also fabricated to encapsulate
β-carotene with the hypothesis that being an antioxidant itself the TP could protect the
encapsulated β-carotene. It was observed that addition of TP prevented the degradation of
β-carotene during storage and improved the bioaccessibility of β-carotene after simulated
oral and stomach digestion [299]. These observations have encouraged food technologies to
develop noval nanoemulsions incorporating β-carotene [91,125,140–147,149]. Nevertheless,
β-carotene incorporation into nanoemulsions and microemulsions for food applications
has shown to be limited due to technical and practical hurdles, such as scarcity of food
grade surfactants [300], complexity in fabrication method (most of them involving organic
solvents), poor loading capacity and instability during storage [301].

5.2.3. Liposomes

In general, liposomes are spherical liquid structures with an aqueous core enveloped
by as single (unilamellar) or multiple lipid bilayers (multilamellar liposomes) and promise
high biocompatibility with animal tissues as they have demonstrated similarity to natural
plasma membranes. According to the size, they are also defined as nanoliposomes (≤200 nm).
The ability to incorporate both hydrophilic and hydrophobic compounds individually or
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simultaneously make liposomes most adopted delivery systems. Their broad application
is also endorsed by their structure flexibility, size and composition. Various fabrication
methods for preparation of liposomes have been developed, including lipid film hydration,
microemulsification, sonication, membrane extrusion, dried reconstituted vesicles, solvent
dispersion method, detergent removal technique and supercritical fluid method [285,301–309].

Liposomes are one of most widely used delivery system to encapsulate and deliver
lipophilic as well as hydrophilic bioactive compounds for cosmetics, pharmaceuticals and
food industry [310,311]. It is assumed that the stability of encapsulated β-carotene can
be further improved by the addition of antioxidants, though this may compromise the
loading capacity. This assumption was varied for a study where β-carotene was found to
be more stable (approximately 88%) when encapsulated along in liposome with vitamin
C as compared to liposome without vitamin C (approximately 36%) during 30 days of
storage at 4 ◦C [312].

Liposomes are comprised of a hydrophilic core and a lipophilic crust, thus being able
to incorporate bioactive compounds differing in their hydrophilicity. Hence, the solubility
of any bioactive compounds governs its loading capacity as well as its location within the
liposome [118]. For instance, the loading capacity of β-carotene was compromised when
β-carotene was encapsulated in liposomes along with additional antioxidants such as lutein
and lycopene [313,314]. Xanthan gum-coated liposome has shown high retention ability for
encapsulated β-carotene (2 molar β-carotene) during 90 days of storage under refrigerated
conditions [119]. L-α-Dipalmitoylphosphatidylcholine-based liposomes was evaluated
for release of β-carotene in simulated digestive system and it was observed that only 5%
gum Arabic concentration 10% of total encapsulated β-carotene was released under gastric
digestion conditions while 30–40% of total encapsulated β-carotene was released under
intestinal digestive fluid [315]. Liposomes have also been reported improved stability for
encapsulated β-carotene [117–123].

Though liposomes are the most widely adopted delivery systems for food bioac-
tives it also has several limitations such as hard to scale-up due to their vulnerability to
shear, sedimentation, aggregation, fusion and environmental stress (osmotic pressure, pH,
temperature, oxidation, etc.), which may result in premature release and degradation of
encapsulated β-carotene. To overcome this hurdle, food technologist came up with a proli-
posome strategy, nanometric version of liposomes, which offers more surface volume ratio,
improved solubility to lipophilic compounds, enhance bioavailability, improve controlled
release, enable site directed release of encapsulant, and high stability during processing
and storage [316]. Regardless of their great stability, proliposomes also carry technical
limitations, such as the need of a vacuum or nitrogen atmosphere during their fabrication
and storage [317]. It is also evident that for these reasons the food industry has not adopted
this technique. Additional challenges with liposomes/proliposomes include low water
solubility, short half-life, sedimentation, aggregation, fusion and phospholipid hydrolysis
and/or oxidation, and high production costs remain high [318].

5.2.4. Niosomes

Niosomes are vesicles formed as a result of unfavorable interactions between nonionic
surfactants and water molecules resulting in closed bilayer structures and can also encap-
sulate lipophilic, hydrophilic and amphiphilic compounds [319]. Niosomes are preferred
over liposomes as they offer better mucosal permeability, sustained and site-specific release,
higher stability and are cost-effective [320]. Niosomes promise higher chemical stability,
simultaneous encapsulation of hydrophilic and hydrophobic bioactive compounds and
reduced toxicity due to their nonionic nature [321]. They also resolve the issue coupled with
liposomes such as challenges during sterilization, phospholipid purity and high costs [321].
In addition, the scale-up of nisomesare also simple, as they do not require any specific
conditions, organic solvents and other precautions such as vacuum [284,309,322–324]. In
spite of the great potential, niosomes are not well adopted for food fortification. There is a
scarcity of data on niosome encapsulation of β-carotene and only a single study is available
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for β-carotene in niosomes where high stability for β-carotene was observed when it is
encapsulated in noisome (20 µm) than that of dissolved in tetrahydrofuran (10 µm) after 96
h incubation at 50 ◦C [124]. Furthermore, it is evident that not a single report was generated
on applications of niosomes regarding encapsulating β-carotene for the food industry. This
could be due to failure in resolving major stability issues, such as aggregation, fusion,
leakage and sedimentation that were also observed in liposomes.

5.2.5. Solid Lipid Nanoparticles

Nanotechnologists have evolved next generation delivery system termed solid lipid
nanoparticles (SLNs), where the liquid lipid (oil) has been substituted by a solid lipid [325].
SLNs promise exclusive properties such as a better interaction of phases at the interface,
greater stability of encapsulated bioactive compounds, controlled and or/targeted drug
release, large surface area and small size and ease in scaling up, which make it a promising
delivery system for hydrophilic bioactives [326].

Studies are available on SLN fabrication methods, such as evaporation or diffu-
sion [126,327], high-pressure homogenization at high or low temperatures (including
cold homogenization and hot homogenization) [328], phase-inversion methods [328], sol-
vent emulsification [329], supercritical fluid (supercritical fluid extraction of emulsions
(SFEEs) [330], homogenization or high-speed assisted ultrasonication [331] and spray-
drying [332].

The potential of SLNs to encapsulate and protect β-carotene was recognized during
their initial development phase where β-carotene was incorporated into SLNs to evaluate
the effect of surfactants on the oxidative stability of encapsulated β-carotene. It was also
observed that high-melting surfactants better protected encapsulated β-carotene against
chemical degradation [127]. It was assumed that the incorporation of protein molecules
into SLNs also improves the stability of encapsulated β-carotene. In order to verify these
aspects, a study was carried out to assess the impact of whey protein on the stability of
encapsulated β-carotene in SLNs [128]. Though this study demonstrated better stability
of β-carotene in SLN, there is scarcity of data on SLNs for food applications. Only one
paper was published addressing β-carotene-loaded SLNs for food fortification [129]. Low
drug loading capacity, drug expulsion after polymeric transition during storage, particle
size growth, random gelation tendency, unforeseen dynamics of polymeric transitions and
sometimes burst releases are some of the limitations of SLN [325,333].

5.2.6. Nanostructured Lipid Carriers (NLCs)

NLCs contain an unstructured solid lipid core matrix, which consists of a mixture
of liquid and solid lipids and an aqueous phase consisting of a surfactant or mixture of
surfactants. Usually, liquid and solid lipids are a blend in a defined ratio that could vary
from 70:30 to 99.9:0.1, while the surfactant content is kept between 1.5% and 5% (w/v) [334].

Current literature reports use various fabrication methods for NLCs including, high-
pressure homogenization at high or low temperatures (including cold homogenization and
hot homogenization) [335], solvent emulsification–diffusion techniques [331], supercritical
fluids (supercritical fluid extraction of emulsion) [336], solvent emulsification evapora-
tion [335], solvent displacement [135], solvent diffusion [337], phase inversion [338,339],
melt emulsification [340], sonication [334], spray-drying [340,341], and solvent evapora-
tion [335].

Among the aforementioned preparations methods, the hot homogenization process
is preferred for NLC fabrications for food applications, as it does not involve organic
solvents [342]. NLCs are partly crystallized lipid nanodelivery particles with an aver-
age diameter of ≤100 nm. The unstructured/partially solid matrix produces interesting
nanostructures, which improves the stability of entrapped bioactive compounds, offers
high loading capacity and controlled/target release [343]. It is believed that the addition
of antioxidant aqueous and or lipid phase may increase the physiochemical stability of
NLCs as well as the entrapped bioactive compound. Ethylenediaminetetraacetic acid and
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tocopherol were shown to offer better oxidative stability to carotenoids (astaxanthin), while
ensuring higher physical stability of NLC particles [344]. It was also hypothesized that
the surfactant and emulsifiers utilized in NLC preparations might negotiate the physio-
chemical stability of NLC particle as well as the encapsulated bioactive compounds. In
order to verify this assumption, a study was devoted to formulating NLCs with two types
of lipids differing in their melting points—i.e., low-melting (LM) and high-melting (HM)
lecithins encapsulating tristerin and omega-3 fish oil [345]. The observation clearly suggests
that NLCs formulated with HM lecithin demonstrated greater inhibition ability against
oxidation of omega-3 fatty acids than that of LM lecithin [345].

Despite being a promising technique for drug delivery, NLCs remained underutilized
for β-carotene encapsulation. To date, only a few dedicated reports have been produced
dealing with β-carotene encapsulation in NLCs, showing the potential of NLCs to be
used for food fortification purpose. In the first report, β-carotene-loaded NLCs were
fabricated by the hot homogenization method and the physicochemical properties were
evaluated [136]. Lacatusu et al. (2012) used a high-pressure homogenization method
to encapsulate β-carotene in NLCs containing two natural oils (squalene and grape seed
oil) [137]. The impact of the surfactant on physiochemical properties of NLCs encapsulating
β-carotene was also studied [148]. Optimization of β-carotene encapsulation for NLCs
using solvent diffusion methods was also carried out [337]. Similarly, β-carotene-loaded
NLCs differing in the oil phase were also synthesized to evaluate the impact of the change
in oil phase type on the physicochemical properties of the NLCs [297]. A high-pressure
homogenization method was adopted to encapsulate 9Z-β-carotene and total β-carotene in
NLCs for its physicochemical characterization and evaluated their stability during storage
stability. It was observed that β-carotene-loaded NLCs stabilized both 9Z-β-carotene and
total β-carotene not only from leakage but also from degradation against pH variations
(pH 3.5, 4.5, 5.5, 6.5 and 7.5) and were found to be highly stable at 37◦C over 21 days of
storage [346]. Despite being the most advanced delivery method for processing of the
sensitive bioactive compounds, applications of NLCs for β-carotene have been limited and
their food applications are rather rare.

6. Safety Compliance and Risks of β-Carotene Nanoparticles

The customized properties of the discussed delivery systems, including the potential
for bioavailability, better absorption and controlled release kinetics of the encapsulated
bioactive compounds, may also impart unseen risks to biological systems [280,347]. It is
assumed that utilization of biodegradable or natural materials may curtail the health hazards
as compared to polymeric nanoparticles which are either derived from synthetic polymers or
involve toxic organic solvents during their fabrication processes [347]. Due to the ambiguity
on long- or short-term effects of direct or indirect employed nanoparticles in food systems,
it is paramount to evaluate the impacts of nanoparticles on human health [348]. With regard
to food safety, the FDA has listed certain strategies in conjunction with nanoparticle-based
food and food components for mass production [349]. Regardless of the potential health
concern, at present no standardized legislation for incorporation of nanoparticles in food
systems, particularly for nanoparticles encapsulatingβ-carotene, are available. Nevertheless,
several agencies and governmental bodies insist that we embrace the safety concerns of
nanoparticle-based food products in legislative guidelines [350]. The European Food Safety
Authority (EFSA) has published an excellent report on the topic (https://www.efsa.europa.
eu/en/efsajournal/pub/5327, accessed on 20 December 2020). This guideline provides
an overview on the required information about physico-chemical characterization and
the other data requirements. It also states about the performance of risk assessment of
nanomaterials in the food and feed area including novel food, FCMs, food/feed additives
and pesticides. This lack of universal legislations compelled duty-bound policymakers to
outline a guideline specifically dealing with the nanoscale materials in the food system [351].

The potentially tailored bioavailability of encapsulated bioactive compounds in de-
livery systems is a key safety concern, specifically for bioactive compounds, or the nan-
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odelivery systems which may become toxic beyond a certain dose. To scrutinize the safety
aspects, the bioavailability of bioactive compounds needs to be revaluated when it is encap-
sulated within nanodelivery vehicles, and reflections on alterations of the Recommended
Daily Allowance (RDA) as well as the Tolerable Upper Intake Level (UL) of encapsulated
bioactives are needed [352].

In addition, food scientists may also need to conduct studies addressing the safety
concerns associated with nanoparticles, with special attention regarding: (i) the physio-
chemical characterization constraints of nanoparticles utilized in food items such as food
additives, enzymes, flavorings, food contact materials (FCMs), novel foods, feed additives
and pesticides [353]; (ii) development of the testing strategies to determine and characterize
hazards transmitted via the engineered nanomaterials (ENMs)—i.e., assays for in vitro
genotoxicity, absorption, distribution, metabolism and excretion and repeated-dose trials
to study toxicity in test animals such as rodents [354].

In addition, the interactions between food items and nanodelivery systems should
also be debated, which may result in producing radical oxygen species, photoreactions, etc.
In December 2014, EU legislative bodies have insisted that food industries mention relevant
information on the label if nano-food products are sold [351]. According to this guideline,
particles have one or more dimensions of either 100 nm or less and agglomerates above
100 nm exhibiting ENM characteristics and should be considered as ENMs. In conjunction
with this, the FDA has drafted guidelines which clearly define ENM-derived foods as (i)
agents or products having particle sizes within the range of 1 to 100 nm with at least one
dimension being within the nanoscale; (ii) agents or products exerting biological, chemical
and physical characteristic associated with nanoscale materials and that are also on the
nanoscale even though they are not nanosized.

In addition to legislative guidelines, there are several moral responsibilities of the food
processing manufacturers, including: (i) evaluation of the changes imparted on the food
materials—i.e., impurities and physiochemical properties; (ii) evaluation of the safety of food
materials after modifications; (iii) submission of the regulatory assessment reporting to the
legislative bodies such as FDA, FSSAI, EU, FASSAI, etc.; (iv) identification and a statement
about the regulatory concern due to the ingestion of the nanoparticle-derived food items.

Apart from the US-FDA, several other regulatory authorities from various countries
including Australia, New Zealand (FSANS) and Korea (MFDS) have issued their own
guidelines [355]. These agencies counseled to conduct safety experiments (in vitro as well
as in vivo) to evaluate the effect of nanoparticle-containing foods and publish the data,
as well as to establish guidelines before releasing these nanoparticle containing foods
to the food supply chain. Nevertheless, there is a lack of specific guidelines regarding
nanoparticles containing foods, thus it is high time that the legislative bodies should come
together to frame a more universal guideline for nanomaterial-derived food products
which can then be applied or further tailored to different countries.

7. Fate of β-Carotene-Loaded Nanodelivery Systems

β-Carotene needs to be released in the GIT fluids to be taken up by the enterocyte
for adsorption in GIT. The lipophilic nature of β-carotene limits its bioaccessibility to the
cells due to the poor solubility. Lipid-based delivery systems, such as micelles, nano-
/microemulsions, liposomes, niosomes, SLNs and NLCs, have recently been recognized
as enhancing the bioaccessibility of many lipophilic vitamins and fat-soluble compounds
including vitamins A, D and E [51,356–359]. The nature of the carrier oil utilized to fabricate
LBDSs also affects their encapsulation efficiency and bioaccessibility [92,360].

The literature has also shown improved bioavailability of lipophilic bioactive com-
pounds for various polymer-based delivery systems, such as micelles, nano-/microemulsions,
hydrogel, nano-/microsphere, nano-/microcapsules and nanofibers [356,357]. However, a
lack of dedicated comparative studies for various compounds on the use of such polymer-
based delivery systems creates a research gap. Comprehensive, comparative and rigorous
research is needed with the use of various delivery systems for each category of the com-
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pound to fill the research gap. Moreover, PBDS are well celebrated in pharmaceuticals to
manipulate bioaccessibility by altering the solubility of β-carotene.

Figure 4 illustrates the primary routes for β-carotene absorption in the small intestine.
LBDSs have been primarily adopted to encapsulate lipophilic β-carotene and tend to
enhance their absorption [87,181,195,228,229,242]. Mixed micelles produced as a result
of digestion of LBDSs and penetrating through the aqueous mucous layer were created
to make β-carotene bioaccessible to brush bordered enterocytes for uptake, while PBDSs
undergo various digestive enzymatic alternations to release β-carotene from polymeric
nanoparticles which are then absorbed by enterocytes. Further release of β-carotene from
PBDSs and LBDSs and their packaging into chylomicrons inside the enterocytes is increased
as a result of the high hydrophobicity [361,362]. These chylomicrons are lipid particles
which are endogenously generated within the enterocytes using lipid components (free fatty
acids, monoacyglycerols, and cholesterol) originating in part from mixed micelles produced
as result of fat digestion [363]. Furthermore, these chylomicrons comprising β-carotene are
then transported to the lymphatic circulation system to the liver for further processing.

Taken together, it is also believed that a fraction of encapsulated β-carotene from the
delivery systems could be resistant to digestion and (i) may excrete from the GIT in undi-
gested or semidigested condition or (ii) can penetrate the biological barriers of the intestine
and enter the circulatory system [364]. The excretion of nanoparticles encapsulating β-
carotene does not seem a viable approach; thus, such nanoparticles could not be a realistic
commercial strategy for β-carotene encapsulation in the food sector as theycould poses
unidentified health risks [365]. On the other hand, since nanoparticles could penetrate
the biological barriers, the immunological and toxico-kinetic aspects of them need to be
fully understood. Thus, it is advisable to carry out various investigations addressing the
distribution of nanoparticles in cells and tissues, toxicological constraints and indecorous
variation of nanoparticle properties. In summary, a suitable design for delivery system
can overcome the safety hurdles to a great deal and the safety can be gauged in direct
approaches. Furthermore, being cognizant about the full features of safety concerns is the
key to a suitable design and to make nanodelivery systems commercially viable.

Figure 4. Factors influencing the bioavailability of β-carotene during absorption in the gastrointestinal tract (GIT). Paracel-
luar absorption, M-cell uptake via Peyer’s patches and Chylomicron-assisted enterocyte absorption.
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8. Conclusions

The selection of appropriated encapsulation techniques is the key for designing β-
carotene delivery vehicles for food systems. Optimized doses of vital food components
along with β-carotene, can be achieved using suitable delivery system and food items can
be used as a platform for therapeutic as well as nutrient delivery.

Nanodelivery systems are the impending carriers for β-carotene. Moreover, solvent
evaporation, solvent displacement, microfluidization, thin-film hydration and hot ho-
mogenization methods remain widely adopted encapsulation technologies for fabricating
various β-carotene-nanodelivery systems. Each delivery system has its own technical com-
plications that affect the final properties of the resulting nanodelivery system. However,
the majority of ENMs have reported sustained release, high loading capacities, lower pos-
sibility of encapsulant expulsion, low toxicity and high encapsulant protection; however,
these data are often extrapolated from pharmaceutical studies. Further studies in this
domain are surely warranted for food enrichment purposes. More focused studies are
required to obtain a better knowledge for the designing of delivery systems and to resolve
the associated limitations such as the need for novel food grade polymers. Additionally,
the safety of β-carotene delivery systems in food needs to be routinely investigated. This
includes obtaining data from in vivo and in vitro studies involving all classes of available
delivery systems. In summary, the stability of β-carotene delivery systems in food matrices
as well as it’s delivery in the GIT need to be cautiously watched.

9. Future Prospects and Research Gaps

The great potential of delivery systems in food items is the new normal situation,
which is becoming a routine. In light of the global health issues, these applications in
food items seem imperious and indispensable to aid in combating diseases and promote
healthy living. Several delivery systems have already been widely applied, including
micro/nanoemulsions, NLCs, and PBDSs for food fortification of items such as ice creams
and beverages. However, information regarding safety concerns associated with the
incorporation of new ingredients and technologies must be generated by accelerated in vivo
and clinical trials to support both policy makers and producers to provide the consumer
with evidence-based information. Public acceptance of delivery system-based food is
gradually improving, ensuring its huge potential in many ways, such as personalized
nutrition with novel functionalities for evolving human physical and mental capabilities
and improving mood and satisfaction from nano-based foods.

After a comprehensive review of the literature, the gaps in the existing literature were
pointed and these research gaps should be addressed by future studies. The future research
prospects recognized from existing literature on delivery system encapsulating β-carotene
are as follows:

The field of designing nanodelivery systems for food applications is mainly trial and
error-based. More interdisciplinary research needs be conducted to develop a set of univer-
sal methods for developing delivery systems that could display high compatibility towards
β-carotene, target foods and their interaction with GIT fluids, cells, tissues and organs.

1. There is not a single report on the comparative assessment of the bioavailability of
β-carotene EMS to the above mentioned nanodelivery systems. The data produced
by devoted studies on bioavailability and health risks comparing various β-carotene-
loaded delivery systems (LBDSs and PBDSs), particularly PBDSs, will aid in a better
understanding and designing of suitable delivery systems for β-carotene.

2. The nature of the carrier oil (fatty acid chain length and degree of saturation) can also
affect the biological fate of the lipid-derived delivery systems [366]. Nevertheless,
data are too scarce with respect to LBDSs to draw a firm conclusion.

3. Although β-carotene-loaded delivery systems display a high bioavailability, other
lipophilic compounds and related carotenoids may manipulate the bioavailability
of β-carotene. More studies demonstrating the influences of lipophilic compounds
present in the food matrix on the bioavailability of β-carotene-loaded delivery systems
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are needed. This will be aid in a better understanding in designing optimized delivery
systems for β-carotene.

4. Many researchers have argued that nanoparticles may enhance the bioavailability of
β-carotene due to the transfer of intact nanoparticles across enterocytes. Nevertheless,
no single study witnessed the penetration of food grade nanoparticles containing
β-carotene across intestinal walls in the available literature.

5. Most of the delivery systems are fabricated based on extrapolated in vitro and in vivo
pharmaceutical data. This cannot be applied to food grade nanoparticles—in particu-
lar, polymer-based delivery systems.

6. Certain ingredients (EDTA, chitosan, fatty acid, etc.) can manipulate the structure
and integrity of the cell membrane. This is perhaps the least explored field and data
generated on the effect of these ingredients on the cell membrane are necessary for
better understanding and designing efficient β-carotene delivery systems.

7. Various research studies displayed the improved permeability of cell membranes
for certain kind of nanoparticles. Most of these are coupled with pharmaceutical
formulations, containing to some extent certain nonfood grade materials. The same
conclusion cannot be drawn for food grade nanoparticles. Thus, more devoted and
rigorous investigations are needed to evaluate the impact of food grade nanoparticles
on the penetration of cell membranes.

8. There is ambiguity on interactions between GIT fluids and nanoparticles encapsu-
lating β-carotene. It is sensible to debate how the bioavailability of β-carotene is
influenced when it is encapsulated in available delivery systems.

9. The perceived risks endorsed within the transfer of intact particles across the intestinal
walls into the systemic circulation and buildup of particles or β-carotene in organs
and the incidence of very high peak concentrations of β-carotene in the blood is
poorly understood. Since reliable data signifying toxicity or risks are not present in
the current literature, this should spark a debate on the various unknown factors.

10. The role of digestive enzymes in the release of β-carotene from delivery system as
well as on its bioavailability is not fully known. The assessment addressing the effects
of enzymes individually or in arrays and their concentration on the bioavailability of
β-carotene from delivery systems will aid in better knowledge for designing suitable
delivery system.

11. There is ambiguity regarding the kinetics of nanoparticle transfer from food matrix
GIT fluid as well as from GIT fluid to enterocytes. More data need to be generated
to understand the transfer kinetic of nanoparticles, which will result in a better
understanding toward the realization of better delivery systems of β-carotene for
food applications.
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Abbreviations

Cremophor 40 PEG hydroxylated castor oil
EC Ethylcellulose
GA Gum arabic
LCT Long-chain triglyceride
MCT Medium-chain triacylglyceride
NaCMC Sodium carboxymethyl cellulose
OSA N-octenyl succinic anhydride
PC Phosphatidylcholine
PEA Phosphatidylethanolamine
PHBV Poly(hydroxybutirate-co-hydroxyvalerate)
PLA Poly(lactic) acid
PS Phosphatidylserine
PVA Polyvinyl alcohol
SA Sodium alginate
SC Sodium caseinate
SGF Simulated gastric fluid
SIF Simulated intestinal fluid
SPI Soy protein isolate
SSF Simulated saliva fluid
SSPS Soybean-soluble polysaccharides
Tween Polyoxyethylenesorbitan monolaurate
WPC Whey protein concentrate
WPI Whey protein isolate
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