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Sepsis is a potentially life-threatening, pathological condition caused by a dysregulated

host response to infection. Pathologically, systemic inflammation can initiate coagulation

activation, leading to organ dysfunction, and ultimately to multiple organ failure and

septic death. The inflammasomes are cytosolic multiprotein signaling complexes that

control the host response to diverse pathogen-associated molecular patterns (PAMPs)

from microorganisms as well as damage-associated molecular patterns (DAMPs) from

dead or dying host cells. Recent studies highlight that the activation of canonical

and non-canonical inflammasomes not only mediate the maturation and secretion of

interleukin-1 (IL1) family cytokines, but also trigger the release of coagulation factor

III, tissue factor (F3, best known as TF) in activated macrophages and monocytes.

These emerging functions of inflammasomes in immunocoagulation are further positively

regulated by stimulator of interferon response cGAMP interactor 1 (STING1, also known

as STING or TMEM173, a hub of the innate immune signaling network) and high mobility

group box 1 (HMGB1, a nuclear DAMP). This mini-review will discuss the regulation and

function of inflammasome-dependent coagulation activation in sepsis.
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INTRODUCTION

Sepsis is a challenging clinical syndrome characterized by life-threatening organ dysfunction
or failure due to the dysregulated host immune response to pathogen infection, including
bacteria, viruses, and fungi (1). The typical pathological process of sepsis involves the early
hyperinflammatory state and the late immunosuppressive stage. This dynamic change of the host
immune response is closely related to local or systemic coagulation abnormalities (2). Disseminated
intravascular coagulation (DIC) is a common complication of sepsis, characterized by systemic
activation of the coagulation cascade with microthrombosis, platelet consumption, and subsequent
clotting factor exhaustion (3). Clinical studies have shown that the mortality rate of septic shock
patients with DIC is twice that of septic patients without DIC (4), highlighting the importance of
understanding the pathogenesis, diagnosis, and treatment of DIC in sepsis.

Cells of the innate immune system, such as macrophages, monocytes, neutrophils, and dendritic
cells, are the first line of defense against foreign pathogens. However, excessive activation of these
professional phagocytes may lead to inflammation, immune dysfunction, and abnormal blood
clotting. Inflammasomes are multiprotein intracellular complexes that detect the components
of microorganisms [namely pathogen-associated molecular patterns (PAMPs)] and endogenous
danger signals released by injured cells [namely damage-associated molecular patterns (DAMPs)]
using various pattern recognition receptors (PRRs) (5). Generally, according to whether caspase-1
(CASP1) or caspase-11 (CASP11 in mouse, also known as CASP4 and CASP5 in humans)
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is activated, inflammasomes can be divided into canonical
and non-canonical subtypes (6, 7). Although they play an
important role in host immune defense, the vigorous activation
of inflammasomes also cause detrimental consequences,
providing the pathogenicity of disease, including septic shock
(8). In contrast, genetic depletion of core components of
inflammasomes, such as Nlrp3, Casp1, Casp11, and gasdermin
D (Gsdmd), protects against septic shock (9–15) or lethal
endotoxemia (7) in mice, turning them into a promising target
for treatment of sepsis.

In this mini-review, we introduce the types and activation
of inflammasomes, discuss their roles in coagulation and
thrombosis, and highlight their implications in sepsis.

TYPES AND ACTIVATION OF
INFLAMMASOMES IN SEPSIS

Inflammasomes typically contain a sensor (cytosolic PRRs),
an adaptor [apoptosis-associated speck-like protein containing
a caspase recruitment domain (ASC)], and a zymogen (pro-
CASP1) (16). Assembly of inflammasome is initiated when
PRRs sensing PAMPs, DAMPs, or stress signals. Certain PRRs
then recruit ASC, a bipartite protein that bridges the sensors
and the effector pro-CASP1 (17). Pro-CASP1 is subsequently
cleaved into active caspase, ultimately leading to maturation and
secretion of interleukin 1 (IL1) family cytokines (such as IL1B
and IL18) or cleavedGSDMD-mediated pyroptosis. Functionally,
pyroptosis is a form of pro-inflammatory cell death. Although
pyroptosis has been found to occur in various immune and non-
immune cells, it was first discovered in macrophages during
bacterial infections (18). GSDMD-formed pores not onlymediate
pyroptosis, but also facilitate the release of IL1B in a pyroptosis-
independent manner (19, 20). Below, we summarize the main
types of inflammasomes related to sepsis.

Canonical Inflammasome
The NLRP3 Inflammasome

The most extensively studied inflammasome is the NLR family
pyrin domain containing 3 (NLRP3) inflammasome, which is
activated by a variety of stimuli, including PAMPs, DAMPs,
pore-forming toxins, crystals, and nucleic acid (21). Of note,
the basic expression of NLRP3 and pro-IL1B in macrophages
is very low, and a priming signal (such as TLR ligands or
IFN) is required to activate the NF-κB pathway to upregulate
the expression of the components for NLRP3 inflammasome in
macrophages (22). The second signal triggers NLRP3 activation
by multiple mechanisms, including potassium (K+) efflux,
increased calcium (Ca2+) signaling, mitochondrial translocation
of NLRP3, excessivemitochondrial reactive oxygen species (ROS)
generation, release of mitochondrial DNA and cardiolipin, and
lysosomal leakage of cathepsins into cytosol (5, 23). Many
studies have found that inhibiting the activation of NLRP3
inflammasome has a protective effect on septic animals (24). In
particular, the NLRP3 inhibitor MCC950 attenuates multi-organ
injuries in septic rats (25), highlighting the potential of using
NLRP3 inhibitors in the treatment of sepsis.

The NLRC4 Inflammasome

The NLRC4 inflammasome responds to more stringent types
of stimulation. NLRC4 forms a complex with certain NLR
family apoptosis inhibitory protein (NAIP) family proteins,
which directly bind to the NLRC4-activating ligands. For
example, mouse Naip1 or Naip2 binds to the needle protein or
rod component of bacterial type III secretory system (T3SS),
respectively (26, 27). Moreover, bothmouse Naip5 and Naip6 can
recognize bacterial flagellin (27, 28). In humans, only one NAIP
homolog has been identified to recognize the needle structure
of T3SS. Once bound to their ligands, NAIPs oligomerize with
NLRC4 to form the NLRC4 inflammasomes, leading to CASP1
activation. In vivo, a severe systemic inflammation is caused by
activating NLRC4 inflammasomes with flagellin in monocytes,
macrophage and neutrophils (29). Systemic coagulation and
massive thrombosis are induced by T3SS infection in mice
through the activation of inflammasome, possibly the NLRC4
inflammasome (30). Therefore, inappropriate NLRC4 activation
may result in detrimental consequence in sepsis.

Non-canonical Inflammasome
Clinically, septic shock is a multi-step process and mainly related
to Gram-negative bacterial infection. Lipopolysaccharides (LPS),
the main component of the outer membrane of Gram-negative
bacteria, is a prototypical PAMP for studying innate immune
response. Historically, the activity of LPS was determined by
the membrane receptor toll-like receptor 4 (TLR4). Recent
breakthroughs confirmed that CASP11 can act as a receptor
for cytoplasmic LPS, which is independent of TLR4 (31, 32).
The activation of CASP11 inflammasome also can promote
CASP1-dependent IL1B and IL18 production by triggering the
activation of NLRP3 inflammasome. CASP11 induces CASP1-
independent pyroptosis, which still requires the production
of cleaved GSDMD at the N-terminus (termed GSDMD-
N) and subsequent translocation of GSDMD-N to the cell
membrane (7). Similar function of human non-canonical
inflammasome has been identified by the deletion of CASP4
or CASP5 in human macrophage, which impairs pyroptosis
and NLRP3 inflammasome-mediated cytokine release (33–36).
The contribution of non-canonical inflammasome to sepsis has
been reported in septic mice model (7, 37–39). The deletion
of CASP11 or using CASP11-targeting inhibitor (e.g., oxPAPC)
protects mice against LPS-induced lethality (7, 38). In addition,
transgenic expression ofCASP4 inCasp1−/−/11−/− mice renders
increased susceptibility to LPS-induced shock (40), indicating
the pathogenetic role of human non-canonical inflammasome
in sepsis.

MODULATION AND FUNCTION OF
INFLAMMASOME IN COAGULATION

Most patients with sepsis show hemostatic changes, while DIC
occurs in ∼35% of patients, resulting in organ dysfunction and
death (41). The most principal initiator of coagulopathy in sepsis
is coagulation factor III (F3). It is a transmembrane single-
chain glycoprotein composed of 263 amino acid residues, with
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pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), altered cellular
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FIGURE 1 | homeostasis or endogenous danger signals caused by infection during sepsis. Functional inflammasome activates caspase-1 (CASP1), caspase-11

(CASP11) or caspase-8 (CASP8) to cleave gasdermin D (GSDMD) to produce N-terminal fragments (GSDMD-N). GSDMD-N forms pores on the plasma membrane,

resulting in cell membrane rupture and pyroptosis or rendering cells into hyperactivation state. Coagulation factor III (F3) released from ruptured membrane promotes

blood clotting. Elevated Ca2+ influx from extracellular space through GSDMD-N-formed pores in hyperactivation state promotes phosphatidylserine (PS) exposure,

thereby enhancing the pro-coagulant activity of F3. Type I interferons (IFNs) mediates release of hepatocyte high mobility group box 1 (HMGB1), which facilitates LPS

entering cytosol. Stimulator of interferon response cGAMP interactor 1 (STING1) senses infection-induced DNA damage and mediates CASP1/11/8 activation.

Inhibition of inflammasome activation and subsequent pyroptosis prevents sepsis-induced coagulation.

a molecular weight of about 47 kDa (42). F3 initiates the blood
coagulation cascade by binding to coagulation factor VII/VIIa
(F3:VIIa complex) on the cell surface (42). During sepsis, the
host immune response to PAMPs (such as LPS) rapidly triggers
the activation of coagulation by inducing the expression of F3 on
monocytes, platelets or endothelial cells (43–46). Additionally,
the mechanism of regulating F3 activity by transforming F3
from an inactive state to an active state (a process called F3
decryption) also contributes to coagulation activation. Exposure
of anionic phospholipids, such as phosphatidylserine (PS), on
the outer leaflet of the plasma membrane is considered to be
the main cause of F3 decryption (47). This process optimizes
the presentation of F3:VIIa complex to provide more efficient
binding sites to their substrates factors IX and X. Increased PS
exposure on the surface of circulating leukocytes is observed
in sepsis (47). Genetic deletion of F3 or blocking F3 activity
using neutralizing antibodies in sepsis animal models prevents
activation of coagulation and decreases the mortality (30, 48,
49). The administration of PS-neutralizing binding protein
lactadherin markedly ameliorates sepsis-induced coagulation
and lethality (50). These evidences suggest that treatment of
the altered coagulation would be a reasonable approach to
improve the mortality of sepsis. Some DAMPs, such as cell-
free DNA, histones, heat shock proteins, and high mobility
group box 1 protein (HMGB1) (51, 52), have been reported to
induce coagulopathy in sepsis by furtherly augmenting systemic
inflammation (53) or impairing the activation of anticoagulants
(e.g., protein C) (54). These DAMPs may be released from
damaged cells due to apoptosis, necroptosis, or pyroptosis, but
the contribution of cell death to coagulation in sepsis is context-
dependent. Recently, three independent groups found that both
CASP1 and CASP11-dependent inflammasomes trigger systemic
coagulation in mice through GSDMD-N-mediated increased F3
release or F3 activity in macrophages and monocytes (Figure 1).

Caspase Activation
Either CASP1 or CASP11 can promote the coagulation cascade,
depending on the type of bacterial infection. CASP1 is required
to release active F3 in mouse bone marrow-derived macrophages
(BMDM) challenged or stimulated by bacterial T3SS inner rod
protein, including EprJ and EscI from Escherichia coli (E.coli),
BsaK of Burkholderia pseudomallei, and PrgJ of Salmonella
typhimurium (30). Similarly, T3SS treatment or E. coli infection
induces CASP1-dependent F3 release in THP1 cells, a human
monocytic cell line derived from an acute monocytic leukemia
patient (30). In vivo, lack of Casp1 (instead of CASP11) protects
mice from EprJ-induced lethality associated with the reduction of
DIC biomarkers in blood (30). In polymicrobial sepsis induced

by cecal ligation and puncture (CLP), inhibiting the activity of
CASP1 with the NLRP3 inhibitor MCC950 also reduces platelet
activation in rats (25, 55). These animal studies suggest that
CASP1 has a potential role in regulating septic coagulation in
mice and rats.

The activation of CASP11-dependent inflammasomes also
mediates the release or activation of F3 in sepsis caused
by CLP, E. coli infection, bacterial outer membrane vesicle
(OMV) infection, and LPS stimulation in vivo (56, 57).
Similar to clinical anticoagulant heparin treatment, in the lethal
endotoxemia mouse model, the absence of Casp11 inhibits the
activation of coagulation (56, 57). In Casp11-deficient mice,
systemic coagulation triggered by the initiation of poly(I:C)
and subsequent LPS administration is also blocked (30, 56).
Extracellular HMGB1 is not only a DAMP, but also a carrier
that brings LPS into the intracellular space (58). In particular,
extracellular HMGB1 from liver mediates LPS uptake and
promotes the externalization of phosphatidylserine (PS), which
is important for F3 activation in macrophages. In contrast,
depletion of Casp11 limits HMGB1/LPS-induced PS exposure
and subsequent F3 activation in macrophages (59). Therefore,
CASP11-dependent inflammasome is an important regulator of
F3 release and activation inmacrophages.While TLR4 is essential
for LPS-induced gene expression of Casp11, TLR4 is considered
to be dispensable in most inflammasome-mediated coagulation
(30). Injection of LPS primed with poly(I:C) also induces
coagulation cascade in Tlr4-deficient mice (56). The function
of human CASP4 or CASP5 in sepsis-induced coagulopathy
remains poorly understood, but it will be enlightened by these
investigations of CASP11 in mouse models.

In certain bacterial infections (especially Y. pestis and
Y. pseudotuberculosis), the apoptotic non-inflammatory caspase
CASP8 also participates in inducing pyroptosis by activating
the NLRP3 inflammasome (60) or acting as a structural
component of the inflammasome (61). Consequently, CASP8
(but not CASP1 or CASP11)-mediated GSDMD-N production
is required for F3 release in BMDM during Streptococcus
pneumoniae (S. pneumoniae) infection (62). Collectively, these
studies indicate that inhibition of caspase activation may have a
potential therapeutic effect on fatal coagulopathy during sepsis.

GSDMD Cleavage
The activation of CASP1, CASP11, or CASP8 causes the cleavage
of GSDMD, thereby generating a pyroptotic p30 fragment,
namely GSDMD-N. GSDMD-N-mediated pore formation
has been regarded as the terminal event of pyroptosis or
hyperactivation state. Genetic or pharmacological inhibition
of GSDMD expression or cleavage prevents F3 release or
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activation in vitro or systemic activation of coagulation in
mice induced by CLP, E.coli infection, bacterial rod proteins or
OMVs stimulation, as well as LPS challenge in the absence or
presence of HMGB1 (30, 56, 57, 59, 62). GSDMD-mediated F3
release is pyroptosis-dependent. Glycine (an osmotic protectant)
inhibits the release of F3 in EprJ-infected BMDM by pyroptosis-
driven cell membrane rupture instead of GSDMD-mediated
pore formation (30). Although the purinergic receptor P2X7
(P2RX7) has been shown to mediate pyroptosis in a GSDMD-
independent manner (63), it seems that P2RX7 is not required
for the coagulation cascade in endotoxemic mice (30, 56).

It is worth noting that the GSDMD-mediated coagulation
cascade may occur in a pyroptosis-independent manner. Glycine
is unable to affect F3 activation in mouse peritoneal macrophages
(PM) stimulated by cytoplasmic LPS, suggesting another
mechanism independent of pyroptosis. Alternatively, the pores
formed by GSDMD render cells into a hyperactivation state,
which is adequate to permit Ca2+ influx, thereby promoting
PS exposure through Ca2+-dependent scramblase anoctamin 6
(ANO6). After the externalization of PS is increased, the activity
of F3 is enhanced after LPS challenge in vivo and in vitro, which
can be attenuated by using specific PS binding proteins, such as
lactadherin andMFG-E8 (56). These studies describe a direct link
between GSDMD and coagulopathy, although its mechanism of
action is stimulus-dependent.

Cell membrane rupture also occurs in necroptosis, a form
of regulated necrosis depending on several kinases, including
receptor interacting protein kinase 1 (RIPK1). RIPK1 expressed
in epithelial cells favors tumor necrosis factor (TNF)- or TNF/Z-
VAD-FMK-induced coagulation with increased plasma F3 in
mice (64). These findings indicate that multiple types of necrosis
contribute to coagulation through different mechanisms.

STING1 Activation
Stimulator of interferon response cGAMP interactor 1 (STING1)
is an ER-associated membrane protein and plays a complex role
in innate immune sensing of pathogens. Excessive activation
of STING1 pathway is involved in pathogenesis of sepsis
and is recently reported to drive lethal coagulation in sepsis
through GSDMD-dependent mechanism. STING1, coupled with
inositol 1,4,5-trisphosphate receptor type 1 [ITPR1, a calcium
release channel of endoplasmic reticulum (ER)] and the ATPase
sarcoplasmic/ER Ca2+ transporting 2 (ATP2A2, a calcium
uptake pump of ER), mediates cytosolic calcium influx to
activate CASP1, CASP11, or CASP8 in macrophages/monocytes
in response to different infections (62). Therefore, Sting1
depletion limits the production of GSDMD-N in THP1 cells
mediated by CASP1/11/8, resulting in a decrease in F3 release.
Reduced coagulation activation and prolonged animal survival
are observed in septic mice (CLP, E.coli and S. pneumoniae
infection) with conditional deletion of Sting1 in myeloid cells
(62). Moreover, mRNA expression of STING1 and GSDMD in
peripheral blood mononuclear cell (PBMC) closely correlates
with DIC severity in patients with sepsis, highlighting the
regulatory role of STING1 in DIC during sepsis (62). Notably,
STING1-mediated type I interferon (IFN) response does not
seem to be important for inflammasome-mediated coagulation

response during sepsis, because deletion of type I IFN receptor
(Ifnar) or interferon regulatory factor 3 (Irf3) in mice fails to
block infection-induced coagulation activation (62). However,
another study suggests that IFNs may contribute to coagulation
activation due to its ability to induce hepatocyte HMGB1 release,
leading CASP11-dependent GSDMD activation and PS exposure
(59). Further animal experiments are needed to understand the
role of IFN-dependent HMGB1 release in blood coagulation.

Ca2+ Influx
Increased cytosolic Ca2+ influx, either released from ER or
entered extracellularly through calcium channels, is a critical
signal for immune response (65, 66), including modulating
inflammasome activation (67–70). Inhibiting cytosolic calcium
accumulation by calcium chelator (BAPTA-AM and EDTA) or
ER stress inhibitor (TUCDA and 4PBA) leads to reduced F3
release or activity in THP1 or murine macrophages (56, 62).
Similarly, decreased Ca2+ released by TUCDA or Ca2+ channel
modulator (2-APB) protects against coagulation activation in
CLP mice. (56). In contrast, raising Ca2+ influx by ER stress
agonist (tunicamycin and thapsigargin) (62) or calcium inophore
(A23187) (56) promotes F3 release or activity. These drug studies
support the function of cytosolic Ca2+ influx in mediating
coagulation activation during sepsis. In addition, the production
of GSDMD-N in THP1 or BMDM during inflammasome
activation is also inhibited by blocking cytosolic Ca2+ influx
using the knockdown of ITPR1, overexpression of ATP2A2 or
inhibition of phospholipase C gamma 1 (PLCG1) (62). Moreover,
extracellular Ca2+ also enters through GSDMD-N-formed pores
to trigger coagulation cascade by promoting PS exposure (56).
In general, these findings suggest that during sepsis, Ca2+ influx
can act as both a regulator and an effector of inflammasome
activation during septic coagulation. Approaches that control
the Ca2+ concentration may improve the therapeutic effect
of anticoagulation.

CONCLUSION AND OUTLOOK

The molecular mechanisms of how systemic coagulation is
triggered by the inflammasome during lethal sepsis brings a
new understanding of the inflammasome function and sets
a new stage for immunocoagulation studies. However, some
questions have raised and remain unsolved. First, it is not
yet clear how different types of inflammasomes coordinate
to regulate the coagulation response, because clinical sepsis
is usually caused by polymicrobial infection. Second, most
studies have focused on the direct effects inflammasomes have
on the release and activation of F3. However, whether F3 in
turn regulates inflammasome activation is still unknown. Third,
how to transform these new understandings into treatment of
inflammasome-dependent coagulation during sepsis in human
patients? Since the treatment with anticoagulant after onset
of sepsis has not resulted in improved clinical outcomes,
administration or combination of inflammasome-associated
inhibitors may be a favorable approach to fight against sepsis-
induced coagulation. Some drugs have displayed a promising
effect to protect inflammasome-related coagulation during sepsis
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TABLE 1 | Potential inhibitors of inflammasome-dependent coagulation.

Mechanism Function Name Usage Model References

Reduce Ca2+ influx Calcium chelator BAPTA-AM Up to 10µM PMs

WT or

ITPR1-KD BMDMs/THP1

(56, 62)

Ethylenediaminetetraacetic

acid (EDTA)

Up to 600µM PMs (56)

ER stress inhibitor Tauroursodeoxycholic acid

(TUDCA)

200 mg/kg WT or Tmem173−/− mice (62)

50µM THP1 (62)

4-phenyl butyric acid (4PBA) 1mM THP1 (62)

D-myo-inositol

1,4,5-trisphosphate (IP3)

receptor antagonist

2-

Aminoethoxydiphenylborane

(2-APB)

20 mg/kg WT or Tmem173−/− mice (62)

TMEM16F inhibitor Tannic acid (TA) NA PMs (56)

Niflumic acid (NFA) NA PMs (56)

PLCG1 inhibitor U73122 10µM THP1 (62)

30 mg/kg WT or Gsdmd105N/105N mice (62)

Inhibit caspase 8 cleavage Caspase 8 inhibitor Z-IETD-FMK 20µM WT or Casp1−/−Casp11−/−

BMDMs

(62)

Prevent NLRP3 oligomerization NLRP3 inhibitor MCC950 50 mg/kg Rat (25)

Delete in vivo macrophage Macrophage remover Clodronate liposomes 40 mg/kg Mice (30, 56)

Neutralize HMGB1 HMGB1 antibody 2G7 160 µg/mouse Mice (56)

Prevent membrane rupture Osmoprotectant Glycine 5mM BMDMs (30)

(Table 1). The existing small molecules that block inflammasome
activation could also be investigated for their potential role in
controlling coagulation.

Regulated inflammasome activity is still essential for host
defense against pathogens because mounting the immune
response with its associated secretory cytokines would further
contribute to the adaptive immune response. Thus, treatment of
sepsis-induced coagulation by inhibiting inflammasome activity
should be strictly monitored to avoid severe side effects caused
by a suppressed immune response. Therefore, an in-depth

understanding of the mechanism of coagulopathy triggered
by inflammasomes is essential for identifying new therapeutic
targets and developing more beneficial therapies.
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