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Abstract: Early life exposure to environmental pollutants may have long-term consequences and
harmful impacts on health later in life. Here, we investigated the short- and long-term impact of early
life 3,3′,4,4′,5-pentacholorobiphenyl (PCB 126) exposure (24 µg/kg body weight for five days) in
mice on the host and gut microbiota using 16S rRNA gene sequencing, metagenomics, and 1H NMR-
and mass spectrometry-based metabolomics. Induction of Cyp1a1, an aryl hydrocarbon receptor
(AHR)-responsive gene, was observed at 6 days and 13 weeks after PCB 126 exposure consistent
with the long half-life of PCB 126. Early life, Short-Term PCB 126 exposure resulted in metabolic
abnormalities in adulthood including changes in liver amino acid and nucleotide metabolism as well
as bile acid metabolism and increased hepatic lipogenesis. Interestingly, early life PCB 126 exposure
had a greater impact on bacteria in adulthood at the community structure, metabolic, and functional
levels. This study provides evidence for an association between early life environmental pollutant
exposure and increased risk of metabolic disorders later in life and suggests the microbiome is a key
target of environmental chemical exposure.

Keywords: 3,3′,4,4′,5-pentacholorobiphenyl; early life exposure; metabolomics; gut microbiota;
metabolic disorders

1. Introduction

Throughout life, humans are exposed to a wide range of environmental contaminants
in the air, water, and diet. Research has established a relationship between environmental
exposure and disease including cancer [1,2], nervous system disorders [2,3], gastrointestinal
illness [4,5], cardiovascular diseases [6,7], and metabolic diseases [8,9]. However, it is still
unclear how these exposures affect human health, what levels are harmful, and how timing
of exposure affects toxicity.

Historically, risk assessment from environmental exposure mainly focused on adults
and gave less consideration to vulnerable life stages such as early childhood [10]. Children
may have increased exposures to environmental contaminants since they have a higher
inhalation rate and a higher body surface area to body weight ratio [11]. Growing evidence
supports that early life exposure to environmental pollutants has long-term consequences
and has been linked to disease later in life [12,13]. Therefore, data on developmental toxicity
of early life exposures are needed.

3,3′,4,4′,5-pentacholorobiphenyl (PCB 126), one of the most acutely toxic planar dioxin-
like polychlorinated biphenyl (PCB) congeners, has a long half-life (4–5 years in hu-
mans) [14]. Animal fat tissues (such as meat and dairy products) are a major source
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of PCBs, since PCBs are lipophilic and highly resistant to physical, chemical, and enzymatic
breakdown [15]. PCB 126 exposure causes several chronic toxic effects, including cancer
development [16,17], hepatic dysfunction [18,19], gastrointestinal illnesses [20,21], and
metabolic syndrome [22,23]. Accumulating evidence suggests that early life exposure to
PCB 126 can have long-term consequences on behavior and growth [12,13,24]. A recent
study reported that exposure of early zebrafish embryos to relatively low doses of PCB
126 (0.3–1.2 nM) altered normal brain development by reprogramming gene expression
patterns, which may result in alterations in adult behavior [12,24]. Early life exposure
to PCB 126 showed delayed toxicity and resulted in delayed mortality as well as growth
impairment and delayed development in the zebrafish model [13]. Recent studies demon-
strated that PCB 126 significantly altered the gut microbial ecosystem in adult mice and in
in vitro models identifying significant microbial toxicity following environment pollutant
exposure [20,25]. However, a systematic investigation of the long-term consequences of
early life, Short-Term PCB 126 exposure on host and bacterial metabolism has not been
described. Furthermore, there are no regulatory guidelines that address chemical-induced
altered microbiome, which may lead to health issues.

Here, we combined 16S rRNA gene sequencing, metagenomics, and 1H NMR- and
mass spectrometry-based metabolomics to determine the short- and long-term effects
of early life Short-Term exposure to PCB 126 on host and gut microbiota in mice. We
demonstrate that early life PCB 126 exposure resulted in delayed metabolic abnormali-
ties in adulthood, including significant changes in liver global metabolism and bile acid
metabolism as well as increased hepatic lipogenesis. Early life exposure to PCB 126 affected
the gut microbiota later in life at the community structure, metabolic, and functional levels.
This study provides new metabolic information on the long-term consequences of early
life environmental pollutants exposure and finds significant association between early life
environmental exposure and abnormal metabolism in adulthood.

2. Results
2.1. Early Life PCB 126 Exposure Results in Persistently AHR Activation and Oxidative Stress

Short-Term PCB 126 (24 µg/kg body weight for five days) exposure at four weeks old
(Figure S1) had no effect on body weight, blood biochemical markers, serum cytokines,
or liver histopathology in mice at the 6th day or 13th week after exposure (Figure S2
and Table S1). The mRNA expression of AHR target genes in the liver and ileum were
significantly higher at the 6th day and 13th week after PCB 126 exposure (Figure 1A,B),
consistent with the long half-life of PCB 126 in the rodents [14]. Significantly higher ratios
of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the liver were observed in
mice at the 13th week after PCB 126 exposure (Figure 1C).
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Figure 1. Effects of early-life PCB 126 exposure on AHR signaling and redox status. (A,B) qPCR
analysis of mRNA levels of AHR target genes in the liver (A) and ileum (B) from mice with vehicle or
PCB 126 exposure. (C) Ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the liver
from mice with vehicle or PCB 126 exposure. Values are means ± S.D. (n = 6 per group). * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to vehicle.
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2.2. Early Life PCB 126 Exposure Disrupts Liver Global Metabolism in Adulthood

To explore the influence of early life PCB 126 exposure on host metabolism, liver
hydrophilic metabolite profiling was performed using global 1H NMR analysis. Five days
of PCB 126 exposure rapidly altered hepatic amino acid metabolism, including significantly
lower levels of alanine, glutamate, tyrosine, phenylalanine, histidine, and tryptophan in the
liver of mice on the 6th day after exposure (Figure 2A). Notably, early life PCB 126 exposure
also exhibited a pronounced effect on hepatic amino acid and nucleotide metabolism in mice
at the 13th week after exposure (Figure 2B). The significantly lower levels of branched-chain
amino acids (BCAAs), alanine, lysine, glutamate, tyrosine, and phenylalanine but higher
levels of glutamine, inosine, guanosine, adenosine monophosphate (AMP), adenosine
diphosphate (ADP), adenosine triphosphate (ATP), cytidine 5′-monophosphate (CMP),
uridine monophosphate (UMP), and uridine 5′-diphosphate (UDP) were observed in the
liver of mice with PCB 126 exposure at the 13th week (Figure 2B).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 13 
 

 

2.2. Early Life PCB 126 Exposure Disrupts Liver Global Metabolism in Adulthood 
To explore the influence of early life PCB 126 exposure on host metabolism, liver 

hydrophilic metabolite profiling was performed using global 1H NMR analysis. Five days 
of PCB 126 exposure rapidly altered hepatic amino acid metabolism, including signifi-
cantly lower levels of alanine, glutamate, tyrosine, phenylalanine, histidine, and trypto-
phan in the liver of mice on the 6th day after exposure (Figure 2A). Notably, early life PCB 
126 exposure also exhibited a pronounced effect on hepatic amino acid and nucleotide 
metabolism in mice at the 13th week after exposure (Figure 2B). The significantly lower 
levels of branched-chain amino acids (BCAAs), alanine, lysine, glutamate, tyrosine, and 
phenylalanine but higher levels of glutamine, inosine, guanosine, adenosine monophos-
phate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cytidine 5′-
monophosphate (CMP), uridine monophosphate (UMP), and uridine 5′-diphosphate 
(UDP) were observed in the liver of mice with PCB 126 exposure at the 13th week (Figure 
2B). 

Figure 2. Effects of early life PCB 126 exposure on liver global metabolism. Heat map representa-
tion of relative content of liver hydrophilic metabolites obtained from 1H NMR analysis from mice 
with vehicle or PCB 126 exposure at the 6th day (A) or 13th week (B). n = 6 per group. BCAAs, 
branched-chain amino acids; UDP-glucose, uracil-diphosphate glucose; 3HB, 3-hydroxybutyric 
acid; AMP, adenosine monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphos-
phate; CMP, cytidine 5′-monophosphate; UDP, uridine 5′-diphosphate; UMP, uridine monophos-
phate. 

2.3. Early Life PCB 126 Exposure Increases Hepatic Lipid Accumulation in Adulthood. 
Oil red O staining and F4/80 immunohistochemistry of the liver revealed that early 

life PCB 126 exposure resulted in significant increases in intracellular lipid droplets and 
infiltrating macrophages (F4/80-positive cells) in mice at the 13th week after exposure 
(Figure 3A). Hepatic triglyceride quantification also demonstrated that fat accumulation 
was significantly increased in the liver of mice with PCB 126 exposure at the 13th week 
(Figure 3B). As further validation, quantitative 1H NMR analysis confirmed that PCB 126 
exposure resulted in significantly higher levels of hepatic lipids and fatty acids including 
total cholesterol (TC), free cholesterol (FC), phosphatidylethanolamine (PE), unsaturated 
fatty acid (UFA), monosaturated fatty acid (MUFA), and polyunsaturated fatty acid 
(PUFA) in the liver of mice at the 13th week (Figure 3C,D). Consistently, PCB 126 exposure 
also increased mRNA expression of genes involved in de novo fatty acid biosynthesis in 
the liver of mice at the 13th week after exposure (Figure 3E). No significant change in lipid 

Figure 2. Effects of early life PCB 126 exposure on liver global metabolism. Heat map representation
of relative content of liver hydrophilic metabolites obtained from 1H NMR analysis from mice
with vehicle or PCB 126 exposure at the 6th day (A) or 13th week (B). n = 6 per group. BCAAs,
branched-chain amino acids; UDP-glucose, uracil-diphosphate glucose; 3HB, 3-hydroxybutyric acid;
AMP, adenosine monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphosphate; CMP,
cytidine 5′-monophosphate; UDP, uridine 5′-diphosphate; UMP, uridine monophosphate.

2.3. Early Life PCB 126 Exposure Increases Hepatic Lipid Accumulation in Adulthood

Oil red O staining and F4/80 immunohistochemistry of the liver revealed that early
life PCB 126 exposure resulted in significant increases in intracellular lipid droplets and
infiltrating macrophages (F4/80-positive cells) in mice at the 13th week after exposure
(Figure 3A). Hepatic triglyceride quantification also demonstrated that fat accumulation
was significantly increased in the liver of mice with PCB 126 exposure at the 13th week
(Figure 3B). As further validation, quantitative 1H NMR analysis confirmed that PCB 126
exposure resulted in significantly higher levels of hepatic lipids and fatty acids including
total cholesterol (TC), free cholesterol (FC), phosphatidylethanolamine (PE), unsaturated
fatty acid (UFA), monosaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA)
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in the liver of mice at the 13th week (Figure 3C,D). Consistently, PCB 126 exposure also
increased mRNA expression of genes involved in de novo fatty acid biosynthesis in the
liver of mice at the 13th week after exposure (Figure 3E). No significant change in lipid
profiles or mRNA expression in the liver from mice with PCB 126 exposure on the 6th day
was observed (Figure 3B–E).
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Figure 3. Effects of early life PCB 126 exposure on hepatic lipid metabolism. (A) Oil Red O and
F4/80-positive cells staining in the liver from mice with vehicle or PCB 126 exposure. (B) Liver
triglyceride levels from mice with vehicle or PCB 126 exposure. (C,D) Quantitative NMR analysis
of liver lipid (C) and fatty acid (D) profiling from mice with vehicle or PCB 126 exposure. (E) qPCR
analysis of mRNA encoding de novo fatty acid biosynthesis in liver from mice with vehicle or PCB
126 exposure. Values are means ± S.D. (n = 6 per group). * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 compared to vehicle. TC, total cholesterol; FC, free cholesterol; CE, cholesterol ester;
PE, phosphatidylethanolamine; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; FA, fatty
acid; SFA, saturated fatty acid; UFA, unsaturated fatty acid; MUFA, monosaturated fatty acid; PUFA,
polyunsaturated fatty acid.

2.4. Early Life PCB 126 Exposure Alters Bile Acid Metabolism in Adulthood

Analysis of bile acid composition showed that early life PCB 126 exposure significantly
increased unconjugated and taurine-conjugated bile acids in the liver and fecal samples
from mice at the 13th week after exposure (Figures 4B and S3B). The mRNA expression
of bile acid synthesis, conjugation, and transport enzymes was also significantly higher in
the liver of mice with PCB 126 exposure at the 13th week (Figure 4D). We did not observe
the substantial changes in bile acid profiling or mRNA expression in mice with PCB 126
exposure on the 6th day (Figures 4A,C and S3A).
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* p < 0.05, ** p < 0.01, **** p < 0.0001 compared to vehicle. CA, cholic acid; DCA, deoxycholic acid;
LCA, lithocholic acid; UDCA, ursodeoxycholic acid; MCA, muricholic acid; T, taurine-conjugated.

2.5. Early Life PCB 126 Persistently Disrupts Bacteria Composition, Gene Expression,
and Metabolism

To investigate the influence of early life PCB 126 exposure on the gut microbiota,
16S rRNA gene sequencing and metagenomics combined with UHPLC-MS/MS and 1H
NMR-based metabolomics analysis was performed. Early life PCB 126 resulted in signif-
icant decrease in relative abundance of Verrucomicrobiota phyla in mice at the 13th week
after exposure but no significant changes in the major phyla at 6th day after exposure
(Figure S4A). No significant changes in the ratio of Firmicutes to Bacteroidetes were observed
in mice both at the 6th day and 13th week after PCB 126 exposure (Figure S4B). PCB 126
resulted in significant increases in relative abundance of genus Lachnospiraceae UCG-006
and Dubosiella in mice on the 6th day after exposure; and increase in relative abundance
of genus Lachnoclostridium, but decreases in relative abundance of genus Akkermansia,
Dubosiella, Tyzzerella, and Eubacterium siraeum group in mice at the 13th week after exposure
(Figure 5A).

The KEGG database was used to predict the potential metabolic pathway of gut mi-
crobiota. KEGG pathway analysis showed significant changes in relative abundance of
bacterial metabolic pathways involved in amino acid metabolism, nucleotide metabolism,
and energy metabolism in mice on the 6th day after PCB 126 exposure (Figure 5B). In-
terestingly, early life PCB 126 resulted in a greater impact on microbial pathway at the
13th week compared to 6th day after exposure (Figure 5B). A total of 58 pathways were
significantly changed in mice at the 13th week after PCB 126 exposure, including multiple
biosynthesis and metabolic of amino acids and nucleotides as well as lipid metabolism, cell
wall biosynthesis, and energy metabolism (Figure 5B).

Having determined the significant changes in structure and function of cecal bacteria
with early life PCB 126 exposure, we sought to explore the influence of PCB 126 on bacterial
metabolism. MetaMapp networks constructed based on UHPLC-MS/MS data showed that
early life PCB 126 exposure had a greater impact on bacterial hydrophilic metabolites in
cecal contents from mice at the 13th week compared to 6th day after exposure (Figure 5C).
A subtle increase in amino acid levels and a decrease in nucleotide levels were observed in
cecal bacteria from mice at the 6th day after PCB 126 exposure (Figure 5C). Notably, PCB
126 resulted in marked increases in amino acid, nucleotide, and carbohydrate metabolism
in mice at the 13th week after exposure (Figure 5C). Quantitative 1H NMR and assays
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for lipopolysaccharide (LPS) and mucin analysis were also performed to quantify the
levels of target bacterial metabolites (Figures 5D,F and S4C,D). PCB 126 resulted in lower
levels of cecal short chain fatty acids (SCFAs) but higher levels of cecal trimethylamine
(TMA) in mice at the 13th week after exposure (Figures 5D and S4C). Significantly lower
levels of urine hippurate were observed in mice at the 13th week after PCB 126 exposure
(Figure 5E). PCB 126 also resulted in higher levels of serum LPS from mice at the 13th week
after exposure (Figure 5F), a major cell wall component of Gram-negative bacteria [26].
Moreover, higher levels of fecal mucin were observed in mice at the 13th week after PCB
126 exposure (Figure S4D).
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Figure 5. Effects of early life PCB 126 exposure on bacteria community, gene expression, and
metabolism. (A) Relative abundance of cecal bacteria from genus that significantly changed from
mice with vehicle or PCB 126 exposure. (B) Analysis of KEGG pathway abundance that significantly
changed in the cecal microbiota from mice with vehicle or PCB 126 exposure. (C) Metabolic network
changes in cecal bacteria from mice with vehicle or PCB 126 exposure. (D,E) NMR analysis of cecal
short-chain fatty acids (SCFAs) (D) and urine hippurate (E) from mice with vehicle or PCB 126
exposure. (F) Serum lipopolysaccharide (LPS) levels from mice with vehicle or PCB 126 exposure.
Values are means± S.D. (n = 6 per group). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared
to vehicle.

3. Discussion

Early childhood is a susceptible age for environmental chemical exposure; however,
the underlying molecular mechanisms of environmental chemical-induced disease from
early life exposure is not well understood. This study aimed at investigating the short-and
long-term consequences of early life environmental pollutant exposure on host and gut
microbiota metabolism. We demonstrate that early life Short-Term exposure of PCB 126
has delayed effects on liver amino acid, nucleotide, and lipid metabolism as well as bile
acid metabolism. We also demonstrate that early life PCB 126 exposure prominently and
continuously disrupts the gut ecosystem.

The delayed changes in hepatic amino acid and nucleotide metabolism following
early life Short-Term PCB 126 exposure were observed in adulthood. Five days of PCB 126
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exposure resulted in dramatic liver Cyp1a1 induction at 6 days and 13 weeks after exposure,
consistent with its high AHR binding affinity [20] and considerably long half-life [14,27].
No overt acute toxicity by PCB 126 exposure was observed at either 6 days or 13 weeks after
exposure, supported by no changes in blood biochemical markers, serum cytokines, or liver
hematoxylin and eosin (H&E) histopathology. A significantly higher ratio of liver GSSG to
GSH from mice at 13 weeks after PCB 126 exposure was observed, indicating that delayed
oxidative stress was due to PCB 126 exposure. Oxidative stress impacts various biological
structures including cellular membranes, lipids, proteins, and nucleic acids [28]. Consis-
tently, we observed significant changes in amino acid and nucleotide levels in liver from
mice at 13 weeks after PCB 126 exposure. Liver amino acids serve as the building blocks of
proteins, can be conjugated with bile acids, and may serve as substrates for the synthesis
of glucose, lipids, and anti-inflammatory molecules; therefore, abnormal metabolism of
amino acids in the liver results in many diseases including fatty liver and increases risk for
liver cancer [29]. Our data showed that early life PCB 126 exposure resulted in significantly
lower levels of a series of amino acid including BCAAs, alanine, lysine, glutamate, tyrosine,
and phenylalanine in liver from mice at 13 weeks after exposure, indicating the accelerated
hepatic amino acid metabolism for energy consumption, protein synthesis, and cell prolif-
eration that was observed in liver cancer cells [30]. This observation was consistent with
another persistent organic pollutant (POP) exposure study showing significant lower levels
of amino acids in liver from five days of 2,3,7,8-tetrachlorodibenzofuran (TCDF)-treated
mice [31]. Moreover, increases in liver nucleotide synthesis rate for unrestrained cell pro-
liferation and growth was also observed later in life with PCB 126 exposure, which was
usually observed in cancer cells and virus-infected cells [32].

Increased hepatic lipogenesis in adulthood by early life PCB 126 exposure was ob-
served in mice. Emerging evidence suggests that the AHR is a novel regulator of non-
alcoholic fatty liver disease, and its activation can induce lipid oxidation and lipogenic
pathways [33,34]. Notably, promotion of hepatic lipogenesis was observed in mice at
13 weeks after PCB 126 exposure, which is associated with persistent and dramatic AHR
activation at 13 weeks after exposure. It is worthy to note that early life PCB 126 exposure
did not affect metabolism at 5 weeks of age but caused dramatic changes in adulthood
metabolism. This can be viewed as a special case of chronic toxicity that usually happens
during critical periods of early development exposure to low levels of chemicals [12,13].

Early life PCB 126 exposure resulted in a persistent impact on the gut microbiota in
adulthood. The toxicity studies are mainly observed by in vitro studies using cell lines
or in vivo exposure on various experimental animal models [35]. However, there are few
regulatory guidelines that address microbiome toxicity by environmental pollutant expo-
sure. In our previous studies, we reported that POPs rapidly and significantly altered
the bacterial community structural, metabolic, and transcriptional levels in both in vitro
and in vivo models indicating microbial toxicity following environment pollutant expo-
sure [25,31,36]. We observed rapid changes in microbial community structure and overall
metabolism and more dramatic metabolic and gene expression changes on microbiota in
adulthood by early life PCB 126 exposure. Early life PCB 126 exposure resulted in decreased
abundances of genus Akkermansia in mice at 13 weeks after exposure, as a key beneficial
mucin-degrading microbe [37,38]. The increased abundances of genus Lachnoclostridium
were observed with PCB 126 exposure later in life, which recently has been identified as
a TMA-producing bacteria [39]. This observation was consistent with the higher level of
cecal TMA in mice at 13 weeks after PCB 126 exposure, which is linked to an increased
risk for cardiovascular disease [40]. Early life PCB 126 exposure not only altered microbial
community structure, but also significantly affected gene abundance and metabolism later
in life. PCB 126 exposure resulted in significant changes in microbial amino acid, nucleotide,
and energy metabolism in both childhood and adulthood. Microbial metabolism of amino
acid, nucleotide, and carbohydrate in the human gastrointestinal tract plays an important
role in host’s protein and lipid metabolism as well as energy homeostasis [41–43]. The
reduction in the bacterial pathways of indigestible carbohydrate degradation and amino
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acid biosynthesis was observed later in life with early life PCB 126 exposure, indicating
the disruption in host amino acid and energy homeostasis that may be associated with the
development of obesity, insulin resistance, and diabetes [42,44]. This notion is supported
by the observation of significantly higher levels of amino acids and lower levels of SCFAs
derived from gut microbiota fermentation of indigestible polysaccharides [45] in the cecal
content from adult mice with early life PCB 126 exposure. The profound changes in bacte-
rial lipid metabolism were also observed in adulthood with early life PCB 126 exposure,
which was consistent with the in vitro experiment showing significant impacts on bacterial
lipid profiles following exposure to four different POPs [25]. This notion is supported
by the observation of the disruption in the bacterial pathways of cell way biosynthesis in
adulthood by PCB 126 exposure, suggesting a prominent and delayed change in bacterial
membrane fluidity in response to PCB 126 [25]. Moreover, the significant changes in bile
acid levels, as important host-gut microbial co-metabolism products, were observed in
adulthood with early life PCB 126 exposure, suggesting the remodeling of gut microbiota
and persistent AHR activation by PCB 126 [31]. Early life PCB 126 exposure also resulted in
significantly lower levels of urine hippurate and higher levels of circulating LPS later in life,
indicating the decreased gut microbiome diversity and Gram-negative bacterial infection
that are associated with various negative health effects [46,47]. Together, these findings
suggest possible new avenues for probing microbial toxicity as a key target of early life
environment pollutant exposure.

4. Materials and Methods
4.1. Animals and Diets

Animal experiments were performed using protocols approved by the Pennsylvania
State University Institutional Animal Care and Use Committee (PROTO202001416). Male
C57BL/6J wild-type mice (three-week-old) were obtained from Jackson Laboratory (Bar
Harbor, MN). After acclimatization, mice were trained to eat transgenic bacon-flavored
dough pills that were prepared with tablet mold (Bio-Serve, Flemington, NJ, USA). After
training for five days, mice were fed with the dough pills containing PCB 126 (a final dose
of 24 µg/kg) or acetone as vehicle continuously for five days (one pill per mouse per day).
Two time points were used to evaluate the short- and long-term effects of early life PCB
126 exposure on mice: (i) the mice (six mice per group) were sacrificed on the day after last
PCB 126 exposure (6th day); (ii) the mice (six mice per group) were sacrificed at 13th week
after PCB 126 exposure (13th week). The body weight of mice was monitored during the
experiment. Tissue samples were harvested at the end of the experiment for microbial and
metabolomics analyses.

4.2. Histological and Immunohistochemical Analyses

Paraffin-embedded liver blocks were sectioned and stained with hematoxylin and
eosin (H & E). Rat monoclonal anti-mouse macrophage F4/80 (1:100, Invitrogen, Carlsbad,
CA, USA) was visualized in frozen liver sections according to “Immunohistochemistry
Protocol for Frozen Sections” (BioLegend, San Diego, CA, USA) or stained with oil red O
by Histoserv, Inc. (Germantown, MD, USA).

4.3. Blood Clinical Biochemistry and Cytokine Analysis

Common liver enzymes including alanine transaminase (ALT) and alkaline phos-
phatase (ALP) were measured using the VetScan VS2 Chemistry Analyzer and the Mam-
malian Liver Profile rotor (Abaxis Inc., Union City, CA, USA). Levels of serum cytokine
were measured using a BioPlex 200 mouse cytokine array/chemokine array 32-Plex by Eve
Technologies (Calgary, AB, Canada).

4.4. Fecal Mucin and Serum Lipopolysaccharide Quantification

Fecal mucin levels were determined with Fecal Mucin Assay Kit (Cosmo Bio USA,
Carlsbad, CA, USA). Serum lipopolysaccharide (LPS) levels were measured with PierceTM
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LAL Chromogenic Endotoxin Quantitation Kit (Thermo Fisher Scientific, Waltham,
MA, USA).

4.5. Liver Triglyceride and Glutathione Quantification

Liver triglyceride was determined using Triglyceride Colorimetric Assay Kit (Cayman
Chemical, Ann Arbor, MI, USA). The levels of reduce glutathione (GSH) and oxidized
glutathione (GSSG) were quantified using GSH/GSSG Ratio Detection Assay Kit (Abcam,
Cambridge, UK).

4.6. Tissue RNA Isolation and Quantitative PCR

RNA was extracted from frozen liver and intestine tissues using TRIzol reagent (In-
vitrogen, Carlsbad, CA). The cDNA was synthesized from total RNA using qScript cDNA
SuperMix (Quanta Biosciences, Gaithersburg, MD, USA). Quantitative PCR (qPCR) reac-
tions were performed on a QuantStudio 3 Real-Time PCR system (Thermo Fisher Scientific,
Waltham, MA, USA). Gene-specific primers were listed in Table S2. All results were
normalized to Gapdh mRNA according to ∆∆CT method.

4.7. 1H NMR Based Metabolomics Experiments

Biological sample preparation for NMR analyses were performed using procedure
described previously [48,49]. 1H NMR spectra were recorded at 298 K on a Bruker Avance
NEO 600 MHz spectrometer equipped with an inverse cryogenic probe (Bruker Biospin,
Ettlingen, Germany). All 1D NMR spectra were acquired employing the first increment
of NOESY pulse sequence (NOESYPR1D). The metabolites were assigned on the basis of
published results [48,49] and further confirmed with 2D NMR spectra. 1H NMR spectra for
liver lipids were corrected for phase and baseline distortions manually with the chemical
shift referenced to TMS (δ = 0.0) using TopSpin 3.6 (Bruker Biospin, Ettlingen, Germany).
The spectral region was integrated with AMIX 3.9 (Bruker Biospin, Ettlingen, Germany)
and quantified for lipid classed in liver, as previously reported [49]. The spectra process and
quantification for liver hydrophilic, cecal content, and urine metabolites were processed
using Chenomx NMR Suite (Chenomx Inc., Edmonton, AB, Canada). Heatmaps were
created with RStudio (pheatmap), version 1.0.12.

4.8. Bile Acid Quantitation by UHPLC-MS/MS

Bile acid quantitation was acquired with an ACQUITY UHPLC system using an
ACQUITY C8 BEH UPLC column (2.1 mm × 100 mm, 1.7 µm) coupled with a Waters
Xevo TQS mass spectrometer equipped with an electrospray ionization source operating
in negative mode (all from Waters, Milford, MA, USA), as previously described [50].
Briefly, 25 mg of liver or fecal samples were homogenized in 1 mL of pre-cooled methanol
containing 0.5 µM of deuterated internal standards (Sigma-Aldrich, St Louis, MO, USA and
Cayman Chemical, Ann Arbor, MI, USA), followed by centrifugation. Multiple reaction
monitoring for conjugated bile acids and selected ion monitoring for unconjugated bile
acids were detected. The data were normalized to their respective deuterated internal
standards and quantified by comparing integrated peaks against a standard curve.

4.9. LC-MS Based Metabolomics Analysis

The cecal content (25 mg) were added with 1 mL of pre-cool 80% methanol containing
0.1% formic acid, followed with homogenization and centrifugation. The supernatants
were dried in a vacuum and resuspend in 500 µL of 3% methanol containing 1 µM chlor-
propamide. Hydrophilic metabolite profiling was performed with a Dionex Ultimate
3000 quaternary HPLC system connected to ExactiveTM Plus Orbitrap mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) with a Waters XSelect HSS T3 column
(2.1 mm × 100 mm, 2.5 µm). The LC-MS data were analyzed with software pipeline MS-
DIAL [51]. Biochemical and chemical similarities among identified hydrophilic metabolite
were calculated and plotted using MetaMapp network analysis as previously described [52].
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4.10. 16S rRNA Gene Sequencing Analysis

DNA from cecal contents were extracted using E.Z.N.A. stool DNA kit (Omega Bio-
Tek Inc., Norcross, GA, USA). Aliquots were taken from all the samples to make the final
concentration 10 ng/µL. Then, V4 region of the 16S rRNA gene of the bacteria was amplified
using the primer set 515F and 806R. Amplicons were checked for band size of 292 bp using
1.5% agarose gel electrophoresis with DNA 7500LabChip on the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clare, CA, USA). Amplified DNA samples were submitted to
Pennsylvania State University Genomics Core Facility (University Park, PA) for 250 × 250
paired end Illumina Miseq sequencing. Obtained raw data were analyzed using mothur
platform [53] and SILVA v138 database [34].

4.11. Metagenomic Analysis

For shotgun metagenomics, the cecal DNA samples were submitted to Pennsylvania
State University Genomics Core Facility (University Park, PA, USA) for NextSeq Mid-
Output 150 × 150 paired end sequencing. Obtained demultiplexed reads underwent
quality trimming and adaptor using FastQC (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/, accessed on 5 July 2022) and host read removal using Kneaddata [54].
Clean metagenomic sequence reads were analyzed using Kraken2 taxonomic sequence clas-
sification approach on standard Kraken database comprising of all complete bacterial, viral
and archeal genomes in RefSeq [55]. Abundance of the various species was estimated using
Bracken [56]. For functional classification, reads were concatenated and then processed
with default settings using HUMAnN3 [57].

4.12. Statistics

Graphical illustrations and statistical analyses were performed using GraphPad Prism
6.0 (GraphPad, San Diego, CA). All data values are presented as mean± standard deviation
(SD) or median and interquartile range. The data were analyzed using unpaired t test
analyses and p < 0.05 were considered as significant.

5. Conclusions

Collectively, these data demonstrate that early life PCB 126 exposure has long-term
consequences on liver amino acid and nucleotide metabolism as well as increased hepatic
lipogenesis later in life. We also determined a persistent disruption in gut microbiota later
in life by early life PCB exposure. These results find significant association between early
life environmental pollutants exposure and abnormal metabolism later in life and suggest
the microbiome is a key target of environmental chemical exposure.
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