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Abstract: Autonomous grasping with an aerial manipulator in the applications of aerial transportation
and manipulation is still a challenging problem because of the complex kinematics/dynamics and
motion constraints of the coupled rotors-manipulator system. The paper develops a novel aerial
manipulation system with a lightweight manipulator, an X8 coaxial octocopter and onboard visual
tracking system. To implement autonomous grasping control, we develop a novel and efficient
approach that includes trajectory planning, visual trajectory tracking and kinematic compensation.
Trajectory planning for aerial grasping control is formulated as a multi-objective optimization problem,
while motion constraints and collision avoidance are considered in the optimization. A genetic
method is applied to obtain the optimal solution. A kinematic compensation-based visual trajectory
tracking is introduced to address the coupled affection between the manipulator and octocopter,
with the advantage of discarding the complex dynamic parameter calibration. Finally, several
experiments are performed to verify the effectiveness of the proposed approach.

Keywords: visual tracking; visual compensation; trajectory planning; aerial manipulation

1. Introduction

Unmanned aerial vehicle (UAV) that is equipped with a manipulator, namely unmanned
aerial manipulator (UAM), is a popular research topic because of its immense potential for various
applications, including express transportation, construction and maintenance, and manipulations in
dangerous places that are difficult to reach by humans or ground mobile robots. Although UAVs
have been well studied [1], UAMs still present significant challenges in perception and control,
mainly because of the considerably complex kinematics/dynamics and motion constraints of the
coupled UAV-manipulator system.

Many researchers have proposed interesting studies on aerial transportation and manipulation
systems, including the mechanical and controller design of cable suspended systems and aerial
grippers [2]. Like a tower crane system, UAV lifting a load with a cable-suspended device is a
beneficial solution for aerial transportation [3–6]. Although cable-suspended systems is able to
provide high maneuverability for load transportation on all terrains, these systems are limited in the
application of aerial manipulation, such as grasping. A textbook containing the latest research results
about the cable-suspended UAVs is provided in [7]. To achieve automatic aerial object gripping and
transportation, various task-adaptive grippers or end-effectors directly attached to the UAV base have
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been proposed in the literature [8–10]. These grippers are directly equipped on the UAV body base
and thus can be easily controlled like a nominal UAV. However, they lack sufficient degree-of-freedom
(DoF) to implement complex manipulations.

Compared with the aforementioned systems, UAV equipped with a flexible multi-DoF manipulator is
able to perform much more flexible manipulations even under substantially complex environments [11].
However, the UAMs systems suffer from more challenging problems in perception, trajectory planning
and manipulation control. Several studies have been performed on UAMs’ trajectory planning
and manipulation control [12–17]. The control of UAM in the existing approaches requires the
precise modeling of dynamics [11]. However, dynamics modeling is extremely challenging because
many physical parameters, such as rotational inertia [18] or external disturbances, are difficult to
measure accurately and the dynamic parameters often vary gradually and even substantially during
the operation. In addition, the adaptive solutions for dynamic control need sufficient excitation to
prevent divergence. These problems lead to the inconvenience and poor performance of practical
applications. Furthermore, most of the relevant studies on UAM are based on simulation or do not
consider the control constraints, such as collision avoidance and motor limitations, under practical
environments. Particularly, the existing visual servoing approaches have difficulty in completing
complex collision-free grasping tasks.

This paper aims to develop a novel approach to address the aforementioned problems.
The approach comprises visual target detection, trajectory generation, and visual trajectory tracking
control. It implements real-time autonomous grasping of a target with a lightweight aerial manipulator.
All algorithms are executed without off-board computation assistance. The contributions are threefold.

Firstly, to reduce dynamic interference, an UAM with a lightweight manipulator is designed, and
the kinematic model and visual observation model are deduced. The system mainly comprises a 4-DoF
lightweight manipulator, a coaxial octocopter, a camera sub-system and onboard processing modules.
The camera sub-system provides real-time target detection. The target detection, together with the
UAV and manipulator control algorithms, are performed onboard. The investigation of system models
lays a foundation to the follow-on algorithm development of autonomous trajectory generation and
visual grasping control. The designed UAM realizes anti-interference ability against not only dynamic
coupling between manipulator and UAV body but also the aerodynamic disturbance. Compared the
existing solutions for anti-interference, our system does not need dynamic controllers, and thus it is
easily integrated with commercial onboard autopilots and computation units. Experimental results
were provided to illustrate the performance.

Secondly, a trajectory planning algorithm for aerial grasping is developed based on multi-objective
optimization formulation; it guarantees the grasping success and safety. Grasping or other
manipulations require UAM body to avoid collision with obstacles as well as satisfying the mechanical
and electrical limitations. The existing approaches [11] for the trajectory planning of aerial grasping
generally seek a feasible solution in open areas without considering environmental obstacles and
constraints. They also ignored the factor that the grasping should be immediately completed and the
moving distance of the end-effector should also be as short as possible because of UAV’s limited power
capability. By considering all the aforementioned factors, the trajectory planning problem is formulated
as an optimization problem and the genetic optimizer nondominated sorting genetic algorithm II
(NSGA-II) [19] is utilized to obtain a feasible solution. Although the optimization-based solution is
not a novel idea in ground manipulator and other mobile robotic fields, its application in an aerial
system is still a challenging problem. The planning and control of aerial grasping need to address
many problems like the coupling effect, aerial model, motion constraints, real-time performance and
aerial disturbance; these problems are generally not existing in the ground robots.

Thirdly, a trajectory-tracking controller based on real-time visual compensation is developed;
the aerodynamic disturbance and UAV’s coupling effect on the pose control of the end-effector are
reduced. The movement of the manipulator or other unstable factors, such as wind disturbance,
may change the UAV body pose or target object pose during the tracking process. The influence
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of dynamic and environmental disturbances in trajectory grasping presents difficulty in ensuring
successful grasping. Many existing approaches are based on image-based visual servoing technology
where the camera was installed at the end effector of the robotic arm, and therefore may partially
reduce the affection of disturbance; however, the approaches suffer from loss of view when the
camera is too close to the target. The proposed solution reduces the influence based on real-time
compensation-based feedback control with visual target information. The experimental results show
that the controller enables the aerial manipulator to grasp the target object successfully even when the
position of the aerial manipulator or target object considerably varies.

2. Related Work

UAMs have immense potential applications, and the problems of trajectory planning and
manipulation control of UAM have attracting increasing attention in robotic fields.

Mebarki et al. [12] designed an image-based kinematic visual servoing controller to generate
trajectory tracked by a low-level dynamic controller. The joint limits of the UAM system were
considered in the approach. The null space-based behavioral (NSB) control method derived from
manipulator control was utilized to achieve a secondary task. However, no obstacle avoidance was
considered in the trajectory planning, and only simulations were performed. Kim et al. [17] also
developed a similar two-layer controller with [12]; the main difference lies in that a passivity-based
adaptive controller based on dynamic model was proposed for the combined UAM system. Although
the self-body contact avoidance was taken into account, the obstacle avoidance was overlooked in
the trajectory generation. In addition, the camera was installed at the end effector of the robotic arm,
and therefore the captured image varies with the motions of the robotic arm as well as the UAV.

Lippiello et al. [13] further extended the NSB based work and developed a hierarchical
task-composition control framework for aerial manipulation; several tasks including gripper pose
tracking, joint limits avoidance, field of view (FOV) of the camera, etc., were formulated. Similarly,
Baizid et al. [20] presented a control framework based on NSB to address the cross-coupling effect
between the manipulator and UAV. Furthermore, Muscio et al. [21] proposed a three-layer control
architecture for coordinated formation control of multiple UAMs. The centralized top layer plans
desired trajectories for each UAM’s end-effector; the NSB method is applied to generate UAM’s
motion references for the bottom dynamic controller. Similar to the work [13], the task priority
was also employed in [22,23] to generate trajectories for cooperative transportation using multiple
aerial manipulators. The dynamic movement primitives (DMPs) were utilized to realize obstacle
avoidance in unknown environments. A sliding adaptive controller was proposed to compensate
the dynamic uncertainties. Although obstacle avoidance can be achieved with the behavioral or
task-based framework, it generally only benefits for manipulators with high degree-of-freedom and
fails to guarantee the simultaneous success of all executed tasks.

Despite of NSB methodology, some other interesting approaches have also been developed in
the literature. Seo et al. [24] developed a stochastic model predictive control (MPC) framework,
and the aerial grasping control was implemented by minimizing the feature tracking errors and control
inputs. However, it is complex to consider the avoidance of UAM constraints and environmental
obstacles into the MPC framework. Garimella et al. [16] presented a nonlinear MPC method based
on multi-body system dynamics and achieved optimized performance. However, the approach
overlooked the collision avoidance in the multi-body system and between system and environmental
obstacles. Thomas et al. [25] developed an UAM equipped with a monocular camera, and formulated
the dynamics directly in the virtual image plane. By modeling the UAM as a differentially-flat system
and servoing the image features as flat outputs, a trajectory generation approach for agile grasping
was proposed directly in the image feature space by planning the trajectories of image features.
Seo et al. [26] formulated the trajectory planning as a sequential quadratic programming problem
and the planning is performed on selected flat outputs by utilizing the differential flatness advantage
of multirotors. The collision between the multirotor base (or the end-effector of the robotic arm)
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and environmental obstacles were taken into account in the planning. However, the joint limits and
manipulator collision constraint were not considered in their approach.

Some well-known approaches used in mobile robots, like rapidly exploring random tree (RRT)
and DMPs, have been applied to aerial manipulation. Lee et al. [27] developed a trajectory planning
algorithm for cooperative aerial transportation by exploiting RRT* and DMPs. The RRT* was utilized
to generate the desired trajectory for each aerial manipulator handling environmental obstacles,
while the DMPs was utilized to modify the RRT-based trajectory to avoid unknown obstacles. It only
considers 2D spaces in the horizontal plane for each aerial manipulator. Kim et al. [28] further utilized
Parametric Dynamic Movement Primitives (PDMPs) to learn scalable control policies from multiple
demonstrations, and utilized Gaussian Process Regression (GPR) to acquire style parameters of PDMPs
according to the environmental parameters. Tognon et al. [29] utilized the RRT algorithm for generating
a trajectory on task space but not the full state space, and they developed a control strategy including
dynamic and inverse kinematics controllers as a steering method for RRT’s extension. This RRT-based
kinodynamic planning approach can achieve the validation of robotic and environmental constraints;
however, it also suffers from the computation problem and is unable to obtain optimal solution.
Simulations were performed to illustrate the performance. The RRT-based approach cannot give
deterministic safety guarantee or optimality.

There is also a lot of research focus on the dynamic control problem of aerial manipulators;
many of them only provide simulations. The trajectory generation problem are overlooked in these
research. Lippiello et al. [30] developed a cascade control structure with an inner loop for inverse
dynamic motion control and an external loop implementing visual-impedance control. The approach
provides a reference trajectory for the inner loop. Simulations were presented. Kim et al. [31] utilized
feedback linearization to realize dynamic regulation control for a UAM where a heavy manipulator is
mounted far from the center of mass (CoM) of UAM body and is able to move in 3D. Simulations were
presented. Heredia et al. [15] presented two separate controllers for the UAV and manipulator arm,
i.e., a backstepping-based controller for UAV that considers the full dynamics of the 7-DoF manipulator
arm and an admittance controller for manipulator arm. Trajectory planning and obstacle avoidance
were overlooked in the approach. Kim et al. [32] utilized disturbance observer (DOB)-based approach
to recover the dynamics of a multirotor combined with additional objects and then control the complex
system similar to the bare multirotor.

3. Problem Formulation

This study aims to develop an aerial manipulator system with a lightweight manipulator
for autonomous target grasping. The aerial manipulator system comprises a 4-DoF lightweight
manipulator, a coaxial octocopter, a camera sub-system, and onboard processing modules
(see Figure 1a). The camera sub-system, consisting of a monocular camera and a 1-DoF pitch servo
motor, is developed to track the target for target grasping. The camera rotates in the pitching direction
driven by the servo motor. The pitching DoF and the mobility of UAV in the yaw direction ensure
that the target is not easily lost in the field of view of the camera during the task. Note the proposed
aerial manipulator can not only complete object grasping but also be easily adaptable for other related
manipulations, such as visual surveillance, tightening or loosening screws, placing objects or knocking
off objects.

Inspired from the manipulator in [33], we design a lightweight manipulator by arranging the
power drive unit (i.e., motors) on the base of the arm to reduce the instability of the system dynamics
during the manipulator movement. Different from [33], we replace the complex 2-DoF differential
mechanism by a high-torque servo motor, and the maneuverability of UAV is utilized to implement
the other necessary DoFs; the modified mechanism is much simpler and easier to maintain, as well as
satisfying the manipulation requirements. The developed X8 coaxial octocopter provides sufficient
payload for the manipulator and target. The mechanical gripper, as shown in Figure 1b, is easily
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replaced by other gripper types, such as the lightweight shape memory alloy-based gripper [34]
developed in our group.

(a) (b)

Figure 1. The proposed aerial manipulator system. (a) modules; (b) 4-DoF manipulator with a gripper.

The 4-DoF octocopter and 4-DoF manipulator provide an 8-DoF movement. Therefore, the system
enables the end-effector to achieve a 6-DoF movement and provides additional movement DoFs for the
collision avoidance of UAM. However, the system control is complex and challenging because DoFs
are considerably coupled. That is, the motion of the manipulator will affect the hovering stability of
the octocopter, while the octocopter influences the control of the manipulator. Additionally, the system
control should address a few constraints, such as joint limits, UAV velocity and joint velocity limits,
and collision avoidance. Furthermore, the end-effector moving distance and action time duration
should be considerably limited to save energy. Generally, the aforementioned constraints and objectives
are impossible to satisfy simultaneously. Therefore, a cost function that balances the aforementioned
constraints and objectives should be formulated to generate a trajectory for successfully implementing
the autonomous grasping task.

To address the mentioned problems, a novel vision-based approach is proposed including three
stages, namely, multi-objective optimization-based trajectory generation, visual motion compensation,
and trajectory tracking control. Without the need to calibrate the dynamic parameters or use
adaptive control scheme, the developed system based on kinematic model is easily implemented with
commercial autopilot and onboard computation unit. The kinematics model as well as the visual
observation model of the UAV-manipulator system are firstly built. The camera subsystem provides
the target location for UAV to approach and grasp the target. Once the aerial manipulator reaches the
desired location, trajectory planning with multi-objective optimization is performed to generate the
trajectory in the manipulator’s joint configuration space. Thereafter, the trajectory is corrected in real
time with the visual feedback and the manipulator performs target grasping along the compensated
trajectory. The aerodynamic disturbance and the coupled affection between the manipulator and UAV
is released based on the compensation-based trajectory correction.

4. Modeling of the UAV-Manipulator System

Figure 2 illustrates the relationship between the coordinate frames of the manipulator joints and
the proposed 4-DoF manipulator. Table 1 shows the Denavit–Hartenberg parameters. The following
notations are firstly introduced before presenting the modeling. Let b denote the UAV body frame,
and e denote the end-effector frame (i.e., 4th link frame). Let indexes 0, 1, 2, and 3 denote the
base frame and the 1st, 2nd, and 3rd link frames, respectively. Matrix Ri

k ∈ SO(3) denotes the
rotation transformation of frame k from frame i , and vector ti

k ∈ R3 denotes the translation of
frame k from frame i. Ti

k = [Ri
k ti

k; 0T
3 1] ∈ SE(3) denotes the transformation of frame k from
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frame i. For example, Tb
0 denotes the transformation of the manipulator base from the UAV body.

The transformation of the end-effector from the manipulator base is expressed as follows:

T0
e = T0

1 T1
2 T2

3 T3
e = [

R0
e t0

e
0T

3 1
]. (1)

Table 1. Denavit–Hartenberg parameters.

Link i αi (rad) ai (mm) di (mm) θi (rad)

1 0 179 0 θ1
2 0 110 0 θ2
3 π/2 13 0 θ3

4(e) 0 0 130 θ4

Figure 2. Coordinate frames of the proposed manipulator.

The forward kinematics of the aerial manipulator is defined as

Tb
i = Tb

0 T0
i , (2)

where i ∈ (1, 2, 3, e) indexes the ith link frame. In addition, the detailed expression of the transformation
matrices can be found in the literature. Therefore, the Cartesian coordinates of the i-th joint w.r.t.
the body frame is given as

pi = (Tb
i (1, 4), Tb

i (2, 4), Tb
i (3, 4))T , (3)

where Tb
i (k, l) denotes the element at row k and column l of matrix Tb

i . To deduce the inverse
kinematics, i.e., calculating the joint angles (θ1, θ2, θ3, θ4) from the a priori known T0

e , we rewrite matrix
T0

e as

T0
e =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 . (4)

Considering Equations (1) and (4), we have
θ4 = arctan(nz/oz),

θ1 + θ2 + θ3 = arctan(−az/ay),

pz = 0,

(5)

where pz = 0 because all joints of the manipulator are designed in a common plane as shown in
Figure 1b. Solving Equations (1), (4) and (5), we then have{

θ1 + θ2 = −2arctan((s− 2a2m)/e2),

θ1 = 2arctan((s + 2a1m)/e1)
(6)
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or {
θ1 + θ2 = −2arctan((−s− 2a2m)/e2),

θ1 = 2arctan((−s + 2a1m)/e1)
(7)

where 

s =
√

s1 × s2,

s1 = m2 + n2 − a2
1 + 2a1a2 − a2

2,

s2 = −m2 − n2 + a2
1 + 2a1a2 + a2

2,

e1 = m2 + n2 + a2
1 + 2a1n− a2

2,

e2 = m2 + n2 − a2
1 + 2a2n + a2

2,

m = py − a3s123 + d4c123,

n = px − a3c123 − d4s123,

(8)

where s123 and c123 are the abbreviations of sin(θ1 + θ2 + θ3) and cos(θ1 + θ2 + θ3), respectively.
The two solutions of θ1 and θ2 are obtained from Equations (6) and (7). Thereafter, two sets of joint
angles θi(i = 1, 2, 3, 4) are obtained by substituting the two solutions into Equation (5). Each solution
represents a continuous work space; however, the invalid solution is rejected if it conflicts the geometric
constraints. Finally, the inverse kinematics is derived.

Besides the forward and inverse kinematic model, we also need the observation model of the
camera system. The camera system in our aerial manipulator is driven with a servo motor, and thus is
considered as a 1-DoF robot arm. Note we omit the description of the camera’s projection model for
simplicity. Let a be the frame of the target object, c be the camera frame, and r be the camera servo joint
frame. The offset transformation Tb

c from the UAV body to the camera servo joint is directly obtained
from the CAD model, while the transformation Tr

c of the camera frame from the servo motor joint is
calibrated by using the motion capture system. The transformation Tb

a of the target object frame from
the UAV body is expressed as follows:

Tb
a = Tb

r Tr
c Tc

a . (9)

The value of Tc
a is obtained once the camera observes the target by using quick response code

technology or a stereo or RGB-depth camera. The research of target detection is out of the scope of the
paper; we utilize the Apriltag technology [35], a kind of QR code, to obtain Tc

a directly for simplicity.
According to Equation (9), we deduce the observation model where the target’s location w.r.t. the UAV
base frame is obtained.

5. Trajectory Planning Based on Multi-Objective Optimization

To achieve collision-free grasping or other manipulation tasks in practical environments, a feasible
trajectory for the movement of the manipulator should be planned a priori. Additionally, the trajectory
should satisfy other non-negligible constraints and objectives. Assume that the UAV body stays
at a grasping place where the manipulator has a large redundancy in work space for grasping.
In the section, the trajectory of the aerial manipulator is firstly formulated mathematically in the
joint configuration space by using quintic curves; each joint’s angle is expressed by a quintic curve.
Therefore, the trajectory for each joint has a continuous angle value, angular velocity and angular
acceleration. Thereafter, the trajectory planning for aerial grasping is formulated as a multi-objective
optimization problem by considering the control and mechanical constraints and objectives. Finally,
the efficient optimizer approach NSGA-II is utilized to solve the optimization problem.

5.1. Mathematical Trajectory Formulation

The proposed manipulator consists of four joints each driven by a servo motor. Because the wrist
joint only changes the end-effector’s attitude but not the position, we only consider the other three
DoFs for trajectory planning. Note the proposed approach is also suitable for manipulators with more
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DoFs. The trajectory planning is performed in the joint configuration space because of the complexity
of the Cartesian space. The joints of the aerial manipulator are controlled in the continuous space,
thereby enabling the trajectory of each joint to be mathematically described by a continuous curve.
The quintic curve is utilized because it has a continuous 2nd-order derivative. The mathematical
equation of the ith joint angle curve is expressed as

θi = cT
i [1 t t2 t3 t4 t5]T ,

ωi = cT
i [0 1 2t 3t2 4t3 5t4]T ,

αi = cT
i [0 0 2 6t 12t2 20t3]T ,

(10)

where ci ∈ R6 denotes the polynomial parameter vector, t denotes the time, and ωi and αi denote the
angular velocity and acceleration, respectively, of the ith joint. By stacking all joints together, we have

Θ = C[1 t t2 t3 t4 t5]T ,

Ω = Θ̇ = C[0 1 2t 3t2 4t3 5t4]T ,

A = Θ̈ = C[0 0 2 6t 12t2 20t3]T ,

(11)

where C ∈ Rm×6 denotes the polynomial parameter matrix, m denotes the number of joints involved
in the planning and Θ ∈ Rm, Ω ∈ Rm and A ∈ Rm denote the stacked joint angles, angular velocities
and angular accelerations, respectively.

Given the start and goal kinematic information of the manipulator, the quintic curve parameters
of the ith joint are calculated as follows:

ci =



θis
ωis
αis
2

20θis−20θig+12tgωis+8tgωig+3αist2
g−αigt2

g

−2t3
g

30θis+30θig+16tgωis+14tgωig+3αist2
g−2αigt2

g

−2t4
g

12θis−12θig+6tgωis+6tgωig+3αist2
g−αigt2

g

−2t5
g


, (12)

where tg denotes the time when the joint reaches the goal angle, θis and θig denote the start and
goal angles, respectively, of the ith joint; ωis and ωig denote the start and goal angular velocities,
respectively, and αis and αig denote the start and goal angular accelerations, respectively.

A two-stage quintic curve is utilized to ensure that the trajectory planning has considerable
flexibility and exhibits a good computational performance. A demo of the two-stage quintic curve
of one joint’s trajectory, denoted as stages a and b, is shown in Figure 3. Let Ca and Cb denote
the parameter matrix of each stage of the quintic curve. Let Ta and Tb denote the time durations
of the two stages, respectively; we have Ta = tm and Tb = tg − tm, respectively, where tm and
tg denote the time at the end of the first and second stages respectively, as shown in Figure 3.
From Equation (12), the trajectory curve is determined uniquely with the boundary condition set
B = (tm, tg, ΘT

s , ΩT
s , AT

s , ΘT
m, ΩT

m, AT
m, ΘT

g , ΩT
g , AT

g ). Θs, Ωs, and As denote the start joint angle, angular
velocity and angular acceleration, respectively; Θm, Ωm, and Am denote the intermediate joint angle,
angular velocity and angular acceleration, respectively; Θg, Ωg, and Ag denote the goal joint angle,
angular velocity and angular acceleration, respectively.
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Figure 3. Two-stage quintic curve of a joint angle.

5.2. Objectives and Constraints in Trajectory Planning

The Cartesian coordinates of the ith joint calculated from the forward kinematics are obtained
from Equation (3). Thereafter, given the joint configuration Θ, we have the Cartesian coordinates of
the end-effector w.r.t. of the UAV body as follows:

pe = Ke(Θ) = (Tb
e (1, 4), Tb

e (2, 4), Tb
e (3, 4))T , (13)

where Tb
e is a function of Θ. To drive the end-effector to grasp the object as soon as possible, we define

the following two objectives: {
f1(B) = tg,

f2(B) = Larc,
(14)

where Larc is the trajectory length of the end-effector. To calculate the value of Larc, the joint curve with
the boundary conditions B is discretized with sampling time ∆t . Let SΘ denote the set of sampled
joint angle vectors, SΩ denote the set of sampled joint angular velocity vectors, and SA denote the
set of sampled joint angular acceleration vectors, along the trajectory. The joint angle vector, angular
velocity vector and angular acceleration vector obtained at the jth sampling stamp are denoted as Θj ,
Ωj and Aj , respectively. The total number of sampling points (i.e., number of vectors in each set) is

provided by N =
tg
∆t + 1.

The end-effector position at the jth sampling stamp, denoted as pe,j, is obtained from Equation (13).
Let Φ denote the set of pe,j(j = 1 · · ·N). By adding all the discrete pose increments, Larc is calculated
as follows:

Larc =
N−1

∑
j=1
‖pe,j − pe,j−1‖2. (15)

In addition to the objectives defined in Equation (14), the trajectory should also satisfy the
geometric and electromechanical constraints during the manipulation, including collision avoidance
and the limits of joint angles, velocity and acceleration. The valid ranges of these constraints are
considered. For the constraint of joint limits, Θj , Ωj and Aj at each sampling period are verified in
the available work space. Given the joint angles Θj at the jth sampling moment, the positions of all
joints are obtained through forward kinematic mapping Equation (3). The obstacles are simplified
and discretized into point set Q . The number of obstacle points in set Q is NQ and each link of the
manipulator is simplified as a line segment. We define dmin,ij as the shortest distance between the ith
obstacle in set Q and the jth link’s line segment. Once dmin,ij is smaller than a predefined safe threshold
dsa f e, the aerial manipulator will collide with the obstacle.

Finally, the multi-objective optimization problem for the trajectory planning of aerial grasping is
formulated as follows:
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minF(B) = { f1(B), f2(B)}

s.t.



Θi ∈ SΘ, i = 1 · · ·N,

Ωi ∈ SΩ, i = 1 · · ·N,

Ai ∈ SA, i = 1 · · ·N,

Qj ∈ Q, j = 1 · · ·NQ,

Θmin ≤ Θi ≤ Θmax, i = 1 · · ·N,

Ωmin ≤ Ωi ≤ Ωmax, i = 1 · · ·N,

Amin ≤ Ai ≤ Amax, i = 1 · · ·N,

dmin,ij > dsa f e, i = 1 · · ·NQ, j = 1 · · ·N,

0 < Ta ≤ tmax,

0 < Tb ≤ tmax,

(16)

where tmax is the time limit of execution of each quintic curve. tmax is set to 5 s empirically in our
experiments. Θmin and Θmax depend on the specifications of servo motors. Ωmin, Ωmax, Amin, and
Amax depend on both the servo motors and the dynamics of the aerial system.

5.3. NSGA-II Based Trajectory Optimization

The study utilizes the well-known optimizer NSGA-II to solve the aforementioned multi-objective
optimization problem because NSGA-II is convenient and accurate even with complex constraints.
The UAV will be in the hovering mode during grasping. The initial velocities Ωs are zero and the
angles Θs are obtained from each servo motor’s sensor. The goal angular velocities Ωg are set to
zero. The goal angles of all joints Θg are obtained from the end-effector’s goal position through
inverse kinematics. Therefore, the parameter vector is rewritten as follows by removing the known
boundary conditions:

Bp = (Ta, Tb, AT
s , ΘT

m, ΩT
m, AT

m, AT
e ), (17)

where Bp ∈ Rk, k = 5× N + 2. The algorithm provides a Pareto solution set [19] in which the first
optimization solution is selected as B. Finally, with the solution, the planned trajectory in joint space is
calculated using Equations (10) and (12).

6. Vision-Based Trajectory Compensation and Tracking

The manipulator and UAV are substantially coupled in dynamics and the coupling can affect
the instant poses of the aerial manipulator. Even the pose of the target object can be altered by a few
unstable factors, such as wind disturbance. Therefore, following the pre-planned trajectory accurately
is challenging for the aerial manipulator. The section proposes a novel and efficient trajectory tracking
controller based on kinematic compensation to address the aforementioned problem. Firstly, a visual
target tracking controller is developed to guarantee that the target object is within the field of view of
the camera. Secondly, the real-time trajectory compensation based on the visual detection is presented.
Finally, a trajectory tracking method based on time-differential filtering is given.

6.1. Visual Target Tracking

The target object should maintain in the field of view of the camera. It guarantees that the object’s
location information is always available for the grasping control. In addition, a simple object tracking
controller is then developed as follows by simultaneously controlling the pitch angle of the camera
and the UAV yaw angle: {

θout(t) = kp1 ev(t) + kd1 ∆ev(t),

ψout(t) = kp2 eu(t) + kd2 ∆eu(t),
(18)
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where θout(t) and ψout(t) denote the outputs of the camera’s pitch angle and UAV’s yaw angle,
respectively, kp1 , kd1 , kp2 , and kd2 are constant parameters, and eu(t), ev(t), ∆eu(t), and ∆ev(t) are
defined as {

eu(t) = u∗ − u(t), ∆eu(t) = eu(t)− eu(t− 1),

ev(t) = v∗ − v(t), ∆ev(t) = ev(t)− ev(t− 1),
(19)

where (u∗, v∗) denotes the expected target position in the image; (u(t), v(t)) denotes the measured
target position in the image at time t. ψout(t) is directly given to the flight autopilot in the UAV’s
position control loop [36].

6.2. Real-Time Trajectory Compensation

The trajectory planning algorithm in Section 5 provides Tb
e (t) designed based on the target object

pose Tb
a (t = 0) at the beginning. However, the movement of manipulator or other unstable factors,

such as wind disturbance, may alter the UAV body pose or target object pose during the grasping
process. The problem hinders the grasping success if no compensation is introduced. To address the
problem, we propose a novel compensation algorithm based on the results of trajectory planning and
real-time target object tracking. With the real-time visual tracking system shown in Figure 1a, the UAV
continuously tracks the target and provides the value of Tb

a (t) in real time. The trajectory planning
aims to realize a collision-free target grasping and the body in the grasping process is assumed not
to generate a substantial shift. Therefore, only the collision of the end-effector will be considered.
The assumption is weak because in all our experiments the UAV generates acceptable movements.

The target object is constantly considered as the position reference, thereby guaranteeing that the
transformation Te

a(t) of the target frame relative to the end-effector should remain constant. Let Tb
a (t)

denote the real-time target tracking result from the camera system. The initial visual observation
Tb

a (0) and planned trajectory Tb
e (t) indicate that we can calculate the trajectory of the target w.r.t.

the end-effector as follows:
Te

a(t) = Te
b(t)T

b
a (0). (20)

The new trajectory Tb
er of the end-effector w.r.t of the UAV body frame is designed as follows by

integrating a kinematic compensation

Tb
er(t) = Tb

a (t)T
a
e (t). (21)

By substituting Equation (20) into Equation (21), we obtain the following equation:

Tb
er(t) = Tb

a (t)T
a
b (0)T

b
e (t) = Tb

a (t)

[
RbT

a −RbT
a tb

a
0T

3 1

]
Tb

e (t), (22)

where Rb
a and tb

a denote the rotation and translation parts of Tb
a (0) , respectively. Finally, we obtain the

compensated joint inputs from Tb
er(t) by using the inverse kinematics in Section 4.

6.3. Trajectory Tracking Based on Time-Differential Filtering

It is difficult to realize successful aerial grasping by merely applying motion compensation
because many unavoidable factors affect the implementation. The target or UAV poses may change
after the trajectory planning. The image processing for calculating Tb

a (t) causes some time delay and
the response time of the servo motors is also limited. The combined effect of these factors will lead to
errors between the calculated and required trajectories. Direct use of the calculated trajectory will cause
considerable shaking during grasping. The factors inevitably induce challenges for an UAM to follow
a trajectory accurately. The study develops an effective filter-based controller to address the problem.
The flow chart of the trajectory following controller is illustrated in Figure 4. Once the controller
receives the input instruction Θet, the angle sensor of each servo of the manipulator immediately
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measures its joint angle. The target joint angles as well as the execution time are given by the following
interpolation at a frequency of 100 Hz. Let tst denote the input command timestamp when the target
joint angles Θet are received from the algorithm of trajectory planning. An execution time T1 for the
tracking of Θet is associated. The joint output at time t is provided as follows:{

Θ(t) = Θst +
Θet−Θst

T1
(t− tst), t < T1 + tst,

Θ(t) = Θet, t ≥ T1 + tst,
(23)

where Θst denotes the angle values at the current time detected by their servo sensors. T2 in Figure 4
denotes the period of trajectory compensation. The values of T1 and T2 depend on the practical
specification of the servo motors and are set to 0.2 s and 0.1 s, respectively, in our experiments.
The difference between the execution time T1 and compensation period T2 will provide a filtering effect
on the trajectory tracking, thereby addressing the considerable shaking problem during grasping.

Figure 4. Flow chart of the proposed trajectory following controller.

7. Experiments and Discussion

The electric hardware system of the proposed aerial manipulator mainly comprises a pixhawk
flight controller, servo motor controller for the manipulator joints and grippers and an onboard
computer Intel NUC i7-5557U. The computer runs Ubuntu14.04 with ROS-indigo. The target tracking
camera is a low-cost complementary metal oxide semiconductor (CMOS) camera with a resolution of
640× 480 at 60 Hz.

Because the computer vision research on object tracking is beyond the paper’s scope, the QR-code
Apriltag [35] was attached to the target for simplicity; the tag provides the 6-DoF relative target pose
w.r.t. the camera frame. The binocular or RGB-D camera can also be used to provide the 6-DoF
pose information. The pose detection frequency of an Apriltag reached an average of 23 Hz on our
onboard computer. Because UAV’s pose estimation (i.e., localization or simultaneous localization and
mapping (SLAM)) [37]) is beyond the paper’s scope, we utilized the motion capture system for the
pose feedback of the UAV control. In addition, the grasping process is completely autonomous with
an onboard computer and sensors. The wheelbase and payload of the octocopter are 55 cm and 4.0 Kg,
respectively. The total weight of the system is 5.45 Kg and the arm weight is 0.545 Kg. The maximum
thrust capability is approximately 9 Kg and the payload capability of the manipulator is approximately
0.2 Kg.

7.1. Verification of Multi-Objective Optimization-Based Trajectory Planning

An example was performed to verify the multi-objective optimization-based trajectory planning
method. The parameters of NSGA-II for the experiments were set as follows: populations as 60,
mutation rate as 0.5, iterations as 150, crossover distribution index as 50, crossover rate as 1.0, and
mutation distribution index as 20. The experimental object to be grasped is illustrated in Figure 5.
The target object is shaped similar to a mushroom and can only grasp along the horizontal direction.
Trajectory planning should guarantee safe grasping. The initial and target angles of the wrist joint
of the end-effector were set to zero, that is, maintained horizontally. The velocity and acceleration
limit for each joint were set to [−π/2, π/2] rad/s and [−π, π] rad/s2, respectively. Each single-stage
maximum duration was set to 5 s, that is, Ta ∈ (0, 5] and Tb ∈ (0, 5].
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Table 2 illustrates the solution in the front of the Pareto [19] obtained by the proposed planning
algorithm. Two obstacles were set in the environment. The time cost of the trajectory planning is 2.460 s.
The planned trajectory and curves of each joint’s angle, velocity and acceleration are shown in Figure 6.
The trajectory diagram shows the obstacle point cloud with a safe distance and the collision-free
trajectory of the aerial manipulator. All physical variables satisfied the limitation constraints, and the
accelerations were smooth. The accelerations were continuous and smooth in nearly all parts.

Table 2. Optimal trajectory planning result 2.

Objective 1 (s) Objective 2 (m) Ta (s) Tb (s)

3.22954 0.412345 1.33109 1.89846

Joint As Θm Ωm Am Ae

1 2.98581 −1.8748 −1.3166 1.50605 −2.3504
2 0.23981 2.78616 0.16251 −1.5779 1.82654
3 −0.3575 0.25308 0.02344 −0.8158 −0.2502

Figure 5. Manipulator and experimental object to be grasped.

(a) (b)

(c) (d)

Figure 6. Planning results of our proposed trajectory planning algorithm. (a) Trajectory path; (b) joint
angle; (c) joint angular velocity; (d) joint angular acceleration.



Sensors 2019, 19, 4253 14 of 18

7.2. Experiments of Trajectory Following

Another experiment was performed on the aerial manipulator to verify the trajectory following
controller in Section 6. The parameters of controllers T1 and T2 were set to 0.2 s and 0.1 s, respectively.
In the experiment, we should verify that the filtering-based controller can control the end-effector
to track the desired trajectory. For convenience, the aerial manipulator was tested on the ground.
The end-effector’s trajectory was generated from (0.0, −0.19) to (0.27, −0.16), which is represented
by the black curve in Figure 7. The red and dotted curve represents the tracking result detected from
the sensor output of each joint servo. From Figure 7, it is seen that the trajectory following controller
played a smooth tracking. The tracking results on the joints delayed approximately 0.2 s compared
with the desired trajectory because of the filtering effect in the proposed controller. The controller
has substantially reduced the tracking joggles and the real trajectory still coincided with the desired
one. Experiments on aerial grasping were further performed to verify that the delays do not affect the
grasping performance in the following subsection.

(a) (b)

(c) (d)

Figure 7. Tracking result of the proposed time-differential filtering-based controller. (a) Trajectory path;
(b) joint1 angle; (c) joint2 angle; (d) joint3 angle.

7.3. Experiment Results of the Aerial Grasping

The global localization of UAV was provided by the motion capture system for system safety
because the UAV autopilot system is not the focus of the study. The grasping task in the experiment
is divided into two phases. Firstly, the aerial manipulator flies towards the target object by using
the onboard visual tracking system and remains in hovering mode when a place with sufficient
grasping working space is reached. Secondly, the aerial manipulator performs the grasping of the
target object. Snapshots of the aerial grasping procedure are presented in Figure 8. During the
experiment, the position of the aerial manipulator and target object shook with a maximum magnitude
of approximately 8 cm because of the dynamic instability and wind interference. Nevertheless,
our proposed approach still achieved a good performance. The performance is evidently observed in
the attached video of the experiment. Several experiments were performed by changing the hovering
position of the UAV, where the object was grasped successfully. (We provided an experiment video as
an Supplementary Material to illustrate the performance of our approach).



Sensors 2019, 19, 4253 15 of 18

Figure 8. Snapshots of the aerial grasping.

8. Conclusions

The paper proposes a novel approach for autonomous grasping with a multi-DoF lightweight
aerial manipulator. A lightweight manipulator is firstly designed to reduce the dynamic interference
to the system. The UAV is equipped with a monocular camera system to provide the target
object’s location information. To implement autonomous grasping, a framework based on the visual
information is developed, comprising visual target tracking, trajectory generation without collision
and trajectory tracking control. The trajectory planning for aerial grasping control is formulated as a
multi-objective optimization problem, whilst motion constraints and collision avoidance are considered
in the optimization. The NSGA-II is applied to determine the optimal solution. A vision-based
trajectory compensation and tracking control method is further introduced to address the external
disturbance and the coupled affection between the manipulator and octocopter. Finally, several
experiments are performed to illustrate the effectiveness of the proposed approach. The current work
focuses only on the grasping process, and there are still many challenging problems to be addressed
in the field of aerial manipulation and transportation. To make the aerial manipulator usable in
practical applications, our future work will include the completely autonomous ability in complex
environments, mainly focusing on the state estimation, obstacle detection, and force control.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/19/4253/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
UAM Unmanned Aerial Manipulator
DoF Degree of Freedom
NSB Null Space-based Behavioral
DMPs Dynamic Movement Primitives
PDMPs Parametric Dynamic Movement Primitives
RRT Rapidly exploring Random Tree
MPC Model Predictive Control
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