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Abstract 

Background:  The urban built environment (BE) has been globally acknowledged as one of the main factors that 
affects the spread of infectious disease. However, the effect of the street network on coronavirus disease 2019 (COVID-
19) incidence has been insufficiently studied. Severe acute respiratory syndrome coronavirus 2, which causes COVID-
19, is far more transmissible than previous respiratory viruses, such as severe acute respiratory syndrome coronavirus, 
which highlights the role of the spatial configuration of street network in COVID-19 spread, as it is where humans 
have contact with each other, especially in high-density areas. To fill this research gap, this study utilized space syntax 
theory and investigated the effect of the urban BE on the spatial diffusion of COVID-19 cases in Hong Kong.

Method:  This study collected a comprehensive dataset including a total of 3815 confirmed cases and correspond-
ing locations from January 18 to October 5, 2020. Based on the space syntax theory, six space syntax measures were 
selected as quantitative indicators for the urban BE. A linear regression model and Geographically Weighted Regres-
sion model were then applied to explore the underlying relationships between COVID-19 cases and the urban BE. In 
addition, we have further improved the performance of GWR model considering the spatial heterogeneity and scale 
effects by adopting an adaptive bandwidth.

Result:  Our results indicated a strong correlation between the geographical distribution of COVID-19 cases and the 
urban BE. Areas with higher integration (a measure of the cognitive complexity required for a pedestrians to reach a 
street) and betweenness centrality values (a measure of spatial network accessibility) tend to have more confirmed 
cases. Further, the Geographically Weighted Regression model with adaptive bandwidth achieved the best perfor-
mance in predicting the spread of COVID-19 cases.

Conclusion:  In this study, we revealed a strong positive relationship between the spatial configuration of street 
network and the spread of COVID-19 cases. The topology, network accessibility, and centrality of an urban area were 
proven to be effective for use in predicting the spread of COVID-19. The findings of this study also shed light on the 
underlying mechanism of the spread of COVID-19, which shows significant spatial variation and scale effects. This 
study contributed to current literature investigating the spread of COVID-19 cases in a local scale from the space 
syntax perspective, which may be beneficial for epidemic and pandemic prevention.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic 
is one of the most severe global infectious disease 
pandemics in human history. Severe acute respiratory 
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syndrome coronavirus 2 (SARS-CoV-2), which is the 
cause of COVID-19, can be transmitted by respiratory 
droplets or body contact. COVID-19 has thus become 
a city-level airborne epidemic that will continuously 
threaten human health [42]. Governments, research 
institutions, and companies are attempting to defer the 
propagation of this disease.

In the early to mid-stage of the COVID-19 pandemic, 
most spatial analyses of the development of COVID-19 
have been at the national and provincial levels [40, 49]. 
With the continuous development of the epidemic and 
the increase of cases around the world, there emerge 
a vast body of research that exploring the spread of 
COVID-19 on city scale or even more microscopic 
community scale [13, 19]. These research emphasize 
on various perspectives, including the space–time pat-
tern of COVID-19, human mobility and the spread of 
disease, the onset risk and the BE. Among these previ-
ous research, a large number of studies have analyzed 
the BE by considering various aspects such as building 
density, city infrastructure, public facilities and services 
to study the spreading mechanism of the COVID-19 
epidemic.

Street network, an essential component of urban BE, 
is critical in analyzing the distribution pattern of disease 
which could spread easily via human interactions on the 
urban road network. Accordingly, many studies have 
highlighted the importance of the street network in the 
spread of infectious diseases [31, 46]. While traditional 
research usually operationalizes street network as meas-
ures of intersection density, the spatial configuration 
of street network and how it contributes to COVID-19 
cases distribution at the city level has not been thor-
oughly studied [39]. That is, a more integrated street 
would attract more human activities and thus a higher 
chance of infection.

To fill this knowledge gap, this study aimed to envisage 
how and to what extent the COVID-19 is disseminated 
on a city scale concerning the spatial configurations of 
urban environment in Hong Kong, a densely populated 
and highly developed metropolis. Six space syntax and 
topological measures of the spatial configuration of road 
networks, along with one confounding variable popula-
tion density, were introduced to model the relationship. 
In addition, several regression models including ordi-
nary least squares (OLS), classic geographically weighted 
regression (GWR) model, and an advanced GWR model 
with adaptive bandwidth were applied to model the rela-
tionship between these measures and the spatial distri-
bution of COVID-19 cases in the past 10  months. The 
spatial configuration based research framework is gener-
alizable to other cities or regions with high density and 
urban complexity. Our conclusions’ universality can be 

verified and perfected by integrating epidemic data and 
online freely accessible spatial data of other areas.

The remainder of this paper is organized as follows. 
“Related work” section reviews the previous related work. 
“Materials and methods” section introduces the study 
area, the basic theory of space syntax, and our methodol-
ogy. “Experiment results” section presents the results of 
our case study in Hong Kong, including the descriptive 
statistics of initial results and the further spatial regres-
sion analysis. “Discussion and conclusion” section sum-
marizes and discusses the study.

Related work
Geographical patterns of COVID‑19 on different scale
Nearly 1  year since the beginning of the pandemic, 
numerous studies of COVID-19 have been published 
that focus on the spread of the disease at the country/dis-
trict level [3, 8, 40, 49]. Ye and Hu [47] indicated that the 
emergency-response control measures that were imple-
mented in January 2020 in the Yangtze River Delta region 
in China were effective, based on their tracking of the 
spatial and temporal distributions of COVID-19 cases 
in this area. Mollalo et al. [29] explored the county-level 
variations in COVID-19 incidence across the continen-
tal United States, and found that factors such as income, 
percentage of black females, and percentage of nurse 
practitioners significantly contributed to spatial variation 
in disease incidence. Lakhani [24] identified a priority 
area in Melbourne, Australia, in which a high percent-
age of aging adults resided but lacked access to necessary 
healthcare facilities. This study helped policymakers to 
allocate related resources and pandemic palliative-care 
services.

Effects of the urban road network on disease spread
Although spatiotemporal patterns of COVID-19 cases 
have been well documented on both macro-scale and 
micro-scale from a traditional urban BE perspective, lim-
ited research has focused on patterns at the local-level 
urban road network configuration. The urban BE consti-
tutes the bulk of human-made spaces and objects, includ-
ing buildings, roads, transit networks, and other public 
areas [12]. As the urban BE is the main space in which 
humans move and interact with each other, it increases 
the risk of exposure to pathogens through close contact 
with the people and surfaces in their daily lives. Poor 
urban and building design can harm health by increas-
ing the risk of exposure to infection [37]. As one essential 
component of urban BE, the urban road network config-
uration has a strong advantage in explaining the human 
activities across the urban area. As the urban road net-
work is the primary potential area for the transmission 
of pathogens, due the movement and interaction of large 
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numbers of people. The study of the correlation between 
the urban road network and pandemics has been part of 
the history of urbanization since John Snow drew a chol-
era map of London in 1854, which is recognized as the 
earliest known example of using geographical inquiry 
to understand a health epidemic [28]. The literature has 
suggested the importance of the road network in the 
spread of infectious diseases. Strano et al. [41] suggested 
that it was valuable to understand how regions are con-
nected through road network After studying the spread 
of malaria in Africa. By studying the travel patterns and 
epidemic, some scholars find that imposing restrictions 
on specific nodes and in the network can inhibit the 
spread of infectious diseases [31]. After studying the dis-
tribution of more than 40,000 dengue fever cases, Li et al. 
[25] found that narrow and high-density urban road net-
work greatly contribute to the dengue fever epidemic in 
Guangzhou and Foshan, China. Similarly, Xu et  al. [46] 
revealed that the centrality of highway networks had a 
significantly positive relationship with the incidence of 
swine flu (H1N1 influenza A) in 2009 at the city level in 
mainland China.

Space syntax and the urban BE
Despite a burgeoning concern of classically built envi-
ronment components such as density and land use mix 
to examine the disease spread, some argue that those 
measures fail to evaluate the spatial configuration of a 
street network, which is highly associated with human 
movement [10, 20, 22]. Although the density is typi-
cally used to represent the street layout as the number of 
intersections within an area, street configuration high-
lights relationships between streets within the network. 
For instance, more integrated streets are more likely to 
attract more human interactions as they are more acces-
sible from other streets. In this regard, space syntax has 
been widely adopted as a representation of urban space 
to characterize the spatial configuration of the built envi-
ronment in relation to human activities (e.g., [17, 36]).

The space syntax theory, proposed by Bill Hillier and 
colleagues in the 1970s, posits that spatial configura-
tion can explain a large proportion of various human 
activities, such as pedestrian movements through streets, 
land-use patterns, and public health [11, 32]. Methodo-
logically, space syntax abstracts real urban space from a 
continuous entity into a group of axial lines or subspaces, 
which resolves the complexity of urban areas. Space syn-
tax is based on traditional graph theory and network 
analysis, and a series of specific space syntax measures 
have been proposed to indicate or describe urban spatial 
layouts. These measures showed good fitness in the past 
decades for investigating the through-movement poten-
tial of each street or space in a given area in terms of 

pairs of other areas. Previous studies have also suggested 
that space syntax is effective at depicting human activi-
ties by decomposing space into line segments and region 
in urban areas. For instance, Xia et al. [45] proposed an 
urban growth boundary model based on the space syntax 
theory, which predicts urban boundary expansion. The 
model performed better than another that did not incor-
porate space syntax predictors, and thus suggested that 
space syntax has great potential for use in urban planning 
applications. Koohsari et  al. [21] applied the space syn-
tax theory to connect urban form and urban function to 
pedestrian movement, and concluded that space syntax 
has great potential for use in public health studies.

Spatial variables like road density and building density 
represent the urban space have long been used to inves-
tigate the spatial pattern of infectious diseases in the 
history of health geography. However, most COVID-19 
related researches emphasize socioeconomic perspec-
tive and generalized BE such as demographic income, 
availability of public facilities, to explain how the disease 
transmits and distributes within a city or state on the 
fixed scale. This study aims to explore if and how the spa-
tial configuration correlated with the COVID-19 disease 
on the variable scale within a city and contributes to the 
epidemic prevention and control strategies.

Materials and methods
Study area
Hong Kong, with an average population density of 6754 
persons per square kilometer, is one of the most densely 
populated and highly developed metropolises in the 
world (Fig.  1). Its urban BE has positively contributed 
to the spread of various infectious diseases. For exam-
ple, Hong Kong was the most severely affected area of 
the world during the SARS epidemic in 2003, as it had 
more than 1700 confirmed cases and 299 deaths. More 
than 300 cases were distributed in a few blocks of a large 
high-rise housing estate located in the densely populated 
district of Kowloon [48]. Epidemiologists found that 
the high chance of social contact in high-density Hong 
Kong could have been a major contributor to the high 
rate of SARS infection. During the COVID-19 pandemic 
in 2020, the most common control measures in Hong 
Kong have been self-quarantining and physical distanc-
ing. However, strict physical distancing is very difficult 
to maintain in overcrowded urban spaces, thereby lead-
ing to an increased risk of the spread of COVID-19 [1]. 
Consequently, local cases increased significantly during 
the second and third waves of the pandemic (early March 
to early April and late June to late October 2020) while a 
large number of imported cases comprised the first wave 
(January to March 2020). Particularly, by the end of the 
October 2020, the third wave had brought more than 
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4000 new cases and lead to a severe epidemic in Hong 
Kong.

Data collection and processing
COVID-19 incidence data were collected from the geo-
spatial COVID-19 dashboard (co-designed by the Center 
of Health Protection, Department of Health, Develop-
ment Bureau, Lands Department, and a group of volun-
teers in Hong Kong) for January 18 to October 5, 2020. 
The dashboard provides details of all of the confirmed 
cases (a confirmed case is an individual who had a con-
firmatory viral test performed by way of a throat swab, 
nose swab or saliva test and that specimen tested posi-
tive for SARS-CoV-2, which is the virus that causes 
COVID-19), including the demographics of each case, a 
brief travel history, and the locations recorded during the 
incubation period. We extracted the geographical loca-
tions of those cases at the time of their public announce-
ment on the dashboard. After excluding 1299 imported 
cases and cases in Quarantine Centers, a total of 3815 
confirmed cases were extracted for this research (Fig. 2). 

The study area was divided into a grid of cells that have a 
resolution of 1 km × 1 km. In order to focus the research 
on the areas with more daily activities, the non-built-up 
areas such as country parks, wasteland, and idle sites are 
excluded based on the official data released by the Hong 
Kong Lands Department.

Space syntax measures
In this study, the urban BE was quantitatively depicted 
with several space syntax measures. Space syntax seeks 
to represent urban space as axial lines, and thus differs 
from traditional segment-node-based network measure-
ments. Specifically, an axial graph represents urban space 
based on two principles, namely that (1) an axial line rep-
resenting a particular space must be the longest line in 
the space and (2) the number of lines must be the low-
est possible. Figure 3 illustrates the conversion of a road 
street map to an axial graph, in which many stubs and 
nodes are removed.

After the axial graph of the study area was constructed, 
six classic space syntax measures, namely degree, control 

Fig. 1  Geographical location of Hong Kong
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Fig. 2  Geographical distribution of cases in the study area

Fig. 3  a Road-centerline map and b axial graph of a locality in the study area
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value, mean depth, local depth, integration, and between-
ness centrality, were computed, using data from the data-
set, as the indicators for the urban BE. The widely used 
geometric indicator length was also used.

Specifically:

•	 degree (Eq.  1) is a local measure that specifies the 
number of segments intersecting with the given seg-
ment.

•	 depth (Eq.  1), comprising local depth and global 
depth, is calculated by counting the steps from other 
segments to the current segment, as follows:

where s is the number of steps of the given segment, 
nk is the number of intersected segments (neighbors) 
at step s, and l is the network diameter.

•	 control (Eq.  2) is a measure that describes how a 
segment controls access to its neighbors from other 
segments and is calculated by summing the inverse 
values of the connectivity of all of the segments 
neighboring a specific segment.

where m is the number of neighbors and nk is the 
number of neighbors of the current neighbor.

•	 Integration (Eq.  3) is a measure that evaluates the 
distance from a starting point to all points in a given 
system. A positive correlation was found between 
the integration of a space and the chance of people’s 
appearance in that space [9].

where MDi is the mean depth, Integi is the inte-
gration, and n is the total number of nodes in the 
network.

•	 Betweenness (Eq.  4) is a critical measure of spatial 
network accessibility, which shows how local space 
controls and mediates the movement and connec-
tions through an entire network.

where x, y, and z are three different nodes in the net-
work and δyz represents for the number of shortest 

degree = n1

(1)depth =

s∑

k=1

nk ,

{
l > s > 1(local depth)
l = s

(
global depth

)

(2)Control =

m∑

k=0

1/nk

(3)
{

Integi =
2(MDi−1)
(n−2)

MDi = Global depthi/(n− 1)

(4)B(x) =
∑

x �=y�=z

δyz(x)

δyz

paths from y to z. δyz(x) is the number of times node 
x falls on the shortest path of y to z. The betweenness 
centrality is considered at a given radius of 1200 m, 
which is an approximately 15-min walk for an adult 
[44].

Global models and local models
Two regression methods were used to examine how space 
syntax measures can explain the distribution of COVID-
19 cases in Hong Kong, namely a linear regression model 
based on OLS and a local spatial model based on GWR. 
In both regression models, the dependent variable is the 
number of COVID-19 cases in each 1-km grid cell. The 
independent variables are the values of the space syntax 
measures with one confounding variable, the population 
density in each cell.

As discussed in “Related work” section, we conducted 
both univariate and multivariate regressions to exam-
ine the relationships between the selected explanatory 
variables and the dependent variable. The multivariate 
regression models were developed globally and locally to 
determine the most explanatory model for our study area. 
The OLS approach investigated the relationship between 
COVID-19 cases and the urban BE across the study area. 
The GWR model with a fixed bandwidth was applied 
to examine the OLS results. Finally, we introduced an 
adaptive bandwidth to calibrate the GWR model results, 
which enabled the spatial regression model to explain 
most areas at a local scale.

Linear regression based on OLS
The OLS-based linear regression calculates the relation-
ship between the number of COVID-19 cases and the 
space syntax measures using two basic assumptions, 
namely that (1) the error terms are independent and have 
a constant variance across the study area and that (2) the 
independent variables are not correlated with the error 
terms [29]. For the model with six variables, the equation 
used is as follows (Eq. 5):

where y is the number of cases, β0 is the intercept, xi is 
the ith measure, and ε is the random error.

GWR​
The OLS-based regression model simulates spatial obser-
vations by assuming stationary relationships among the 
variables, but ignores the local variation caused by spa-
tial heterogeneity [35]. However, COVID-19 spread 
is highly dependent on spatial proximity to infection 
sources, and thus shows a high degree of spatial autocor-
relation [15]. Thus, a GWR was applied to mitigate the 

(5)y = β0 +
∑

i=1...6

βixi + ε
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influence of spatial autocorrelation. The global Moran’s 
I, the classical measure for spatial autocorrelation [14], 
was calculated for the confirmed COVID-19 case data, 
to examine the spatial autocorrelation among COVID-19 
cases. The multiscale GWR models were then applied to 
the COVID-19 case data and space syntax measure data. 
Finally, global Moran’s I was applied to the residuals of 
the multiscale GWR models to ensure that the residuals 
were not spatially autocorrelated.

The specialized form of the GWR model for the three 
explanatory variables is given as follows (Eq. 6), based on 
the general form defined by Brunsdon et al. [4]:

where i represents the specific location of each local 
regression in our study area; yi is the COVID-19 cases at 
location i; xik is the kth explanatory variable at location i; 
βi0 is the intercept parameter at location i; βik is the local 
regression coefficient for the kth explanatory variable at 
location i, which is illustrated as bandwidth in the follow-
ing sections; and εi is the random error at location i.

The GWR model performs a location-based calibration 
of the general linear regression model by putting greater 
weight on observations nearer to each regression point. 
The estimation of the local regression coefficient βi is 
performed as follows (Eq. 7):

where Wi is a weight matrix to ensure the observations 
nearer to i are given greater weight. Wi is generated by 
the following Gaussian model-based kernel function [6] 
(Eq. 8):

where wij is the weight value of an observation at loca-
tion j for estimating the coefficient at location I, dij is the 
Euclidean distance between i and j, and θ is a fixed band-
width size. The fixed bandwidth size is calculated based 
on the minimum goodness-of-fit measure, the Akaike 
Information Criterion (AIC). The corrected AIC (AICc) 
is also one of the metrics for evaluating global and local 
regression models (“Results of GWR with fixed and adap-
tive bandwidths” section).

GWR with adaptive bandwidth
The GWR model overcomes the assumption of station-
arity from global regression. However, the classic GWR 
model only explains a spatial process on a specific local 

(6)yi = βi0 +

3∑

k=1

βikxik + εi

(7)β̂i =

(
XTWiX

)−1
XTWiY

(8)wij = exp

(
−d2ij

θ2

)

scale because it assumes a constant relationship, deter-
mined by the kernel function and bandwidth, between 
the dependent and independent variables over space [7, 
34]. In practice, it is often difficult to determine the best 
bandwidth in a spatial regression model. In this study, the 
epidemic cases and the road network are concentrated 
in the urban area (Fig.  4). In suburban areas, there are 
far fewer cases and roads in the surrounding grid cells 
to participate in the regression, which led to an increase 
in random error and a decrease in the goodness-of-
fit in such an area [27]. In the GWR model with a fixed 
width, even fewer surrounding grid cells participate in 
the regression in suburban areas, due to the exclusion of 
many cells that represented non-residential areas within 
the fixed bandwidth around the cells of interest. This fur-
ther reduced the goodness-of-fit in both urban and sub-
urban areas, owing to an overall increase in fitting errors.

Thus, to further calibrate the GWR model, this study 
used an adaptive bandwidth for the number of neigh-
boring units (i.e., neighboring grid cells) instead of a sin-
gle geometric distance. That is, the value of θ in Eq.  (8) 
was further replaced by a series of numbers of nearest 
neighbors to determine the optimal neighborhood size. 
The weight and coefficient for each local observation 
were then calculated according to the adaptive distance 
between the neighbor and the center. The adaptive band-
width adjusted the scale of local regression, such that it 
was smaller in an urban area and larger in a rural area, 
thereby improving the GWR fitting result and providing 
a stronger foundation for determining the association 
between the urban BE and the number of COVID-19 
cases.

Model development and performance measurements
The road network of Hong Kong was selected as the 
input data for the analysis. Six space syntax measures, 
one confounding variable, and one essential geometric 
measure were chosen as candidate independent vari-
ables, and the number of COVID-19 cases was set as the 
dependent variable. The results were then assigned to the 
grids covering the built area in the study area. We first 
calculated each measure of space syntax. The measure-
ments represented by depth, degree, and integration are 
the key factors for predicting the likelihood that human 
activities occur in a given location. Afterwards, the rela-
tionship between the number of confirmed cases in each 
grid and the average value of each network measure were 
calculated using univariate variable regression analysis.

Four metrics were used to compare the performances 
of the regression models, namely R2, adjusted R2, AICc, 
and Moran’s I of residuals. R2 and adjusted R2 are typi-
cal goodness-of-fit measures that represent the propor-
tion of variation in the dependent variable that can be 
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explained by the regression model. AICc is an index for 
model selection that balances the model complexity and 
goodness-of-fit, where a lower AICc value indicates bet-
ter results. The calculation results are then imported into 
ArcMap to evaluate the spatial autocorrelation of the 
regression residuals by the Moran’s I. These criteria are 
used to evaluate whether the GWR models successfully 
mitigated the spatial heterogeneity or spatial autocorrela-
tion of the data across the study area.

In this study, all the above-mentioned measures of 
space syntax are calculated from an open source software 
Place Syntax Tool (version v3.1.4; Meta Berghauser Pont, 
2020). The GWR analysis are performed in the software 
GWR4 (version 4.0.90; Tomoki Nakaya, 2015). The data 
visualization and layout design are conducted in ArcGIS 
Pro 2.3 and CorelDRAW X8.

Experiment results
Results of univariate regression between individual space 
syntax measures and COVID‑19 cases
The results of the univariate regression between each 
space syntax measure and COVID-19 incidence are 

shown in Table  1. Among the space syntax measures, 
betweenness centrality (Fig.  5a) and integration (Fig.  5b, 
and Additional file 1: Figure S1) have the highest R2 val-
ues with respect to the number of confirmed COVID-19 
cases. Both measures are positively correlated with the 
number of confirmed cases, as suggested by the positive 
R values. 

Control (Additional file  1: Figure S2), degree (Addi-
tional file 1: Figure S3), and betweenness centrality are all 
indicators of the importance of a certain area in an entire 
space. The first two measures only consider the topo-
logical characteristics of a network, whereas betweenness 
centrality considers both the topological features and the 
number of shortest paths passing the network location 
of concern. Therefore, betweenness centrality showed 
the best performance in predicting the number of cases. 
A higher depth value means that a location is less likely 
to be a place in which human activities occur. Thus, as 
expected, depth (Additional file  1: Figure S4) is nega-
tively correlated with the number of confirmed cases, 
but the R2 value is low, which shows that depth is not a 
good indicator for explaining the number of confirmed 

Fig. 4  Kernel density of confirmed coronavirus disease 2019 cases in Hong Kong
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cases. Compared with the density of human activities, 
as reflected by depth, the chance of encountering and 
having social contact with people from other areas as 
reflected by betweenness centrality is more related to the 
risk of developing COVID-19.

The overall results of these single linear regressions 
indicate that places with higher accessibility tend to have 
more confirmed cases of COVID-19 (Figs. 4 and 5). This 
is probably because areas with a higher risk of exposure 
lead to a higher risk of infection, but more evidence 
needs to be obtained to confirm this.

Results of OLS‑based linear regression model
Before the multiple regression was conducted, the mul-
ticollinearity of the independent variables was tested by 
calculating the least variance inflation factor (VIF). The 
three variables with a VIF of less than five [33], namely 
integration, betweenness centrality, and length, represent-
ing the topology, the nearest distance, and the geometric 

length of the street network, respectively, were used in 
the multiple regression. Previous studies have suggested 
that the integration of network topology and network 
length affords a better estimation of the relationship 
between human activity and the urban road network [26, 
43], which validates the effectiveness of the three selected 
variables to some extent.

Table 1  Calculation results of space syntax measures and univariate regression results for predicting the number of cases

Measure Min Max Mean Stdev. R Adjusted R2

Control 0.16 2.0 1.0 0.29 0.30 0.09

Mean depth 1.0 2.73 2.18 0.18 − 0.15 0.02

Global integration 0.79 3.49 1.35 0.45 0.42 0.17

Total depth 4.0 219.0 34.7 24.29 − 0.26 0.07

Degree 1.0 15.0 3.22 1.41 0.38 0.14

Betweenness centrality 0 37,920.0 1341.67 1509.26 0.59 0.34

Length 12.81 2687.72 76.59 69.78 0.32 0.10

Population density – – – – 0.44 0.20

Fig. 5  a Betweenness centrality and b integration of urban area

Table 2  Ordinary least-squares regression of coronavirus disease 
2019 cases

a VIF refers to variance inflation factor

Measure Coefficient t-statistic p-value VIFa

(R2: 0.4220; Adjusted R2: 0.4199)

 Integration 0.2342 3.6570 0.0004 3.4278

 Betweenness 0.2637 2.9701 0.0000 2.9311

 Length − 0.1029 − 1.1027 0.0000 2.0325

 Population density 0.0113 6.8133 0.0002 1.3697
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Table 2 summarizes the results of the OLS analysis. All 
three variables are positively associated with the COVID-
19 incidences, which is consistent with the univariate 
regression results. The R2 and adjusted R2 of the OLS 
model, while markedly improved compared with those 
of the univariant regression, are slightly greater than 0.4. 
The number of COVID-19 cases across the study area has 
a global Moran’s I equal to 0.2747, with a z-score of 33.38 
and p-value of < 0.001, thereby indicating that the distri-
bution of COVID-19 cases is highly spatially autocorre-
lated and clustered. Thus, the relatively low fitness for the 
OLS model may be mainly due to the inability of OLS to 
capture local variations in the highly spatially autocorre-
lated distribution of COVID-19 cases.

Results of GWR with fixed and adaptive bandwidths
The results of the GWR using between space syntax 
measures and COVID-19 cases with fixed and adaptive 
bandwidths are shown in Table  3. The fixed bandwidth 
of the GWR is 10,900  m, which is the value that mini-
mizes the AICc of the regression result. However, the 
fixed bandwidth is relatively large when apply to local 
areas for spatial regression [2]. In GWR analysis, a larger 
bandwidth does not allow for much local fitting within 
each moving window and the model also approached 
the global model. Thus, three adaptive bandwidths of 
the GWR with 100, 150, and 200 neighbors were used to 
calibrate the spatial variation across the entire study area 
(Table  3). These bandwidths allow the model to fit spa-
tial differences at a smaller local scale. There are a total of 
1112 grids in the study area.

Compared with those of the OLS-based regression, 
the GWR with a fixed bandwidth achieves a higher R2/
adjusted R2 and a lower AICc (Table  3), which demon-
strates that GWR better captures the spatial dependency 
of the distribution of COVID-19 cases than OLS. How-
ever, the residuals of the regression are still significantly 
clustered according by z-score, thereby showing that a 

portion of the spatial dependency was is not captured by 
the model.

As can be seen, GWR models with adaptive bandwidth 
(Models b, c, and d) achieve better adjusted R2 and AICc 
values than the fixed-bandwidth GWR model. Further-
more, the z-scores of the residuals of these former models 
fall in a range that indicates spatial randomness, thereby 
indicating that most of the spatial dependency within 
the data was captured by the regression. The best perfor-
mance, i.e., the highest R2 and adjusted R2 and the lowest 
AICc values, was achieved by Model b with 100 neigh-
bors. The results demonstrate that the GWR models 
with an adaptive bandwidth can better capture the local 
variations in COVID-19 cases than the GWR with a fixed 
bandwidth. The variation in the scales of spatial depend-
ency at different locations, in terms of absolute distances, 
are better represented and captured by the adaptive 
bandwidth. This enables the GWR models with an adap-
tive bandwidth to model the relationships between the 
urban BE and COVID-19 cases more reliably.

The GWR models with an adaptive bandwidth not 
only obtained better overall fitting results, as shown in 
Table 3, but also obtained higher goodness-of-fit in local 
areas. In the downtown area, in which the number of 
COVID-19 confirmed cases is highest (Fig. 6), the GWR 
Models (b), (c), and (d), which have an adaptive band-
width, have higher local R2 values than those of Model 
(a), which has a fixed bandwidth. Areas with local R2 val-
ues higher than 0.75 (grids in dark green in Fig. 6) cover 
most of the urban areas, such as 48% and 42% of all of the 
grid cells for Model (c) and Model (d). Model (a) results 
in local R2 values higher than 0.75 in only 23% of the 
grid cells. Models (b), (c), and (d) also have higher local 
R2 values than Model (a) in Tuen Mun, Yuen Long, and 
Tai Po, which are the three “satellite towns” where con-
firmed cases are clustered (Fig. 6a, b). The fitting results 
of Models (c) and (d) are not as good as those of Model 
(b) because the models gradually approach global regres-
sion when the bandwidths increase.

Table 3  Measures of goodness-of-fit for geographically weighted regression (GWR) models (fixed and adaptive models)

a The automatically selected value that minimizes the Akaike information criterion (AICc)
b AICc refers to the corrected Akaike information criterion
c z-score of residuals (significantly dispersed: < − 1.96; random: − 1.96 to 1.96; significantly clustered: > 1.96)

Criterion OLS GWR​

Model – (a) (b) (c) (d)

Bandwidth – Fixed (10,205 ma) 100 neighbors 150 neighbors 200 neighbors

R2 0.441 0.493 0.588 0.555 0.536

Adjusted R2 0.439 0.477 0.523 0.511 0.501

AICcb 8195 8129 8103 8097 8101

z-score of residualsc 5.877 2.316 1.933 − 1.285 − 0.255
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To further explain the improvement of the adaptive 
bandwidth method to the degree of fit on the local scale 
(Table  4), three representative regions were selected for 
comparison. Kowloon Peninsula and North Hong Kong 
Island (downtown area in Fig. 6a, b) are selected to repre-
sent the metropolitan area, Yuen Long Town represents 

the new town area, and Pat Heung represents the rural 
area. The division of urban and rural areas is based on the 
official land use document from the Hong Kong Planning 
Department [38].

Discussion and conclusion
Human cognition of a space is based on not the entirety 
of a city, but its small subdivided parts [16, 30]. It is thus 
essential to decompose a large urban space into smaller 
and unique spatial units to perform quantitative analy-
sis of the differences between city areas. The onset risk 
prediction, spatial distribution, and pattern of spread of 
COVID-19 have been recognized in previous research. 
However, most studies emphasized on the physical built 
environment on the relatively coarse scale, such as road 
and building density at each county or city. The lack of 
discussion of the relationship between COVID-19 and 
spatial configuration of urban environment especially the 

Fig. 6  Distribution of the local R2 values of the geographically weighted regression models with a a fixed bandwidth; b bandwidth = 100 
neighbors; c bandwidth = 150 neighbors; and (d) bandwidth = 200 neighbors. “Removed” indicates the removed non-residential areas that do not 
participate in the regression

Table 4  Local R2 for downtown area, satellite town area and 
rural area

Measure R2 Mean local R2

Downtown Satellite town Rural areas

Model (a) 0.493 0.460 0.406 0.417

Model (b) 0.588 0.561 0.501 0.526

Model (c) 0.555 0.521 0.467 0.488

Model (d) 0.536 0.494 0.473 0.350
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road network prevents us from perceiving how COVID-
19 interacts with this key factor.

This study found that there is a clear and strong cor-
relation between COVID-19 incidence and space syntax 
measures after controlling the possible influencing fac-
tors. A group of six space syntax measures representing 
the urban BE and one confounding factor population 
density were applied to explain the geographic distri-
bution pattern of COVID-19 cases in Hong Kong. The 
univariate analysis suggests that COVID-19 incidence is 
highly dependent on integration and betweenness meas-
ures and less dependent on degree and length. Interest-
ingly, the population density shows a relatively weak 
correlation compared with other measures, which is con-
trast to most public health research that the population 
density is always regarded as a critical factor associated 
with the risk of infectious [46]. However, this finding 
embraces some similar evidence in the Hong Kong con-
text. For instance, KAN [18] found that population den-
sity had no significant relationship with locations visited 
when investigating the covid-19 spread in the Hong Kong 
context. Also, Lai et  al. [23] have investigated the diffu-
sion patterns of the severe acute respiratory syndrome 
(SARS) during 2003 in Hong Kong and found that people 
in urban areas had a higher risk of contracting the disease 
than those in rural areas irrespective of population den-
sity. Still, the distribution of COVID-19 cases shows quite 
different trends.

Besides, this study proves the effectiveness of a GWR 
model with adaptive bandwidth in predicting the dif-
fusion of covid-19 cases. This study utilizes a GWR 
model with adaptive bandwidths that considers spa-
tial heterogeneity across the urban and rural areas. As 
the distribution of COVID-19 cases is heterogeneous 
in urban and rural areas, the bandwidth of the GWR 
model must be adjusted accordingly. This calibra-
tion greatly improves the GWR fitting results and aids 
determination of the association between the urban BE 
and the distribution of COVID-19 cases. Specifically, 
we adjusted the bandwidth to be smaller in urban areas 
and larger in rural areas, based on the pattern of distri-
bution of COVID-19 cases. Overall, the goodness-of-fit 
of this model outweighs that of the OLS model and the 
normal GWR model with a fixed bandwidth. As most 
previous studies on the spread of infectious diseases 
have claimed that high-dense urban areas are more con-
ducive to the spread of infectious diseases like flu and 
H1N1, urban centers have a higher risk of onset than 
rural areas. However, this study highlights an impor-
tant but neglected factor: the spatial configuration of 
the street network, which would partly explain how the 
infection spreads and show a high degree of consistency 

in urban, new town, and rural areas in Hong Kong. That 
is, a more integrated street may increase the chance of 
infections. This also echoes the research of the view 
that rural areas and suburban sprawl are not necessarily 
safer spaces during the COVID-19 crisis [5]. Analyzing 
the spatial configuration of urban built environment 
may be a new dimension to explain the characteristics 
of urban and rural epidemics in the future.

Finally, this study also suggests that infectious dis-
eases, such as COVID-19, should be explored on a more 
local scale. The topology, network accessibility, and cen-
trality of an urban area were proven to be effective for 
use in predicting the spread of COVID-19. The GWR 
model with bandwidth of 100 neighbors best explains 
the COVID-19 incidence in Hong Kong. This indicates 
that the correlation between the geographic distribu-
tion of COVID-19 cases and the urban BE may be more 
relevant on a local scale than on a global scale within 
a single city. Quantitative analysis combined with travel 
radius in the future should lead to more accurate con-
clusions. As the world is currently experiencing a win-
ter rebound of COVID-19 outbreaks, this study may 
provide a key reference and stimulate further studies 
to understand the relationship between the urban BE 
and health, during and beyond the COVID-19 pan-
demic. This research aims to serve as a reference for 
understanding the geographical distribution pattern of 
COVID-19 cases and inspire new approaches in density 
management that will help long-term survival in future 
pandemics.

However, there are still some limitation exists in this 
study. The first is data uncertainty. Although the cases 
data is the highest quality and most detailed that can 
be collected in Hong Kong, the geographical loca-
tion information of the cases data used in this study 
are extracted from the location of onset or residence 
declared by each case. This location may not be com-
pletely accurate, and probably not the places they con-
tracted the COVID-19 virus. The second limitation is 
the selection of the explanatory variables. This research 
focuses on the spatial distribution pattern of COVID-
19 cases from a purely spatial structure perspective 
and only selects variables representing spatial charac-
teristics for establishing the spatial regression models. 
Actually, the urban space structure is only one of the 
main factors that affect the spread of infectious dis-
eases. Other factors such as population density, socio-
economic background, and the availability of medical 
facilities may worthwhile for further investigation to 
predict the distribution of COVID-19 in more detail 
and quantitative level.
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