
Therapeutic Strategies by Regulating
Interleukin Family to Suppress
Inflammation in Hypertrophic Scar and
Keloid
Dan Zhang, Bo Li and Muxin Zhao*

Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China

Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to
aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction,
psychological stress, and patient frustration. The unclear pathogenesis behind HS and
keloid is partially responsible for the clinical treatment stagnancy. However, there are now
increasing evidences suggesting that inflammation is the initiator of HS and keloid
formation. Interleukins are known to participate in inflammatory and immune
responses, and play a critical role in wound healing and scar formation. In this review,
we summarize the function of related interleukins, and focus on their potentials as the
therapeutic target for the treatment of HS and keloid.
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INTRODUCTION

Hypertrophic scar (HS) and keloid are a kind of FDPs, which mainly manifested by fibroblast
proliferation and excessive deposition of extracellular matrix (ECM) (Jiang and Rinkevich, 2020). HS
is mostly caused by surgery and severe burns, while keloid may result from minor skin damage, such
as ear holes, vaccination, acne, etc (Lee and Jang, 2018). Chronic infections and repeated injuries may
enhance scar formation and tissue fibrosis (Vinaik et al., 2020). In morphology, they both exhibit
hyperplasia, bulge and redness, but unrestrained growth is a specific feature in keloid, which usually
invades beyond the margins of the original wound. A majority of patients have to suffer obvious
itchiness and pain for a long time (S. S. Lee et al., 2004). Sometimes it not only affects esthetics but
also produces dysfunction. At present, there is still lack of efficient curative treatments. Conventional
surgery, radiotherapy and hormonal therapy are difficult to achieve complete cure, especially in
keloid due to high recurrence rates ( Arno et al., 2014).

Although studies on scars are numerous, the specific pathogenesis mechanism remains unclear in
HS and keloid. However, accumulating evidences exist on close link among the inflammation,
immune, and pathological scar (Xue et al., 2000; G. Zhu et al., 2007). In the past, keloid and HS were
divided into distinct diseases because of the differences in clinical manifestations and pathology
(Arno et al., 2014). However, recently, some studies indicate that the difference between them iwas
only result of the different duration and intensity of inflammation. Keloid could be defined as
pathological scar with severe inflammation, and HS defined as scar with weakly inflammation
(Berman et al., 2017). Thus, inflammation as an initial factor will trigger the subsequent immune
response cascade, which leads to scar formation. After cutaneous injury, inflammation responses first
occur at the site of injury. During the early phase, neutrophil infiltration is the main feature, and the
late stage is characterized by monocytes composed of macrophages and lymphocytes (Shimizu et al.,
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2006). These cells secrete a large number of inflammatory factors
such as interleukins, interferons and growth factors, among
which interleukins play a prominent role in the initiation of
inflammation and subsequent proliferation and remodeling
(Abdou et al., 2014). Interleukins act as a major inflammatory
factor, potentially regulating fibroblasts recruitment, proliferaton,
differentiation, apoptosis and production of ECM. We have
observed that the expression of interleukins in scar is different
from that of in normal skin (NS). By regulating of interleukin and
its related pathways, the phenotype of fibroblasts enhanced or
weakened, which suggested that interleukin may serve a
significant role in scar. Taken together, we summarize the
specific types and changes of interleukins in HS and keloid,
and generalize the possible role of regulating the expression
and/or secretion of a certain interleukin for abnormal scar
prevention.

IL-6

Interleukin-6 (IL-6) is a proinflammatory factor and a potent
immunomodulatory agent (Quong et al., 2017). IL-6 played an
important role in chemotaxis and inflammatory cell activation,
which was expressed immediately after cutaneous injury and
substained over a period of time (Murao et al., 2014). IL-6 could
trigger the transition from acute inflammation to chronic
inflammation by enhancing monocyte recruitment (Kaplanski
et al., 2003). A number of studies had shown that the single
nucleotide polymorphism of IL-6 gene affected serum levels.

IL-6-572 GG genotype was associated with increasing the risk
of keloid in Egyptian (Abdu Allah et al., 2019), Southeastern
Chinese (X. J. Zhu et al., 2017) and Japanese (Tosa et al., 2016).
Both IL-6 and IL-8 decreased significantly in early fetal fibroblasts
(Namazi et al., 2011), which may help to produce scarless healing.
IL-6 secretion was higher in HS and keloid, and the mRNA and
protein levels of IL-6R α and IL-6R β (gp130) and its downstream
targets LAK1, STAT3, RAF1 and ELK1 were up regulated
(Ghazizadeh et al., 2007).

Direct Effect of Targeting IL-6
IL-6 may be an effective target in treating HS and keloid. When
IL-6 peptide was added into human normal fibroblasts (NFs), the
expression and synthesis of collagen were revealed a dose-
dependent increase (Ghazizadeh et al., 2007). If monoclonal
anti-IL-6 or anti-IL6Ra antibody were added, the progress
would be prevented. Ray et al. (Ray et al., 2013) also
demonstrated that IL-6 increased the production of ECM and
cellular proliferation mediated by STAT3 pathway in HS.
Counter regulating the overexpression of IL-6 may be a key
trigger factor to inhibit the prolongation of inflammatory phase
in keloid wound healing (Euler et al., 2019).

Regulation of IL-6 Expression and/or
Secretion
In addition, modulating the IL-6 signaling pathway may also
affect the wound healing and scar formation (Figure 1).
Currently, several treatments for HS and keloid are known to
regulating the expression and/or secretion of IL-6 (Table 1). We
here summarized these treatments as follows.

Synthetic Drugs
Initial results with angiotensin receptor blocker (ARB) and
angiotensin converting enzyme inhibitor (ACEI) in the
treatment of keloid and HS were encouraging (Kilmister et al.,
2019). Renin angiotensin aldosterone system (RAS) components
which are expressed in various cells of skin and act independently
of plasma RAS, play an important role in wound healing and scar
formation. By acting on AT1 receptor (Mulrow. 1999),
angiotensin II promoted fibrosis, induced migration and
proliferation of keratinocytes and fibroblasts, and increased
collagen production through IL-6/TGF-β and AP-1/TGF-β
pathways (Hedayatyanfard et al., 2020). The activation of AT2
receptor inhibited the above-mentioned process by blocking the
expression of IL-6, TNF-α and TGF-β, and played an anti-
inflammatory role (Hedayatyanfard et al., 2020).
Triamcinolone acetonide (TA) has been routinely used as a
treatment for keloid. It was a corticosteroid hormone that
could reduce the expression of IL-6 and vascular endothelial
growth factor (VEGF) (Johnson et al., 2020). Botulinum toxin A
(BTA) is effective on keloid and HS (R. Hao et al., 2018). In the
keloid model of athymus mice, BTA reduced inflammatory
infiltration and collagen tissue, comparing with the gold
standard triamcinolone acetonide, and the former showed less
side effects (Fanous et al., 2019). Chen (L. Chen et al., 2019)
showed that BTA could reduce the proliferation and migration of

FIGURE 1 | Modulating interleukins or their related signal molecules in
scar formation.
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fibroblasts through JNK pathway activation, and inhibit the
protein expression levels of TGF-β, IL-6 and connective tissue
growth factor (CTGF). In contrast, in a culture with dermal
fibroblasts and microvascular endothelial cells, the above
phenomenon was not observed (Haubner et al., 2012).
Verapamil is also a controversial drug for scars. It was a
calcium channel blocker (W. Wang et al., 2016), which could
inhibit the growth of central keloid fibroblasts (KFs) , induce
apoptosis, reduce the production of IL-6 and VEGF and the
synthesis of ECM (Giugliano et al., 2003; Foubert et al., 2017).
This treatment was considered safe (Verhiel et al., 2015), but
there was still no consensus on the therapeutic value (Danielsen
et al., 2016; Abedini et al., 2018). Due to some methodological
defects, it needs larger samples and better models to verify.
Pirfenidone, as an FDA approved antifibrotic drug, regulated
wound inflammation by reducing the expression of inflammatory
factors such as IL-6, IL-2 and neutrophil infiltration in deep burn
model of mice, which reduced the formation of scar (Medina
et al., 2019).

Natural Extraction Medicine
In addition to conventional drugs, some ingredients from natural
plants also play a role in the treatment of HS and keloid.
Sulforaphane, an isothiocyanate extracted from cruciferous
vegetables (such as broccoli sprouts), down-regulated the
expression of IL-6 in KFs by inhibiting NF-κB, and also
inhibited STAT3 and smad3 signal transduction pathways
(Kawarazaki et al., 2017). Paclitaxel (PTX) was an effective
chemotherapeutic drug, which has been reported to have anti-
fibrosis effect (C. Wang et al., 2013). Its modified form (PTXL)
could inhibit the growth and invasion of keloid, and showed
better effect. At the same time, PTXL also reduced the production
of fibrosis cytokines including TNF-α, IL-6 and TGF-β by

inhibiting Akt/GSK3β signaling pathway, thus preventing the
fibrosis process of keloid (M. Wang M. et al., 2019). Emodin was
the main component of rhubarb, which had the same inhibitory
effect, but mainly targeted PI3K/Akt pathway (C. Liu, 2015).
Curcumin was a yellow organic compound purified from the
rhizome of curcuma longa, which had good anti-inflammatory
properties (Menon and sudheer, 2007). It inhibited the
proliferation, contraction and ECM production in primary
KFs (Phan et al., 2003). Fourthmore, it suppressed the
formation of HS by reducing the secretion of IL-1, IL-6 and
IL-8 (Jia et al., 2014), which the same as naringin (Shan et al.,
2017). IL-6 level was also influenced by other natural extracts
such as Ginseng (Pazyar et al., 2012), Ginsenoside Rg3 (Ma et al.,
2020), Gambogenic acid (GNA) (Jun et al., 2021) and Lapadan
(Matsui et al., 2011), which reduced the rates of hypertrophic scar
formation.

Stem Cells
Stem cells also have important implications by secreting a large
number of nutritional factors and anti-fibrosis factors for fibrosis
diseases. Studies have shown that umbilical cord mesenchymal
stem cells (UCMSCs) (Fong et al., 2014), adipose stem cells
(ASCs) (J. Liu et al., 2018), bone marrow stem cells (BMSCs)
(Fang et al., 2016), fetal dermal stem cells (FDSCs) (Jiao et al.,
2017) and their corresponding conditioned media (CM) have a
good inhibitory effect on scar fibroblasts.

After 5 days of co culture of ASCs with hypertrophic scar
fibrolasts (HSFs), fibrosis factors such as IL-6, IL-8, FN, and TGF-
β1 were significantly decreased, while the protective factors
decorin (DCN) and the ratio of matrix metalloprotinase-1
(MMP-1)/tissue inhibitor of metalloproteinase-1 (TIMP-1)
were significantly increased (Deng et al., 2018). Moreover,
ASCs reversed the occurrence of fibrosis and inflammation

TABLE 1 | Treatments regulating IL-6 in HS and keloid.

Treatment Disease Pathway Effect References

ARB/ACEI HS/keloid IL-6/TGF-β and AP-1/TGF-β IL-6,TNF-α and TGF-β↓ Hedayatyanfard et al. (2020)
TA HS/keloid IL-6 and VEGF↓ Johnson et al. (2020)
BTA HS/keloid JNK TGF-β, IL-6, CTGF and side effects↓ L. Chen et al. (2019)
Verapamil HS/keloid IL-6 and VEGF↓ Foubert et al. (2017), Giugliano et al. (2003)
Pirfenidone HS IL-6, IL-2 and neutrophil infiltration↓ Medina et al. (2019)
Sulforaphane keloid STAT3/Smad3 IL-6↓ Kawarazaki et al. (2017)
PTXL keloid Akt/GSK3β TNF-α, IL-6 and TGF-β↓ M. Wang M. et al. (2019)
Emodin HS PI3K/Akt TNF-α, IL-6 and MCP-1↓ C. Liu (2015)
Curcumin HS/keloid IL-1, IL-6 and IL-8↓ Jia et al. (2014)
Naringin HS TNF-α, IL-1β, IL-6 and TGF-β1↓ Shan et al. (2017)
Ginseng HS NF-κB, TGF-β1, IL-6↓ Pazyar et al. (2012)
Ginsenoside Rg3 HS NF-κB/IκB IL-1β, IL-6, and TNF-α↓ Ma et al. (2020)
GNA HS TGF-β1, CTGF, IL-1β, IL-6, TNF-α↓ IL-10↑ Jun et al. (2021)
Lapadan HS IL-6 and PAI-1↓ Matsui et al. (2011)
Stem cells HS/keloid Inflammation and fibrosis↓ but

UCMSCs are controversial (IL-6↓/↑)
Fong et al. (2014), J. Liu et al. (2018),
Fang et al. (2016), Jiao et al.
(2017), Arno et al. (2014a)

HBOT keloid Inflammatory factor↓ (IL-6↓/-) Song et al. (2018), Y. Hao et al. (2020)
IFN-γ keloid JAK/STAT3 and Jak1/STAT1 IL-6 and col1 synthesis↓ Euler et al. (2019)
TSG-6 HS/keloid IL-1β, IL-6 and TNF–α↓ H. Wang H. et al. (2015)
SVF-gel/cells HS IL-6 and MCP-1↓ J. Wang J. et al. (2019)
PLM HS IL-6 and TNF-α level in both serum and tissuse↓ Demircan et al. (2021)
UVA keloid p38/NF-κB1 IL-6 and IL-8↑ Niu et al. (2020)
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induced by TGF-β (Deng et al., 2018). ASC-derived CM inhibited
the secretion of IL-6, IL-8, α-SMA and proliferation and
migration of KFs (J. Liu et al., 2018). In the red Duroc (RD)
pig porcine model, delivery of autologous adipose derived
regenerated cells (ADRC) immediately resulted in an up-
regulation of IL-6 at 2 weeks after injury (wound healing
stage) and down-regulation at 2 months after treatment (early
scar formation stage) (Foubert et al., 2017). The early
inflammatory reaction was beneficial to the wound healing,
and the later inflammatory reaction was inhibited which
reduced the probability of HS formation. It showed better
wound healing, less pigmentation and stiffness, more normal
collagen tissue and lower vascular density (Foubert et al., 2017). A
similar view was also confirmed in UCMSCs (Bonnardeaux and
McCuaig, 2020). However, reports on UCMSCs are not
consistent. Another study found that the supernatant from
UCMSCs promoted fibrosis phenotype as a whole, and
increased the production of inflammatory factors such as IL-6,
IL-8 and TGF-β (Arno et al., 2014a). The inconsistency may be
due to the varied sources of UCMSCs. Stem cells from different
locations have different secretory groups, resulting in differential
expression.

Hyperbaric Oxygen
High fibroblasts proliferation in keloids led to hypoxia condition
(Jusman et al., 2019), which induced HIF-1α production (Z.
Zhang et al., 2014). HIF-1α expression in fibroblasts
stimulated TLR/MyD88/NF-κB signaling pathway and
promoted the expression of some inflammatory factors such as
IL-6 (Y. Hao et al., 2020). According to the mechanism of
hypoxia-induced inflammation, several clinical experiments
confirmed that adjuvant hyperbaric oxygen treatment (HBOT)
reduced the inflammatory reaction and recurrence rate by
regulating the oxygen level. In Song’s study (Song et al., 2018),
240 patients with keloid were recruited and randomly divided
into two groups, Group O receiving HBOT after surgical
resection and radiotherapy and Group K as control. After
HBOT, both the infiltration of inflammatory cells and the
expression of inflammatory factors such as IL-6, HIF-1 α,
TNF-α, NF-κ B and VEGF obviously decreased. However, in
another experiment (Y. Hao et al., 2020), no significant difference
was observed in the expression of IL-6, IL-8, or IL-10. In this
experiment, there were only 10 cases in each group, and HBOT
was used before operation. Different treatment combinations
may have different effects on the secretion of cytokines.

Other Methods
The production of IFN-γ in the serum of normal patients was
higher than keloid persons (Mccauley et al., 1992), which may
cause keloid formation by increasing IL-6 secretion. IFN-γ
regulated the secretion of IL-6 (Xue et al., 2000) by means of
stimulating MHCII and CD40 expression (Yellin et al., 1995) and
associate with JAK/STAT pathway (Euler et al., 2019). The
combined use of IFN-γ/TA is better than any single use
(Mccauley et al., 1992). TSG-6 exhibited anti-inflammatory
activity (R. H. Lee et al., 2009). When TSG-6 was
intradermally injection into ear wounds, it resulted in lower

secretion levels of IL-1 β, IL-6 and TNF–α (H. Wang et al.,
2015). Moreover, the expression of TSG-6 protein in keloid was
decreased (Tan et al., 2011). It is likely that exogenous TSG-6 may
significantly diminish the development of keloid. Injection of
Stromal vascular fraction (SVF)-gel or SVF cells reduced the
macrophages infiltration in dermal layer, and decreased mRNA
expression of IL-6 and MCP-1, so that the level of myofibroblasts
and collagen deposition were reduced (J. Wang et al., 2019). SVF
gel also restored subcutaneous adipose tissue and made HS
appear soft and unobvious (J. Wang J. et al., 2019). Silver
containing hydraulic fiber (HFAg) and polylactic acid
membrane (PLM) are two different burn dressings. Compared
with the HFAg, IL-6 and TNF-α levels decreased in early days in
both serum and tissue samples to reach normal ranges by PLM,
which would prevent the development of HS (Demircan et al.,
2021). Reports on UVA are contriversial for keloid. In general,
UVA had a good effect on KFs, but it activated p38/NF-κB
pathway, which increased the release of IL-6 and IL-8 and the
overall inflammatory response (Niu et al., 2020). Therefore, the
simple cellular phenotype can not fully explain the controversy,
and in vivo experiments are needed to verify the effect of UVA.

IL-10

The expression of IL-10 was decreased in keloid (J. H. Shi et al.,
2013; Z. Chen et al., 2018) and HS (Yang et al., 2018). Intrinsic
lack of IL-10 may result in continued amplification of the
inflammatory cytokine cascade, continued stimulation of
fibroblasts, and abnormal collagen deposition (Liechty et al.,
2000). Peranteau et al. (Peranteau et al., 2008) showed that
overexpression of IL-10 decreased inflammation and created
an environment for wound sites in the adult to more closely
resemble the profile seen in the embryo. IL-10 inhibited the
secretion of IL-6 and IL-8, which induced inflammatory cascade
reaction, promoted fibroblasts proliferation and collagen
synthesis (Mccauley et al., 1992; Liechty et al., 2000M. Zhang
et al., 2016). According to these results, the use of recombinant
human (RH) IL-10 may be a potential treatment for keloid. And
better results may be achieved through some new assembly
methods and means.

Direct Effect of Targeting IL-10
IL-10 itself could directly inhibit the growth of KFs, but it had no
effect on normal scar fibroblasts (NSFs), which was the same as
Ji’s report (J. Shi et al., 2014), but this was slightly different from
that reported by Moroguchi (Moroguchi et al., 2004), who
observed that IL-10 inhibited the proliferation of fibroblasts
induced by TNF-α (Shi et al., 2019). This may be caused by
different cell lines and concentrations of IL-10. Shi et al. (J. H. Shi
et al., 2013) found that the injection of IL-10 improved the
morphology of scar, inhibited the contracture of wound,
narrowed the edge of wound, and relieved the deposition of
collagen (col1 and col3) in regenerated tissue. Lentivirus-
mediated overexpression of IL-10 reduced the inflammatory
response to injury after 3°days, showing a favorable
environment for wound healing (Peranteau et al., 2008). On
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the contrary, if the IL-10 gene was knocked out, the injury sites
would present an increased inflammatory response and excessive
collagen deposition (da Silva et al., 2017). IL-10 RB, a function-
blocking antibody against the IL-10 receptor, blocked the IL-10-
mediated mitigation of fibrosis in HSFs (J. Shi et al., 2014). And it
has also been verified in clinical human experiments. The
experiment of Kieran et al. (Kieran et al., 2013) well illustrated
that the appearance and histology of scar treated with exogenous
RH IL-10 were improved. Denervated wounds could lead to
abnormal wound healing and caused hypertrophic scars. In
addition, when IL-10 was added to the injury model of CD1
mice, the patterns of reinnervation and revascularization were
improved and the collagen tissue of the dermis was closer to the
normal skin healing than the control (Henderson et al., 2011).

Regulation of IL-10 Related Pathways
After treatment with IL-10, the expression of col1 and col3 in KFs
was significantly reduced, and the levels of TGF-β, smad2/3 and
Smad4 were down-regulated, while the level of smad7 was up-
regulated, suggesting that IL-10 inhibited the formation of keloid by
inhibiting the classic TGF-β/Smad signal pathway of fibrosis (Shi
et al., 2019). Lipopolysaccharide (LPS) could induce NFs into HFs
and participate in the formation of HS by TLR4/NF-κB pathway
(J. Shi et al., 2021), and promote the production of inflammatory
molecules (J. Wang et al., 2011). The addition of IL-10 inhibited the
inflammation and fibroblast filled collagen lattice (FPCL)
contracture induced by LPS, which was associated with regulating
the IL-10R/STAT3 axis of TLR4/NF-κ B pathway in skin fibroblasts
(J. Shi et al., 2021). In the rabbit ear hypertrophic scarmodel, BMSCs
modified with IL-10 inhibited the expression of TNF-α, IL-6 and IL-
1 β mRNA through JNK/NF-κ B pathway, which significantly
reduced the wound healing time, scar area and height (Xie et al.,
2020). IL-10 protected HSFs from fibrosis by activating Akt and
STAT3 signal transduction pathways to reduce collagen production
(J. Shi et al., 2014).Moreover, skin autophagic capability is associated
with HS. IL-10 also inhibited starvation-induced autophagy, which
was mediated by the cross talk IL10-IL10R-STAT3 and IL10-AKT-
mTOR pathways (J. Shi et al., 2016) (Figure 1).

A New Method of Targeting IL-10
In order to improve the function of IL-10 and reduce the side
effects, new methods have been developed which enhance the
function of IL-10 through some corresponding combination and
packaging means. Park et al. (Park et al., 2019) developed a new
delivery platform coacervates (COA), which had features of high
biocompatibility, easy preparation and better protection of
growth factors including TGF- β3 and IL-10 (Lichtman et al.,
2016). Both TGF-β3 and IL-10 had anti-fibrosis effect in
physiological wound healing process. Shi et al. (J. Shi et al.,
2015) designed a novel hybrid protein RHIL10-RGD, which
was fused and expressed in E. coli BL21 (DE3). Treatment of
HSFs with RH IL10 RGD was similar to that of RH IL10 in anti-
fibrosis, but the former could specifically reduce angiogenesis. In
addition, the Orf viru encoded vascular endothelial growth factor
(VEGF)-E and interleukin-10 (ovil-10), which synergistically
enhanced skin repair, and acted in a complimentary fashion to
improve scar quality (Wise et al., 2020).

IL-1

IL-1, also known as lymphocyte stimulating factor, has two forms:
IL-1α and IL-1β (Gabay et al., 2010), which are mainly produced
by monocyte macrophages. IL-1 played an important role in the
early stage of scar formation (Jfri et al., 2019). Although impaired
production of keratinocyte-derived growth factors, such as IL-1α,
lead to a decrease in the catabolism of the dermal (Niessen et al.,
2001), the role in scar formation of IL-1α remains controversial.
However, IL-1β occupied a more important position in keloid
(Vinaik et al., 2020; Le et al., 2021) and HS (Krotzsch-Gomez,
1998). IL-1 β was overexpressed in HS at post transcriptional
level, and it participated in ECM remodeling with TNF-α to
maintain fibrosis phenotype (Salgado et al., 2012). The level of
IL-1β predicted the formation of HS (Kwan et al., 2016).

Exogenous IL-1 β Promotes Scar Formation
IL-1 β enhanced the signal of fibrosis in the late stage of wound
healing, such as increased the expression of MCP-1, while MCP-1
and IL-6 synergistically promoted inflammation (Kawarazaki
et al., 2017). The addition of IL-1β to NFs and HSFs could
lead to oxidative stress and regulate cell apoptosis, such as the
increased of heat shock transcription factor-1,IL-6 and HSP-70
and the decreased of NF-κB, GADD45-α, p53 and p53 binding
proteins. The oxidative stress and heat stress proteins induced by
IL-1 β are important mediators of abnormal scar formation after
severe burns (Barrow and Dasu, 2005) IL-1β also decreased the
endogenous Prostaglandin E2(PEG2)secretion in KFs, which
inhibited cell migration and contraction, and down regulated
collagen synthesis (Sandulache et al., 2007). These factors may
jointly promote scar formation.

Blocking IL-1 β Inhibits Scar Formation
The expression and activity of chymase in keloid tissuewere increased,
which promoted the formation of keloid through IL-1β, col1 and
TGF-β1 (R.Wang R. et al., 2015). Blocking chymase pathway may be
an effectivemethod to improve keloid. Inflammatory body is themain
regulator of inflammation and metabolic response. The activation of
NLRP3 facilitated cleaved caspase-1 processing and promoting the
release of IL-1β and IL-18, and increased the inflammatory response
in keloid (Vinaik et al., 2020). Moreover, the use of NLRP3 inhibitor
MCC950 reduced the expression of IL-1β (Ogawa, 2017; Perera et al.,
2018), and inhibiting the activation of IL-1 β in inflammatory body
may be a method to inhibit keloid. The expression level of IL- 1 β in
epidermis was directly related to the degree of skin fibrosis. In the
rabbit ear hypertrophic scar model, Corrie l et al. (Gallant-Behm and
Mustoe, 2010) confirmed that occlusionwith silicone gel increased the
hydration state of epidermis in a dose-dependent manner, and
inhibited fibrosis and alleviated HS (Sandulache et al., 2007) by
significantly reducing the epidermal expression of profibrotic
cytokine IL-1β. Tranilast inhibited fibroblasts proliferation through
lower the production of IL-1β by macrophages and other
inflammatory cells, thus lessen keloid (Suzawa et al., 1992).
Beyond that,Collagen-polyvinylpyrrolidone also changed the
inflammatory process of HS by reducing the expression of
proinflammatory cytokines IL-1 β and TNF-α (Krotzsch-Gomez,
1998).
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Interleukin-1 receptor antagonist (IL-1RA) is a member of the
IL-1 gene family, which binds to IL-1R and specific blocks the
activity of IL-1 (Gabay et al., 2010). In the New Zealand rabbit
model, administration of IL-1RA effectively reduced skin fibrosis,
and the expression of downstream signal C-FOS was blocked
(Gallant-Behm et al., 2011). In addition, the expression of IL-1RA
was increased in the treatment of keloid by HBOT in the clinical
experiment of Hao (Y. Hao et al., 2020), which reduced the level
of inflammation and played a better curative effect. Therefore,
suppressing the expression of IL-1 β attenuates scar formation.

OTHER INTERLEUKINS

IL-4/IL-13
Therewas evidence that the expression of interleukin-4 (IL-4) (Tredget
et al., 2006; Yang et al., 2018), interleukin-13 (IL-13) (Li et al., 2015)
and their receptors (Diaz et al., 2020) were increased in pathological
scars. IL-13 and IL-4 up-regulated the expression of collagen related
genes, inhibited the degradation of collagen induced by MMP-1 and
MMP-3, and promoted collagen deposition (Oriente et al., 2000).
Compared with wild-type mice, the scarring formation in T-cell-
deficient mice was reduced by nearly nine fold, which may be closely
related to the decreased expression of T-cell-dependent Th2 cytokines
(IL-4 and IL-13) and chemokines (MCP-1) (Wong et al., 2011).

Maeda et al. demonstrated that IL-4 and IL-13 induced the
expression and secretion of periostin, which in turn to induce
RhoA/ROCK pathway to mediate the TGF-β1 expression (Maeda
et al., 2019). TGF-β1was recognized as one of the important
factors in keloid formation (Berman et al., 2017), which in turn
acted as periostin, forming a positive feedback loop (Maeda et al.,
2019). Dupilumab is a completely humanized monoclonal
antibody against IL-4Rα. Unexpectedly, it had inhibitory effect
on keloid associated with atopic dermatitis. Based on this, the
same results were obtained in the treatment of three cases of
chronic keloid without atopic dermatitis (Diaz et al., 2020).

IL-17
Interleukin-17 (IL-17) is an inflammatory factor produced by
CD4+T cells (Chang, 2019), which can promote the activation of
T cells and stimulate the production of IL-6, IL-8, and so on, leading
the inflammation. IL-17 is considered as a marker of Th17 cell
subsets (Miossec and Kolls, 2012). The infiltration of Th17 cells in
keloid was increased (Le et al., 2021), and IL-17 was up-regulated in
keloid and HS (J. Zhang et al., 2018). IL-17 promoted the expression
of α-SMA and Col1. Compared with normal skin dervied precursor
cells, keloid derived precursor cells (KPCS) expressed higher IL-17R.
When altered keloid niche (mainly inflammation), which was
mediated by IL-6/IL-17 axis through autocrine or paracrine, and
showed uncontrolled self-renewal and increased proliferation (Q.
Zhang et al., 2009). Besides, IL-17 promoted the expression of
stromal cell-derived factor 1 (SDF-1) and increased the
recruitment of Th17 cells from the circulatory system. This
positive feedback loop may lead to excessive infiltration of T cells
and chronic inflammation of keloid. Sta-21 reduced the expression
of SDF-1 in KFs by inhibiting STAT3 pathway and break the
feedback loop (Le et al., 2021). Moreover, IL-17 stimulated mice

showed increased fibrosis, which induced macrophage specific
subtype infiltration through MCP-dependent mechanism,
resulting in delayed wound healing and increased inflammation
(J. Zhang et al., 2018).

IL-18
Interleukin-18 (IL-18) is a member of the IL-1 family (Yasuda
et al., 2019). It has the opposite effect to scar formation in keloid
and HS. IL-18 in HS tissue and fibroblasts decreased. When the
RH IL-18 was injected into the HS model of rabbit ears, and the
scar was improved. It was proved that IL-18 inhibited the
proliferation and promoted the apoptosis of HSFs by
enhancing the expression of FasL (Le et al., 2021). However,
not only the expression of IL-18 in keloid tissue, but also the
receptors of IL-18R α and IL-18R β was increased (Felipo et al.,
2012; M. Zhang et al., 2016; Vinaik et al., 2020). When KFs were
exposed to IL-18, the synthesis of collagen and ECM components
were increased, and the secretion of fibrinolytic cytokines (such as
IL-6 and IL-8) was up-regulated (Do et al., 2012). Moreover,
when keratinocytes and keloid fibroblasts (KK/KF) were
cocultured, IL-18/IL-18BP was seriously unbalanced, which
promoted the formation of keloid (Do et al., 2012). It suggests
that IL-18 system plays an important role in the pathogenesis of
keloid through epithelial mesenchymal interaction.

IL-37
Interleukin-37 (IL-37) is a relatively new member of the IL-1
family and has been described as an anti-inflammatory mediator
in various inflammatory diseases (Cavalli and Dinarello, 2018). In
a cross-sectional study, it was found that the level of IL-37 was
negatively correlated with the severity of keloid, but had no
significant correlation with age, gender, duration of lesions or
family history, indicating that the decrease of plasma IL-37 level
could be used as an indicator of keloid severity (Khattab and
Samir, 2020). Zhao et al. (Zhao et al., 2020) confirmed the above
viewpoint, and observed IL-36 expression in keloid was also
decreased. Therefore, the recombinant IL-36 and IL-37 have
potential as a novel therapeutic approach in pathological scar,
which is warranted in the future.

IL-22
Interleukin-22 (IL-22) is a member of the IL-10 family (Dudakov
et al., 2015). In fibroblasts, IL-22 signal was activated and then
guided the expression of extracellular matrix genes and
differentiation of myofibroblasts. Significantly increased
expression of TGF-β, IL-22 and Arg-1 in keloid was found as
compared to normal scar tissue (da Cunha Colombo Tiveron
et al., 2018).

IL-24
Interleukin-24 (IL-24) is also a member of the IL-10 family. The
mRNA level of IL-24 in KFs was significantly lower than that in
normal skin. The formation of keloid may be correlated with the
down-regulation of IL-24. Adenovirus-mediated IL-24 selectively
inhibited the proliferation and induce apoptosis of KFs,
suggesting that IL-24 has great potential in therapy of keloid
(Liang et al., 2011).
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SUMMARY

HS and keloid are both clinical challenge to be solved.
The mechanism behind them has not been completely
elucidated. Accumulating studies have demonstrated that HS
and keloid are associated with inflammation, and thus
suppression of inflammation may inhibit scar formation.
Accordingly, we summarized the interleukin expression in scar
and explored the influences of drugs and methods targeting
interleukins.

In HS and keloid, there is a relatively large number of studies
on IL-6, IL-10 and IL-1β. As proinflammatory factors, IL-6 and
IL-1β play an important role in promoting scar formation. IL-
1β have been shown to stimulate IL-6 production (Ghazizadeh
et al., 2007), and they acted additively or synergistically to
promote scar formation. IL-6 and IL-17 formed a positive
feedback regulation (Q. Zhang et al., 2009), together with
classic fibrosis factor TGF-β in the propagation of fibrosis. On
the contrary, as an anti-inflammation factor, IL-10 protected
the wound healing and made it tend to scarless healing (Seifert
and Mrowietz, 2009). At the same time, IL-10 inhibited the pro-
inflammatory effect of IL-6 and IL-8 (Liechty et al., 2000) and
produced antagonistic effect. Therefore, these interleukin
molecules are not isolated, they crosstalk with each other to
form a network regulation. During the normal wound healing
and scar formation, these inflammation factors exist in
equilibrium. Once the balance is broken caused by some
stimulating factors, such as infection or trauma, pathological
scar is generated. Currently, mote researches demonstrate
the upstream or downstream signal molecules of interleukin
family as indirect regulators, however it may be more intuitive
that directly target certain interleukins. And this regulation has a
certain intervention effect on multiple interleukin molecules
(Figure 2).

Although some phenotypic and pathway effects have been
observed, the crosstalk between interleukins is not fully

understood. Some molecules may have two sides and differ
strongly functions in varied pathways, which results in
potentially contradictory outcomes. For example, in the
treatment of keloid with HBOT, song (Song et al., 2018)
observed that it could reduce the formation of scar by
reducing inflammatory factors such as IL-6 and IL-8, while
another experiment (Y. Hao et al., 2020) did not observe the
same changes, but the alterations in expression of IL-12p40 and
IL-RA were observed. Also, the conditioned medium from
UCMCs displayed opposite effects on scar fibroblasts (Arno
et al., 2014a; Bonnardeaux and McCuaig, 2020). UVA has a
good effect in the overall treatment of keloid, but IL-6 and IL-8
were activated (Niu et al., 2020). The role of IL-18 in HS and
keloid was conflicting, which inhibited the former and promoted
the latter (Do et al., 2012; Le et al., 2021). These contradictions are
worthy of further investigations in the future, and require a larger
sample size and better models to validate.

Recently, researchers have also found other interleukins in
scar, such as IL-22, which was activated in KFs, involved in EMC
synthesis and myofibroblast transformation (da Cunha Colombo
Tiveron et al., 2018). Additionally, the serum level of IL-37
was negatively correlated with the severity of keloid lesions,
and IL-36, which had not been previously concerned in scars,
was also mentioned (Zhao et al., 2020). It is suggested that other
interleukins involved in the formation of scar may exist. And
there is no intervention on these interleukins. Exogenous
application of these molecules may be one of the future
directions in the treatment of scar, but the concentration and
safety should be paid attention to. In addition, with the
development of other technologies such as tissue engineering,
we may find better drug combinations and packaging methods,
which will drive the development and innovation of interleukin-
related interventions.

In a word, interleukins play a significant role in HS and keloid,
and targeting some interleukins and suppressing inflammation
are important strategies in the treatment of pathological scar.

FIGURE 2 | The relationship of interleukins and their functions in scar formation.
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