

Clot Composition Analysis as a Diagnostic Tool to Gain Insight into Ischemic Stroke Etiology: A Systematic Review

Alicia Aliena-Valero,^{a,*} Júlia Baixauli-Martín,^{b,*} Germán Torregrosa,^a José I. Tembl,^c Juan B. Salom^{a,b}

^aJoint Cerebrovascular Research Unit, La Fe Health Research Institute, University of Valencia, Valencia, Spain ^bDepartment of Physiology, University of Valencia, Valencia, Spain

°Stroke Unit, Neurology Service, La Fe University and Polytechnic Hospital, Valencia, Spain

Mechanical thrombectomy renders the occluding clot available for analysis. Insights into thrombus composition could help establish the stroke cause. We aimed to investigate the value of clot composition analysis as a complementary diagnostic tool in determining the etiology of large vessel occlusion (LVO) ischemic strokes (International Prospective Register of Systematic Reviews [PROSPERO] registration # CRD42020199436). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we ran searches on Medline (using the PubMed interface) and Web of Science for studies reporting analyses of thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy (January 1, 2006 to September 21, 2020). The PubMed search was updated weekly up to February 22, 2021. Reference lists of included studies and relevant reviews were hand-searched. From 1.714 identified studies, 134 eligible studies (97 cohort studies, 31 case reports, and six case series) were included in the qualitative synthesis. Physical, histopathological, biological, and microbiological analyses provided information about the gross appearance, mechanical properties, structure, and composition of the thrombi. There were non-unanimous associations of thrombus size, structure, and composition (mainly proportions of fibrin and blood formed elements) with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) etiology and underlying pathologies, and similarities between cryptogenic thrombi and those of known TOAST etiology. Individual thrombus analysis contributed to the diagnosis, mainly in atypical cases. Although cohort studies report an abundance of quantitative rates of main thrombus components, a definite clot signature for accurate diagnosis of stroke etiology is still lacking. Nevertheless, the gualitative examination of the embolus remains an invaluable tool for diagnosing individual cases, particularly regarding atypical stroke causes.

Keywords Ischemic stroke; Thrombectomy; Cerebral thrombus; Etiology; Systematic review

Introduction

Mechanical thrombectomy has not only become the standard of care in the management of most large vessel occlusion (LVO) strokes, but it also renders the occluding clot available for lab bench analysis.¹ Insights into thrombus composition and properties could help determine its relationships with the clot signs on imaging, stroke cause, resistance to thrombectomy, proce-

Correspondence: Juan B. Salom Joint Cerebrovascular Research Unit, La Fe Health Research Institute, University of Valencia, Torre A, Lab 5.05, Ave., Fernando Abril Martorell 106, 46026 Valencia, Spain Tel: +34-961246633 Fax: +34-961246620 E-mail: salom_jba@gva.es https://orcid.org/0000-0002-4162-6101

Received: June 28, 2021 Revised: August 24, 2021 Accepted: September 2, 2021

*These authors contributed equally to the manuscript as first author.

Copyright © 2021 Korean Stroke Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

dural complications, and outcome measures.²

A previous systematic review of studies published between January 2005 and December 2015 on imaging and histologic characteristics of thrombi in acute ischemic stroke (AIS) concluded that the hyperdense artery sign was associated with red blood cell (RBC)-rich thrombi and improved recanalization rates. However, there was no association between the histopathological characteristics of thrombi, stroke etiology, and angiographic outcomes.³ Another recent scoping systematic review focused on the impact of thrombus composition on the efficacy of mechanical thrombectomy and thrombolysis.⁴ However, assessing the value of clot analysis in the diagnosis of stroke etiology and thus guiding secondary prevention strategies seems more challenging.

This systematic review aimed to evaluate the value of clot composition analysis as a complementary diagnostic tool in determining the LVO ischemic stroke etiology. Specifically, we addressed the following research questions: (1) What types of physical, histological, or other biological analyses have been carried out on thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy?; (2) What kind of information about the structure, and molecular and cellular composition of stroke thrombi has resulted from laboratory analyses?; (3) Could laboratory analyses of clot structure and composition be used as complementary diagnostic tools to determine stroke etiology, and thus reduce the proportion of cryptogenic strokes?; (4) Could specific findings in clot composition be used as ancillary information to diagnose atypical stroke etiologies due to underlying pathologies?

Methods

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Systematic review

This systematic review was carried out according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.⁵ The protocol was registered in the CRD-NIHR International Prospective Register of Systematic Reviews (PROSPERO) with registration number CRD42020199436.⁶

We searched the published literature reporting the analysis of thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy and performed a qualitative assessment of the available evidence.

Literature search strategy

We carried out electronic searches on Medline (using the

PubMed interface) and Web of Science from January 1, 2006, up to and including September 21, 2020. The search syntax was (stroke AND (thrombus OR thrombi OR clot)) AND (thrombectomy OR endovascular). The search fields were [Title/Abstract] in Medline (PubMed) and [Topic] in Web of Science. There were no language restrictions. The PubMed search was updated weekly through My NCBI up to February 22, 2021. References were added to a Mendeley Reference Manager library dedicated to this review's topic, checked for duplicates, and completed with Mendeley's feedback-delivering personalized suggestions for related articles. Reference lists of included studies and relevant reviews were hand-searched. The electronic database search was supplemented by searching for trial protocols through ClinicalTrials.gov Advanced Search syntax: condition or disease (ischemic stroke) and other terms ((thrombus OR thrombi OR clot) AND (thrombectomy OR composition)). The search was not extended to unpublished studies or other sources of grey literature.

Study selection: eligibility criteria and screening process

The current review considered observational cohort studies, case series and case report studies reporting any kind of physical, histological, or other biological analyses carried out on thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy. We included studies published as full-length original research articles in any language, provided that the English abstract was available, and abstracts of conference proceedings in English language. In cases of studies with duplicate or overlapping patient populations, only the publication with the most complete dataset was included. Protocol articles, review articles and abstracts later published in full were also excluded.

Titles and abstracts yielded by the search were independently screened against the inclusion criteria by two reviewers. Full reports were obtained for all titles that appeared to meet the inclusion criteria or where there was any uncertainty. Reviewer pairs then screened the full-text reports of potentially eligible studies and decided whether these met the inclusion criteria. Disagreements were resolved through discussion and consensus involving a third reviewer.

Data extraction and synthesis

The following information was collected from the eligible studies and extracted to tables independently by two reviewers: general information (first author name, year of publication, source, and type of study), type(s) of physical, histological, or other biological analyses carried out on thrombi, sample size(s), qualitative and quantitative features about thrombus composition, and diagnostic information regarding typical LVO ischemic stroke Trial of Org 10172 in Acute Stroke Treatment (TOAST) etiologies or atypical etiologies with underlying pathologies.

Heterogeneity in study design, outcome measuring, and reporting precluded a meta-analysis of the association between thrombus composition and typical or atypical stroke etiology. Instead, a systematic narrative synthesis is provided with information presented in the text and tables to summarize and explain the characteristics and findings of the included studies.

Results

Search results: study selection and characterization

A detailed study selection flow chart is shown in Figure 1. Briefly, a total of 2,665 records were identified electronically in the Web of Science and Medline (through PubMed) databases up to and including September 21, 2020. After removing duplicate and irrelevant records, and adding relevant records identified through an updated search on PubMed (up to and including February 22, 2021) and other sources, 152 full-text articles and congress abstracts were assessed for eligibility. Subsequent reasoned exclusions rendered 134 studies which were included in the qualitative synthesis (Supplementary Table 1).

A summary of the study characteristics is shown in Table 1.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of the literature search results and selection of studies at each stage.

Most of them (72.39%) were observational cohort studies with a wide range of cohort sizes, varying from four to 1,022 patients with thrombus samples subjected to analysis (median, 65 [interquartile range, IQR, 37 to 105]). Thirty-one (23.13%) case reports and six (4.48%) case series were also included. In 108 out of the 134 studies, the retrieved thrombi were subjected to one or more types of histopathological examinations. Physical, biological, and/or microbiological analyses were carried out in 62 studies. A relationship between thrombus structure/composition and TOAST or atypical etiologies was reported in 54.48% of the studies. In 46.27% of the studies, the stroke etiology was not taken into consideration, or non-conclusive results were obtained.

The publication chronology of the studies is shown in Figure 2. Although Marder's pioneering study was published 15 years ago,⁷ 75.37% of the studies have been published in the last 5 complete years (2016 to 2020). Of note, 80% of the studies assessing thrombus composition by means of biological analyses using biochemical or molecular biology techniques have been published in the last 3 complete years (2018 to 2020). Since 11 studies have been published in 2021 up to and including February 22, around 75 studies are estimated to be published in the present year.

The search for clinical trial protocols identified five ongoing studies in which thrombi and blood samples are being collected for histopathological and/or other biological analyses.⁸⁻¹² Concurrently, active multi-institutional registries like RESTORE

Table 1. Study characteristics summary

Variable	No. (%)
All study types	134 (100)
Cohort	97 (72.39)
Case report (1–2 patients)	31 (23.13)
Case series (3-6 patients)	6 (4.48)
Histopathology	108 (80.60)
Conventional	101 (75.37)
Immunohistochemistry	45 (33.58)
Electron microscopy	6 (4.48)
Other analyses	62 (46.27)
Physical (macroscopic, mechanical, etc.)	33 (24.63)
Biological (biochemical, biomolecular, etc.)	15 (11.19)
Microbiological	20 (14.93)
Diagnostic	73 (54.48)
TOAST etiology	32 (23.88)
Atypical etiology/underlying pathology	41 (30.30)
None	62 (46.27)

TOAST, Trial of Org 10172 in Acute Stroke Treatment.

Figure 2. Chronology of study publication. Number of yearly-published studies from January 1, 2006, to February 22, 2021. Faded colors indicate incomplete year 2021.

(National University of Ireland) and Stroke Thromboembolism Registry of Imaging and Pathology, Mayo Clinic (STRIP) are compiling clinical, procedural, imaging, and histopathological data from patients with AIS.

Types of physical, histological, and other biological analyses

Procedures for thrombus retrieval and subsequent analysis have been reviewed.^{1,13} Briefly, after retracting the thrombectomy device, the retrieved clot material is gently removed from the device and transferred into saline solution. If clot per-pass analysis is desired, clot material from each pass can be processed separately. The macroscopic appearance and other physical properties of the retrieved thrombus can be freshly examined; otherwise, the clot can be flash-frozen for storage and later biological analyses. For histological analysis, the specimens are fixed, paraffin-embedded, sectioned, and stained depending on the component of interest. Both manual quantifications and color-based segmentation analysis of thrombus components are used.

Supplementary Table 1 summarizes whether physical, histological, or biological analyses were carried out in each of the 134 included studies.^{7,14-146}

In 33 studies, thrombi were subjected to some kind of physical analysis. The gross appearance of the retrieved thrombus was reported in 29 studies. In case reports (20 studies) and case series (two studies), the macroscopic aspect of the thrombus was shown mostly through photographs. Mechanical behavior of the thrombi was analyzed in two studies using custom-made platforms and marketed devices, respectively. In one study the thrombi were scanned using high spatial-resolution three-dimensional (3D) T1-weighted magnetic resonance imaging (MRI) to reveal morphological and other physical characteristics. Finally, advanced synchrotron-based imaging techniques were used in one study to map thrombus composition.

Different types of histopathological examinations, including conventional histology, immunohistochemistry, and electron microscopy, were carried out in 108 studies. The most frequently used conventional stains were hematoxylin and eosin (H&E, 86 studies), Martius Scarlet Blue (MSB, 18 studies), Elastica van Gieson (14 studies), Prussian blue (eight studies), Masson's trichrome (five studies), and Von Kossa (four studies). Other seldom-used stains were periodic-acid Schiff, Carstairs' staining, Picro-Mallory, Alcian blue, Luna, Mallory's phosphotungstic acid-hematoxylin, Ladewig trichrome, naphthol AS-D chloroacetate, and Feulgen's reaction. Immunohistochemistry was carried out in 45 studies with specific antibodies against cellular and biomolecular thrombus components. Finally, the thrombi composition and organization were analyzed at the ultrastructural level through electron microscopy in six studies.

Regarding biological analyses, thrombus composition was assessed through different biochemical, biomolecular, and cellular techniques, such as enzymatic assay, enzyme-linked immunosorbent assay (ELISA), transcriptomics (real-time reverse transcription polymerase chain reaction [qRT-PCR]), proteomics, metabolomics, and flow cytometry in 15 studies. Finally, microbiological analysis of the thrombi was performed through classical culture techniques, specific staining for bacteria/fungi and/or metagenomics (qPCR) in 20 studies.

Thrombus gross appearance and mechanical properties

Case reports and case series, usually presenting thrombectomies of LVOs of atypical etiologies, showed mostly photographic images of the thrombus, and described whether single or multiple clots were retrieved, as well as their gross appearance, including size, shape, consistency, visual texture, color, and homo/heterogeneous aspect.¹⁴⁻³⁴

Macroscopic analysis of retrieved thrombi was also carried out in some cohort studies and one case series. The clot color was categorized using three different terminologies. Two cohort studies classified the thrombus as "red-black" or "white," showing similar results: 94.2% red-black thrombi versus 5.8% white thrombi;³⁵ and 91.4% red/black thrombi versus 8.6% white thrombi.³⁶ Another cohort study categorized the thrombi by visual assessment as pinkish (17.3%), red (53.8%), or dark

PLT	FBR	PLT+FBR	RBC	WBC	Reference
59%±138%, 166	41% <u>+</u> 25%, 166		38% <u>+</u> 25%, 166	4% <u>+</u> 5%, 166	56,57,67,72
		52% <u>+</u> 19%, 1,025	41% <u>+</u> 19%, 1,045	5% <u>+</u> 3%, 944	38,81,84,92,122,142-146
27‰±16‰, 287	38% <u>+</u> 37%, 287		41% <u>+</u> 91%, 287		54,55,64,65,123
		52% <u>+</u> 25%, 441	47‰ <u>+</u> 25%, 441		78,87,101

Table 2. Average proportions of fibrin and blood formed elements in stroke thrombi

Values are presented as weighted mean±pooled standard deviation or number. PLT. platelet: FBR, fibrin: RBC, red blood cell: WBC, white blood cell.

red (28.8%).³⁷ A fourth cohort study described the thrombi as slightly white, darker, or reddish, but did not report percentages.³⁸ Regarding thrombus size, other cohort studies focused on the total extracted clot area (ECA) for each case, defined as the sum of the clot areas from all clot fragments within a case.³⁹ In a cohort of 550 patients, the mean ECA for all cases was 64 mm² and the median number of fragments per case was 3.⁴⁰ Of note, bridging therapy was associated with the retrieval of significantly smaller clots.^{41,42} Median ECA was 0.33 cm² (IQR, 0.16 to 0.59) in patients pre-treated with alteplase (recombinant tissue plasminogen activator [rtPA]), versus 0.39 cm² (IQR, 0.22 to 0.82) in patients treated with mechanical thrombectomy alone.⁴¹ Finally, in a case series of five patients the median volume of the thrombus, calculated using the ellipsoid formula (4/3 π tr₁r₂r₃), was 10.47 mm³.⁴³

Only two studies with limited sample sizes evaluated the mechanical behavior of the thrombi. The specimens were mechanically heterogeneous, in line with the histological heterogeneity. Stiffness and elasticity were measured with a dynamic mechanical analyzer, showing that red thromboemboli composed mainly of fibrin (FBR) and RBC were much softer than the calcified and cholesterol-rich material.⁴⁴ The tensile strength and response to stress were measured with a quasistatic uniaxial tensile test using a custom-made platform. The ultimate tensile strain of the emboli increased with a higher platelet (PLT) percentage, and the ultimate tensile stress increased with a higher FBR percentage and decreased with a higher RBC percentage.⁴⁵

Thrombus structure and composition: advanced imaging and histopathology

Multiparametric MRI has been used to characterize retrieved cerebral thrombi. Preliminary results showed that T_1 -weighted images with the corresponding apparent diffusion coefficient (water mobility) and T_2 maps (relaxation time) could be used to assess thrombus compactness and microstructure, which in turn reflect RBC and PLT/FBR meshwork content.⁴⁶ Advanced synchrotron-based imaging techniques, including X-ray fluorescence and Fourier-transform infrared spectroscopy, have

been used in freshly retrieved thrombi to map the distribution of biological elements and metabolites, respectively.⁴⁷

Most histopathology studies focused on the presence and relative abundance of FBR, and blood formed elements (RBCs, PLTs, and white blood cells [WBCs]) in the thrombus. Classical H&E staining was almost always used to visualize the general structure of the thrombus. Although H&E staining and machine learning software allowed reproducible quantification of the three major clot components (RBCs, WBCs, and FBR),⁴⁸ the more specific MSB staining was used in many studies for the selective quantification of RBCs and FBR.^{28,37,39,43,44,49-61} The Picro-Mallory stain was used to assess the maturity of FBR in thrombi, based on its age-dependent differential staining.62 Immunohistochemical staining procedures allowed the best visualization and reliable separate quantification of RBCs (glycophorin A, also designated CD235a antigen),63-65 WBCs (CD45 antigen),66-70 PLTs (CD41, CD42b, and CD61 antigens),^{38,45,49,51,53,56,57,60,63,65,66,71-73} and fibrinogen/FBR.^{49,53,63,65,66,74} Depending on the discriminatory capability of the staining procedures used, the studies expressed the ratios of clot components according to four different classifications, as shown in Table 2. A number of studies categorized the clots according to the dominant component (usually with a 60% cut-off)48 as RBCrich, FBR-rich, PLT-rich, or mixed.7,50,52,54,58,59,64,75-91 Some studies identified and/or quantified WBC types and subtypes by immunohistochemical staining using specific antibodies against neutrophil elastase (NE),66,76,92-94 neutrophil myeloperoxidase (MPO),^{65,66,76,95} Ly6G (monocyte, granulocyte, and neutrophil),⁹⁴ CD3 (T lymphocyte), 66,68-70,90,96 CD4 (T lymphocyte), 52,53 CD14 (monocyte),66 CD15 (neutrophil, eosinophil, and monocyte),97 CD20 (B lymphocyte),^{66,68-70,96} CD66b (neutrophil),^{76,93} and CD68 (monocyte and macrophage).^{30,52,67-70,96,98}

Neutrophils were the predominant leukocyte subset in stroke thrombi.^{66,93} Neutrophil extracellular traps (NETs) have been identified as part of the clot scaffold by using antibodies against NETosis biomarkers (citrullinated histones) and histochemical staining of extracellular DNA.^{63,65,66,76,93-95,99} NETs were visualized in almost all (79.1% to 100%) of the analyzed thrombi in different studies,^{63,65,66,76,93,95} in amounts ranging from 0.21% to 13.45% of total thrombus area,⁹³ and 1.1%±2.7% on average.⁷⁶ NET signals were observed as being confined within cells, filopodia-like structures, or web-like structures,⁶⁵ especially in the outer thrombus layers,^{63,95} and almost exclusively within FBR-rich areas.⁷⁶ Inside the NETs, citrul-linated histones were co-localized with inflammasome proteins (caspase-1 and apoptosis-associated speck-like protein containing a caspase-recruitment domain [ASC]),⁹⁹ granular neutrophil proteins (MPO) and extracellular DNA released from neutrophils.^{93,95} The addition of histone-DNA complexes to FBR resulted in thicker fibers accompanied by increased rigidity, which contributed to the structural complexity and stabilization of the thrombi.⁷⁶ Of interest, monocytes could also form extracellular traps, but to a lesser extent than neutrophils.^{66,94}

Coagulation system proteins other than fibrinogen/FBR were immunohistochemically identified by using specific antibodies against von Willebrand factor (VWF),^{52-56,60,63,74,97,100} and two PLTderived direct inhibitors of tissue plasminogen activator (tPA): plasminogen activator inhibitor-1^{63,74} and protease nexin-1.⁶³ The proportion of VWF varied from 0.1% to 94.3% of the total clot area,⁶⁰ with mean values between 11.8% and 29.8% in different studies,^{56,60,100} and higher content in thrombi retrieved after unsuccessful intravenous thrombolysis.⁷⁴ VWF levels were correlated with those of FBR and PLTs.⁹⁷ White FBR-rich thrombi showed higher percentages of VWF+ areas co-localized with regions of FBR/collagen.⁵² Similarly, PLT-rich areas were characterized by dense FBR structures aligned with VWF.⁵³

The presence of other thrombus components has been assessed using specific staining procedures. Some cohort studies used standard protocols including H&E and one or more of the following staining procedures to visualize elastic collagen fibers (Elastica van Gieson), hemosiderin/iron (Prussian blue), calcifications (Von Kossa), and collagen (Masson's trichro me).^{67-70,78,81,86,88,89,91,96,101} However, positive results showing the occasional presence of intimal collagen fibers, cholesterol clefts, and smooth muscle cells (immunohistochemically stained for a-smooth muscle actin) were reported only in three studies assessing thrombectomy-induced wall damage, which identified vascular wall components or atheromatous gruel in a low proportion (2.6% to 20%) of the retrieved thrombi.^{78,91,101} Case reports also used these specific stainings to identify elastic fibers, hemosiderin granules, collagen fibrous stalks, calcium deposits, and myofibroblast-like cells, usually in atypical thrombi.^{15,23,30,43,102}

The presence of foreign bodies in thrombi has also been evaluated. Delaminated polymer coating particulates were readily detected in 33% of H&E-stained preparations.¹⁰³ Thread or sheet-like structures were found in 25% of thrombi scanned

by electron microscopy.¹⁰⁴

Classical descriptions of thrombus histological patterns based on light microscopy categorized their organized structure as layered (PLT bands arranged in layers), serpentine (PLT bands arranged in a serpentine way), or erythrocytic (with RBCs and nucleated cells interspersed).7,52,75,105,106 The molecular and cellular organization revealed distinct features between clots as well as among different regions within a clot. Thrombi were composed of two main area types: RBC-rich and PLT-rich areas. RBC-rich areas had limited complexity and consisted of RBCs entangled in a meshwork of thin FBR. Conversely, PLT-rich areas were characterized by dense FBR structures aligned with VWF and abundant amounts of WBCs and DNA that accumulate around.⁵³ Similarly, serial block-face scanning electron microscopy (SEM) showed a thrombus 3D ultrastructure that varied greatly depending on the region analyzed. RBC-rich areas were composed mainly of tightly packed RBCs deformed into polyhedrocytes with scant FBR fibers interwoven between cells. The regions with mixed composition showed thick FBR fibers along with PLTs, WBCs, and RBC clusters. FBR-rich areas contained dense FBR masses with sparse RBCs.⁵⁶ High-resolution SEM and transmission electron microscopy revealed a dense, sealed, rtPA-resistant external shell encapsulating a loose RBC-rich core. Shell components were densely compacted and agglomerated and formed a continuous layer, in which individual cells could hardly be detected. This was in stark contrast to the clearly identifiable RBCs, FBR fibers, and aggregated PLTs in the inner core.63,107 Other ultrastructural studies showed morphologic features consistent with the presence of NETs, calcified deposits and cholesterol crystals in the clots.44,99

Microbial pathogens in thrombi

Regarding septic cerebral emboli, Marder's pioneering study reported one case of mycotic embolus.⁷ However, both realtime and standard PCR demonstrated no expression of bacterial 16S rDNA in any of the 20 clot samples. Gram staining results also showed no evidence of bacteria.¹⁰⁸ Contrastingly, bacteria were detected in Gram-stained clots of four out of 65 patients (6.2%).¹⁰⁹ A larger cohort of 75 patients showed DNA signatures of oral streptococcal bacteria in 84% of the retrieved thombi.¹¹⁰ Metagenomics analysis also showed the presence of bacterial DNA in all four thrombi originated from symptomatic carotid plaques.¹¹¹

Thrombus composition: molecular biology, biochemical assays, and flow cytometry Clot homogenates subjected to qRT-PCR showed the expression

of inflammatory cytokines (interleukin 1 β [IL-1 β], IL-6, IL-8, IL-18, tumor necrosis factor α [TNF- α], and monocyte chemoattractant protein-1 [MCP-1]), matrix metalloproteinases-2, -9,¹¹² and endothelial CD31.⁷⁵ Four-plex assay showed the expression of cytokines (IL-1 β and IL-18) and other inflammasome signaling proteins such as caspase-1 and ASC. Moreover, the presence of nucleotide-binding oligomerization domain (NOD)-like receptor protein-1 and absent in melanoma-2, two receptors that interact with caspase-1 and ASC to form an inflammasome complex, was shown by immunoblot analysis.⁹⁹

Proteomic analysis has been used to characterize the protein cargo of thrombi (thousands) and commonly present proteins (hundreds). Functional bioinformatics analyses revealed protein clusters related to inflammation;¹¹³ immunological functions, blood cell dependent functions, and peripheral vascular processes;¹¹⁴ metabolic processes, inflammatory track, and cell proliferation, activation, or motility;¹¹⁵ primary hemostasis, integrin and kinase signaling linked to integrins, glycolysis, and acute phase reactants.¹¹⁶ Nevertheless, metabolomics analysis suggested clot sorbitol content as a surrogate marker reflecting blood glucose level at stroke onset.¹¹⁷

PLT, RBC, and WBC content of AIS thrombi could be estimated through biochemical quantification of glycoprotein (GP) VI (immunoassay), heme (formic acid-based colorimetric assay), and DNA (dsDNA fluorescence assay kit) in thrombus homogenates.¹¹⁸ Hemoglobin (ELISA) and heme content were highly correlated with RBC content determined by flow cytometry.¹¹⁹ Different lymphocyte profiles were identified in cell suspensions of clots subjected to flow cytometry.¹²⁰

The presence of NETs was confirmed in intact thrombus samples subjected to endonuclease treatment to release NE activity,⁹⁵ and by incubating with DNase-I to produce *ex vivo* thrombolysis.⁷¹ Thrombin elution pattern assessed by measuring secreted thrombin activity along serial washings has been suggested as a biomarker of clot content.¹²¹

Relationship between thrombus features and stroke etiology

Analysis of thrombus size, structure and composition in patient cohorts found associations with TOAST etiology (large-artery atherosclerosis [LAA; TOAST 1]; cardioembolism [CE; TOAST 2]; stroke of other determined cause [ODC; TOAST 4]; cryptogenic [CRY] stroke of undetermined etiology [TOAST 5]), embolic stroke of undetermined source (ESUS), or underlying pathologies (Supplementary Table 2). LAA thrombi showed a larger ECA^{39,40} and higher number of fragments.⁴⁰ Eight studies, reporting results from 1,183 thrombi (median 73), showed higher RBC proportions in thrombi from LAA or non-CE (LAA+ODC) source

es.^{39,57,64,82,96,122-124} Contrastingly, three studies (119 thrombi, median 37) showed higher RBC proportions in CE thrombi.72,84,125 Seven studies (1,061 thrombi, median 58) showed higher FBR proportions in CE,^{39,57,76,82,96,123,124} while in two studies (82 thrombi, median 41) the FBR proportion was higher in LAA.^{72,125} CE thrombi also showed a higher FP (FBR+PLTs) proportion in one study (137 thrombi).¹²² PLT proportion was higher in LAA in two studies (1,127 thrombi, median 563.5),^{50,59} but higher in CE in another two studies (697 thrombi, median 348.5).^{39,67} Further support for higher PLT proportions in non-CE thrombi came from higher GP VI content in thrombus homogenates.¹¹⁸ LAA thrombi showed mostly peripheral PLT distribution patterns (PDPs), while mostly clustering PDP was observed in CE.⁵¹ Non-CE thrombi showed higher RBC/PLT ratio,73 in line with lower FP/RBC ratio.¹²⁶ Results from the large multicentric STRIP registry (1,350 thrombi), published during the preparation of this manuscript, showed that LAA thrombi had a higher mean RBC density (46%±23% vs. 42%±22%, P=0.01) and a lower PLT density (24%+18% vs. 27%+18%, P=0.03) than CE thrombi.147 Regarding WBCs, three studies (358 thrombi, median 137) showed higher proportions in CE,^{89,96,122} while one study (37 thrombi) reported higher proportions in LAA.⁸⁴ Another study supported higher WBC proportions in CE, as estimated by DNA content in thrombus homogenates.¹¹⁸ When WBC subtypes were analyzed, CE thrombi showed higher contents of neutrophils,⁷⁶ NETs.^{66,93} and netting neutrophils,⁶⁶ as well as more macrophages.⁶⁷ As for lymphocytes, CE thrombi contained more suppressor-cytotoxic T-cells,¹²⁰ while LAA thrombi showed higher Tcell,90 helper T-cell, and natural killer (NK)-cell contents.120 Finally, higher IL-1B expression was measured in LAA thrombi,¹¹² while coagulation factor XIII was associated with CE.115

Some studies aimed to compare the features of CRY thrombi with those of known TOAST etiology. Most of them found similar proportions of RBCs,^{39,57,64,96,122-124,127} FBR, PLTs (or both together),^{57,76,96,122-124,127} and WBCs between CRY and CE thrombi.^{96,122,127} CRY and CE thrombi also shared smaller ECA and number of retrieved fragments,^{39,40} clustering PDP,⁵¹ higher neutrophil counts,⁷⁶ and NETosis,⁶⁶ temporal profile of eluted thrombin activity,¹²¹ and low expression of IL-1 β .¹¹² ESUS and CE thrombi showed similar RBC/PLTs ratios.⁷³ Conversely, a few studies found similar proportions of RBCs,⁸⁴ PLTs,⁵⁰ and WBCs^{84,89} in CRY and LAA thrombi. Finally, ESUS and LAA thrombi shared low macrophage proportions.⁶⁷

Regardless of TOAST etiology, some thrombus features have been associated with the patient's age and underlying pathologies. The clots from elderly subjects had higher FBR proportions compared to younger patients.¹²⁸ As for gross appearance, white thrombi were much more frequent in the context of pathologies like active cancer (AC) or infective endocarditis (IE).^{36,38} Furthermore, thrombi showed lower RBC proportions, and higher FBR and/or PLT proportions, with underlying AC^{38,65} or diabetes mellitus (DM).⁵⁵ Other composition characteristics were lower WBC proportion in AC,³⁸ and higher NETosis in DM.⁹⁴ Direct presence of tumor cells in the thrombus was rare in AC.¹²⁹ Contrastingly, bacteria or fungi were present with underlying IE^{7,109} or other systemic infections.¹⁰⁹

Thrombus analysis in individual cases was a valuable complementary tool in diagnosing the stroke etiology, especially atypical ones (Supplementary Table 3). Proteomic analysis determined a common origin for tandem occlusions after traumatic carotid thrombosis and embolization.¹³⁰ Macroscopic and thorough histopathological examination confirmed the occlusion by an intracranial atherosclerotic plaque, revealing the atherothrombotic etiology.¹⁹ Identification of cocci or bacilli in the thrombus confirmed septic emboli in cases of bacterial IE,14,18,31,32,102,131-135 including a rare case of Whipple's endocarditis.²⁶ Similarly, the presence of Candida confirmed septic embolus in a case of fungal IE.¹³⁶ Observation of fungal hyphae confirmed cases of septic embolus137 and angioinvasive mucormycosis secondary to sinusitis.¹³⁸ Identification of papillary fronds or myxomatous tissue helped diagnose embolization secondary to cardiac papillary fibroelastoma^{15,16,20} and myxoma,²⁹ respectively. Visual assessment and histopathology identified valve tissue,²⁴ calcifications,^{27,30} chordae tendineae,²¹ and aortic wall tissue²³ as embolism sources, which detached spontaneously or periprocedurally during valve replacement surgery. Immunohistopathology contributed to diagnose the embolism of a Libman-Sacks vegetation in systemic lupus erythematosus-associated endocarditis.²² Thrombus calcification, cholesterol crystal cleft and foamy cells confirmed the aortogenic embolic stroke due to atheromatous lesion in the aortic arch.^{139,140} Embolizations of carotid free-floating and carotid web thrombi were determined by assessing the clot aspect and blood cell content.28,141 Clot visual appearance and high FBR content indicated thromboembolism secondary to coronavirus disease 2019-associated hypercoagulability ³⁴ and cancer-related Trousseau syndrome.33 Finally, thrombus examination confirmed periprocedural catheter-related thromboembolism during valve implantation¹⁷ and inadvertent embolization of foreign bodies during aneurysm treatment.²⁵

Discussion

In response to the four research questions posed in this study, our results show that:

(1) Thrombi were subjected to physical analyses (macroscop-

ic appearance, mechanical behavior, MRI, and synchrotron-based imaging), histopathological analyses (conventional histology, immunohistochemistry, and electron microscopy), biological analyses (biochemical, biomolecular, and cellular techniques, such as enzymatic assay, ELISA, transcriptomics, proteomics, metabolomics, and flow cytometry), and microbiological analyses (culture, histological staining, and metagenomics).

- (2) The information obtained about thrombi included gross appearance (size, shape, consistency, visual texture, color, and homo/heterogeneous aspect), mechanical properties (stiffness, elasticity, tensile strength, and response to stress), structure (compactness, molecular and cellular organization, and ultrastructure), and composition (FBR, other coagulation factors, blood formed elements, NETs, vessel wall and plaque components, microbial pathogens, inflammatory mediators, protein cargo, metabolites, elements, and even foreign bodies).
- (3) There were associations of thrombus size, structure and composition (mainly proportions of FBR and blood formed elements) with TOAST etiology and underlying pathologies, and similarities between cryptogenic thrombi and those of known TOAST etiology.
- (4) Individual thrombus analysis proved to be a valuable complementary tool in the diagnosis of stroke etiology, particularly in atypical cases.

The first endovascular device clearance by the U.S. Food and Drug Administration occurred in 2004,¹⁴⁸ and the first report describing a systematic histological analysis of thrombi retrieved from cerebral arteries was published in 2006.⁷ Since then, a total of 134 eligible studies have been identified in this systematic review. Of note, there has been a surge of reports in the last 5 years, just after the publication of Brinjikji's systematic review.³ Although most studies carried out histopathological analyses, studies reporting biochemical or biomolecular analyses have been increasing in the last 3 years. Almost 10,000 thrombi/emboli retrieved from LVO stroke patients have been analyzed predominantly in cohort studies but also in case reports.

Physical, histopathological and biological analyses provided a considerable amount of information about the gross appearance, mechanical properties, structure, and composition of thrombi in patient cohorts. However, assessments of possible associations of thrombus features with stroke causes have been carried out mainly based on thrombus size, color, and proportions of FBR and blood formed elements. LAA thrombi were larger and more fragmented. Regarding composition, non-unanimous evidence supported higher RBC contents in thrombi from LAA or non-CE (LAA+ODC) sources, and higher FBR contents in thrombi of CE origin. WBC content, neutrophil count, and NETosis were also higher in CE thrombi. As for the PLT proportion, controversial histopathological evidence did not support a clear association with the CE or non-CE cause. although non-CE thrombi showed higher GP VI content (PLT marker), and peripheral PDP. Cryptogenic mechanisms account for 10% to 40% of all ischemic strokes.¹⁴⁹ Most evidence pointed to similar features in CRY and CE thrombi, mainly regarding proportions of RBCs, FBR, PLTs, and WBCs, and smaller size and number of retrieved fragments, clustering PDP, and higher NETosis. This could aid the etiologic investigation and reduce the percentage of CRY strokes. Of note, the large multicentric STRIP registry found statistically significant but clinically insignificant differences between clots of CE and LAA etiologies.¹⁴⁷ Although LAA clots had a higher mean RBC density and a lower mean PLT density than CE clots, the receiver operating characteristics analysis showed that identification of a reliable threshold with a high area under the curve for differentiating clots of these two etiologies based on composition analysis alone was not possible; this suggests that conventional histological analyses of the cellular composition do not provide insights into stroke etiology in cryptogenic cases. Regardless of TOAST etiology, a few studies found associations of thrombus color and composition with underlying pathologies like cancer, diabetes, and IE.

Macroscopic, histopathological, biomolecular, and microbiological analyses of thrombi were useful in the diagnosis of the stroke cause in individual cases. Thrombus features confirmed cases of typical intracranial and carotid thromboembolism, and atypical free-floating and web thrombi. Histopathology also contributed to diagnose embolisms due to cardiac tumor fragments, sterile endocarditis vegetations, aortogenic lesions, and tissue fragments detached during valve replacement surgery. Microbiological analysis revealed septic emboli secondary to IE, allowing appropriate antibiotic therapy. Finally, thromboembolisms due to secondary hypercoagulable states were diagnosed based on clot features.

Current methods of assessing thrombus features vary widely. Despite a consensus statement on the analyses of thrombi in AlS¹ and recommendations for thrombus handling and procedures,¹³ the results in this review show a lack of standardization in the research and reporting of thrombus characteristics and parameters. Heterogeneity in study designs, outcome measuring, and reporting precluded a meta-analysis of the association between thrombus composition and stroke etiology. Hopefully, ongoing multi-institutional registers, larger cohorts, and homogenous protocols will overcome this limitation. Although traditional histopathological techniques seem of limited value, the application of pathophysiological classifications show promise in differentiating between CE and LAA emboli.¹⁵⁰ Nevertheless, focusing on immunohistochemical analysis and more advanced techniques could help increase the knowledge on the composition and structure of thrombi. Advanced analysis of microRNA signatures,¹⁵¹ proteomic analysis,¹⁵² and combined "omic" analysis (proteome and metabolome)¹⁵³ are promising molecular approaches to elucidate the composition of emboli. Moreover, ultrastructural analysis using high-resolution SEM shows the finely organized clot components.⁵⁶ The role of all these advanced techniques in identifying stroke etiology could be further explored.

Conclusions

Although cohort studies report an abundance of quantitative rates of main thrombus components, a definite clot signature for accurate diagnosis of stroke etiology is still lacking. Nevertheless, qualitative examination of the embolus remains an invaluable tool in the diagnostic work-up of individual cases, particularly regarding atypical stroke causes. Beyond conventional histopathological and immunohistochemical clot analyses, future studies should emphasize the analysis of biomolecular composition and structural organization to provide insights about reliable links between clot features and stroke etiology.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2021.02306.

Disclosure

The authors have no financial conflicts of interest.

Acknowledgments

This work was partially supported by RETICS research network INVICTUS+ from Spanish 'Instituto de Salud Carlos III' (co-financed with European Regional Development Fund), through grant RD16/0019/0008. The funding source had no further role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

The authors acknowledge the help rendered by Marta Méndez Debaets in manuscript preparation and reference management.

References

- De Meyer SF, Andersson T, Baxter B, Bendszus M, Brouwer P, Brinjikji W, et al. Analyses of thrombi in acute ischemic stroke: a consensus statement on current knowledge and future directions. *Int J Stroke* 2017;12:606-614.
- Bacigaluppi M, Semerano A, Gullotta GS, Strambo D. Insights from thrombi retrieved in stroke due to large vessel occlusion. *J Cereb Blood Flow Metab* 2019;39:1433-1451.
- Brinjikji W, Duffy S, Burrows A, Hacke W, Liebeskind D, Majoie CB, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: a systematic review. *J Neurointerv Surg* 2017;9:529–534.
- Jolugbo P, Ariëns RA. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke. *Stroke* 2021;52:1131–1142.
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, loannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PLoS Med* 2009;6:e1000100.
- Salom JB, Aliena-Valero A, Torregrosa G, Baixauli-Martín J. Clot composition analysis as complementary diagnostic tool to gain insight into ischemic stroke etiology: A systematic review of clinical studies and case reports. National Institute for Health Reearch. https://www.crd.york.ac.uk/prospero/display_ record.php?ID=CRD42020199436. August 17, 2020. Accessed September 27, 2021.
- Marder VJ, Chute DJ, Starkman S, Abolian AM, Kidwell C, Liebeskind D, et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. *Stroke* 2006; 37:2086–93.
- Multimodal Investigation of Intracranial Clot Environment (MISO). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/ NCT04421326. 2020. Accessed September 27, 2021.
- Investigation of Clot in Ischemic Stroke and Hematoma Evacuation (INSIGHT). ClinicalTrials.gov. https://clinicaltrials.gov/ ct2/show/NCT04693767. 2021. Accessed September 27, 2021.
- Thrombus Composition in Ischemic Stroke: Analysis of the Correlation With Plasma Biomarkers, Efficacy of Treatment, Etiology and Prognosis (COMPO-CLOT). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03268668. 2021. Accessed September 27, 2021.
- Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/ show/NCT03153683. 2021. Accessed September 27, 2021.
- 12. RNA Sequencing Analysis in Large Vessel Occlusion Stroke DATA Bank (RNASA-LVOSB). ClinicalTrials.gov. https://clinical-

trials.gov/ct2/show/NCT03490552. 2018. Accessed September 27, 2021.

- Staessens S, Fitzgerald S, Andersson T, Clarençon F, Denorme F, Gounis MJ, et al. Histological stroke clot analysis after thrombectomy: technical aspects and recommendations. *Int J Stroke* 2020;15:467-476.
- 14. Abdel-Wahed L, Shaban A, Hayakawa M, Limaye K. Retrieved arterial clot helps guide antibiotic therapy in infective endocarditis. *Am J Med* 2019;132:e795-e796.
- Biraschi F, Diana F, Alesini F, Guidetti G, Peschillo S. Effective ADAPT thrombectomy in a patient with acute stroke due to cardiac papillary elastofibroma: histological thrombus confirmation. *J Stroke Cerebrovasc Dis* 2016;25:e185-e187.
- Salam KA, Rafeeque M, Hashim H, Mampilly N, Noone ML. Histology of thrombectomy specimen reveals cardiac tumor embolus in cryptogenic young stroke. *J Stroke Cerebrovasc Dis* 2018;27:e70-e72.
- Salinas P, Moreno R, Frutos R, Lopez-Sendon JL. Neurovascular rescue for thrombus-related embolic stroke during transcatheter aortic valve implantation. *JACC Cardiovasc Interv* 2013;6:981-982.
- Scharf EL, Chakraborty T, Rabinstein A, Miranpuri AS. Endovascular management of cerebral septic embolism: three recent cases and review of the literature. *J Neurointerv Surg* 2017;9:463-465.
- Semerano A, Genchi A, Callea M, Sanvito F, Simionato F, Panni P, et al. Thrombus hallmarks reveal atherothrombotic stroke aetiology. *J Neurol* 2019;266:1533–1535.
- Tejada J, Galiana A, Balboa O, Clavera B, Redondo-Robles L, Alonso N, et al. Mechanical endovascular procedure for the treatment of acute ischemic stroke caused by total detachment of a papillary fibroelastoma. *J Neurointerv Surg* 2014; 6:e37.
- Thomas MC, Delgado Almandoz JE, Todd AJ, Young ML, Fease JL, Scholz JM, et al. A case of right middle cerebral artery 'tendonectomy' following mitral valve replacement surgery. J Neurointerv Surg 2017;9:e35.
- 22. Valente M, Saab J, Cordato D, Manning N, Cappelen-Smith C. The diagnostic utility of routine clot analysis after endovascular thrombectomy in a patient with systemic lupus erythematosus and antiphospholipid syndrome. *J Clin Neurosci* 2019; 70:247-249.
- 23. Wollenweber FA, Remi J, Bauer A, Theiss H, Massberg S, Patzig M, et al. Thrombectomy recovers an aortic wall fragment from middle cerebral artery immediately after TAVI. *Neurology* 2016;86:2111-2112.
- 24. Anuwatworn A, Raizada A, Kelly S, Stys T, Jonsson O, Stys A. Stroke with valve tissue embolization during transcatheter

aortic valve replacement treated with endovascular intervention. *JACC Cardiovasc Interv* 2015;8:1261–1263.

- 25. Chapot R, Wassef M, Bisdorff A, Rogopoulos A, Merland JJ, Houdart E. Occlusion of the middle cerebral artery due to synthetic fibers. *AJNR Am J Neuroradiol* 2006;27:148-150.
- Elodie O, Labeyrie PE, Aubry M, Cecile D, Roux S, Ferry T, et al. Whipple's endocarditis diagnosed by thrombus analysis retrieved by successful mechanical thrombectomy. *J Neurol Sci* 2019;400:42–43.
- 27. Fassa AA, Mazighi M, Himbert D, Deschamps L, Ducrocq G, Cheong AP, et al. Successful endovascular stroke rescue with retrieval of an embolized calcium fragment after transcatheter aortic valve replacement. *Circ Cardiovasc Interv* 2014;7:125-126.
- Fitzpatrick N, Motyer R, Gibney B, Duffy S, Murphy S, O'Brien P, et al. Expanding the role of stent-retriever endovascular thrombectomy: a case series of free-floating thrombus. J Neurointerv Surg 2018;10:1164–1167.
- Garcia-Ptacek S, Matias-Guiu JA, Valencia-Sánchez C, Gil A, Bernal-Becerra I, De las Heras-Revilla V, et al. Mechanical endovascular treatment of acute stroke due to cardiac myxoma. *J Neurointerv Surg* 2014;6:e1.
- Genchi A, Schwarz G, Semerano A, Callea M, Sanvito F, Simionato F, et al. Large vessel occlusion stroke due to dislodged aortic valve calcification revealed by imaging and histopathology. *J Neurol Sci* 2020;408:116573.
- Kan P, Webb S, Siddiqui AH, Levy El. First reported use of retrievable stent technology for removal of a large septic embolus in the middle cerebral artery. *World Neurosurg* 2012; 77:591.
- 32. Kim JM, Jeon JS, Kim YW, Kang DH, Hwang YH, Kim YS. Forced arterial suction thrombectomy of septic embolic middle cerebral artery occlusion due to infective endocarditis: an illustrative case and review of the literature. *Neurointervention* 2014;9:101-5.
- Matsumoto N, Fukuda H, Handa A, Kawasaki T, Kurosaki Y, Chin M, et al. Histological examination of trousseau syndrome-related thrombus retrieved through acute endovascular thrombectomy: report of 2 cases. *J Stroke Cerebrovasc Dis* 2016;25:e227-e230.
- Pisano TJ, Hakkinen I, Rybinnik I. Large vessel occlusion secondary to COVID-19 hypercoagulability in a young patient: a case report and literature review. J Stroke Cerebrovasc Dis 2020;29:105307.
- 35. Bourcier R, Duchmann Z, Sgreccia A, Desal H, Carità G, Desilles JP, et al. Diagnostic performances of the susceptibility vessel sign on MRI for the prediction of macroscopic thrombi features in acute ischemic stroke. *J Stroke Cerebrovasc Dis*

2020;29:105245.

- Sgreccia A, Duchmann Z, Desilles JP, Lapergue B, Labreuche J, Kyheng M, et al. Association between acute ischemic stroke etiology and macroscopic aspect of retrieved clots: is a clot's color a warning light for underlying pathologies? *J Neurointerv Surg* 2019;11:1197–1200.
- Choi MH, Park GH, Lee JS, Lee SE, Lee SJ, Kim JH, et al. Erythrocyte fraction within retrieved thrombi contributes to thrombolytic response in acute ischemic stroke. *Stroke* 2018; 49:652–659.
- Fu CH, Chen CH, Lin YH, Lee CW, Tsai LK, Tang SC, et al. Fibrin and platelet-rich composition in retrieved thrombi hallmarks stroke with active cancer. *Stroke* 2020;51:3723-3727.
- Fitzgerald S, Rossi R, Mereuta OM, Jabrah D, Okolo A, Douglas A, et al. Per-pass analysis of acute ischemic stroke clots: impact of stroke etiology on extracted clot area and histological composition. *J Neurointerv Surg* 2020 Dec 9 [Epub]. https:// doi.org/10.1136/neurintsurg-2020-016966.
- 40. Fitzgerald S, Rossi R, Mereuta OM, Molina S, Okolo A, Douglas A, et al. Large artery atherosclerotic clots are larger than clots of other stroke etiologies and have poorer recanalization rates. *J Stroke Cerebrovasc Dis* 2021;30:105463.
- 41. Rossi R, Fitzgerald S, Molina S, Mereuta OM, Douglas A, Pandit A, et al. The administration of rtPA before mechanical thrombectomy in acute ischemic stroke patients is associated with a significant reduction of the retrieved clot area but it does not influence revascularization outcome. *J Thromb Thrombolysis* 2021;51:545–551.
- 42. Horie N, Shobayashi K, Morofuji Y, Sadakata E, Iki Y, Matsunaga Y, et al. Impact of mechanical thrombectomy device on thrombus histology in acute embolic stroke. *World Neurosurg* 2019;132:e418-e422.
- 43. Almekhlafi MA, Hu WY, Hill MD, Auer RN. Calcification and endothelialization of thrombi in acute stroke. *Ann Neurol* 2008;64:344–348.
- Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. *AJNR Am J Neuroradiol* 2011;32:1237-1244.
- Liu Y, Zheng Y, Reddy AS, Gebrezgiabhier D, Davis E, Cockrum J, et al. Analysis of human emboli and thrombectomy forces in large-vessel occlusion stroke. *J Neurosurg* 2020;134:893-901.
- Vidmar J, Bajd F, Milosevic ZV, Kocijancic IJ, Jeromel M, Sersa I. Retrieved cerebral thrombi studied by T2 and ADC mapping: preliminary results. *Radiol Oncol* 2019;53:427-433.
- Meher V, Pushie J, Sylvain N, Weese Maley S, Hou H, Peeling L, et al. Analysis of retrieved stroke thrombi from mechanical thrombectomy using X-ray fluorescence imaging and fourier-

transform infrared spectroscopy. Int J Stroke 2018;13:150.

- 48. Fitzgerald S, Wang S, Dai D, Murphree DH Jr, Pandit A, Douglas A, et al. Orbit image analysis machine learning software can be used for the histological quantification of acute ischemic stroke blood clots. *PLoS One* 2019;14:e0225841.
- Fitzgerald ST, Wang S, Dai D, Douglas A, Kadirvel R, Gounis MJ, et al. Platelet-rich clots as identified by Martius Scarlet Blue staining are isodense on NCCT. *J Neurointerv Surg* 2019; 11:1145–1149.
- 50. Fitzgerald S, Dai D, Wang S, Douglas A, Kadirvel R, Layton KF, et al. Platelet-rich emboli in cerebral large vessel occlusion are associated with a large artery atherosclerosis source. *Stroke* 2019;50:1907-1910.
- Kim B, Kim YM, Jin SC, Lee JW, Lee BI, Kim SE, et al. Development of a predictive scale for cardioembolic stroke using extracted thrombi and angiographic findings. *J Clin Neurosci* 2020;73:224–230.
- Schuhmann MK, Gunreben I, Kleinschnitz C, Kraft P. Immunohistochemical analysis of cerebral thrombi retrieved by mechanical thrombectomy from patients with acute ischemic stroke. *Int J Mol Sci* 2016;17:298.
- Staessens S, Denorme F, Francois O, Desender L, Dewaele T, Vanacker P, et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. *Hae-matologica* 2020;105:498–507.
- 54. Ye G, Qi P, Chen K, Tan T, Cao R, Chen J, et al. Risk of secondary embolism events during mechanical thrombectomy for acute ischemic stroke: a single-center study based on histological analysis. *Clin Neurol Neurosurg* 2020;193:105749.
- 55. Ye G, Gao Q, Qi P, Wang J, Hu S, Chen K, et al. The role of diabetes mellitus on the thrombus composition in patients with acute ischemic stroke. *Interv Neuroradiol* 2020;26:329–336.
- Mereuta OM, Fitzgerald S, Christensen TA, Jaspersen AL, Dai D, Abbasi M, et al. High-resolution scanning electron microscopy for the analysis of three-dimensional ultrastructure of clots in acute ischemic stroke. *J Neurointerv Surg* 2021;13: 906–911.
- 57. Ahn SH, Hong R, Choo IS, Heo JH, Nam HS, Kang HG, et al. Histologic features of acute thrombi retrieved from stroke patients during mechanical reperfusion therapy. *Int J Stroke* 2016;11:1036-1044.
- 58. Benson JC, Fitzgerald ST, Kadirvel R, Johnson C, Dai D, Karen D, et al. Clot permeability and histopathology: is a clot's perviousness on CT imaging correlated with its histologic composition? J Neurointerv Surg 2020;12:38-42.
- 59. Brinjikji W, Fitzgerald S, Kallmes DF, Layton K, Hanel R, Pereira VM, et al. Outcomes of the stroke thromboembolism registry of imaging and pathology: a multicenter international study.

Stroke 2020;51(Suppl 1):A147.

- 60. Douglas A, Fitzgerald S, Mereuta OM, Rossi R, O'Leary S, Pandit A, et al. Platelet-rich emboli are associated with von Willebrand factor levels and have poorer revascularization outcomes. *J Neurointerv Surg* 2020;12:557-562.
- Duffy S, McCarthy R, Farrell M, Thomas S, Brennan P, Power S, et al. Per-pass analysis of thrombus composition in patients with acute ischemic stroke undergoing mechanical thrombectomy. *Stroke* 2019;50:1156–1163.
- 62. Khismatullin RR, Shakirova AZ, Weisel JW, Litvinov RI. Agedependent differential staining of fibrin in blood clots and thrombi. *BioNanoScience* 2020;10:370–374.
- Di Meglio L, Desilles JP, Ollivier V, Nomenjanahary MS, Di Meglio S, Deschildre C, et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. *Neurology* 2019;93:e1686-e1698.
- 64. Niesten JM, van der Schaaf IC, van Dam L, Vink A, Vos JA, Schonewille WJ, et al. Histopathologic composition of cerebral thrombi of acute stroke patients is correlated with stroke subtype and thrombus attenuation. *PLoS One* 2014;9:e88882.
- 65. Park H, Kim J, Ha J, Hwang IG, Song TJ, Yoo J, et al. Histological features of intracranial thrombi in stroke patients with cancer. *Ann Neurol* 2019;86:143-149.
- Novotny J, Oberdieck P, Titova A, Pelisek J, Chandraratne S, Nicol P, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. *Neurology* 2020;94:e2346-e2360.
- Goebel J, Gaida BJ, Wanke I, Kleinschnitz C, Koehrmann M, Forsting M, et al. Is histologic thrombus composition in acute stroke linked to stroke etiology or to interventional parameters? *AJNR Am J Neuroradiol* 2020;41:650–657.
- Sporns PB, Krähling H, Psychogios MN, Jeibmann A, Minnerup J, Broocks G, et al. Small thrombus size, thrombus composition, and poor collaterals predict pre-interventional thrombus migration. *J Neurointerv Surg* 2021;13:409-414.
- Sporns PB, Jeibmann A, Minnerup J, Broocks G, Nawabi J, Schön G, et al. Histological clot composition is associated with preinterventional clot migration in acute stroke patients. *Stroke* 2019;50:2065–2071.
- Sporns PB, Hanning U, Schwindt W, Velasco A, Buerke B, Cnyrim C, et al. Ischemic stroke: histological thrombus composition and pre-interventional CT attenuation are associated with intervention time and rate of secondary embolism. *Cerebrovasc Dis* 2017;44:344–350.
- Peña-Martínez C, Durán-Laforet V, García-Culebras A, Ostos F, Hernández-Jiménez M, Bravo-Ferrer I, et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) re-

sistance. Stroke 2019;50:3228-3237.

- Kim SK, Yoon W, Kim TS, Kim HS, Heo TW, Park MS. Histologic analysis of retrieved clots in acute ischemic stroke: correlation with stroke etiology and gradient-echo MRI. *AJNR Am J Neuroradiol* 2015;36:1756-1762.
- 73. Nouh A, Mehta T, Hussain M, Song X, Ollenschleger M. Clot composition of embolic strokes of undetermined source: a feasibility study. *BMC Neurol* 2020;20:383.
- López-Cancio E, Millán M, Pérez de la Ossa N, Dávalos A, Ribó M, Morancho A, et al. Immunohistochemical study of clot composition in thrombi retrieved from MCA with mechanical thrombectomy. *Cerebrovasc Dis* 2013;35:255.
- 75. Elijovich L, Arthur A, Hoit D, Nickele C, Morris D, Vachhani J, et al. Thrombus composition is associated with endothelial injury and stroke etiology in patients undergoing mechanical thrombectomy for emergent large vessel occlusion. *Stroke* 2018;49(Suppl 1):A145.
- 76. Essig F, Kollikowski AM, Pham M, Solymosi L, Stoll G, Haeusler KG, et al. Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke. *Int J Mol Sci* 2020;21:7387.
- Gurkas E, Asif A, Akpinar CK, Shoukat M, Aytac E, Aydin MC, et al. Thrombus composition and success of thrombectomy in acute ischemic stroke patients: a histopathological analysis. *Stroke* 2019;50(Suppl 1):AWP36.
- Hashimoto T, Hayakawa M, Funatsu N, Yamagami H, Satow T, Takahashi JC, et al. Histopathologic analysis of retrieved thrombi associated with successful reperfusion after acute stroke thrombectomy. *Stroke* 2016;47:3035-3037.
- 79. Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, Moya AL, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. *Stroke* 2011;42:1237–1243.
- 80. Liu M, Hao Z, Li R, Cai J, Jiang C, Li Y. Erythrocyte-rich thrombi related to serum iron contribute to single stent retrieval and favorable clinical outcomes in acute ischemic stroke by endovascular treatment. *Thromb Res* 2020;195:8–15.
- Maegerlein C, Friedrich B, Berndt M, Lucia KE, Schirmer L, Poppert H, et al. Impact of histological thrombus composition on preinterventional thrombus migration in patients with acute occlusions of the middle cerebral artery. *Interv Neuroradiol* 2018;24:70–75.
- 82. Maekawa K, Shibata M, Nakajima H, Mizutani A, Kitano Y, Seguchi M, et al. Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. *Cerebrovasc Dis Extra* 2018;8:39-49.
- 83. Qureshi Al, Qureshi MH, Lobanova I, Bashir A, Khan AA, Bologna SM, et al. Histopathological characteristics of IV recom-

binant tissue plasminogen-resistant thrombi in patients with acute ischemic stroke. *J Vasc Interv Neurol* 2016;8:38–45.

- Shin JW, Jeong HS, Kwon HJ, Song KS, Kim J. High red blood cell composition in clots is associated with successful recanalization during intra-arterial thrombectomy. *PLoS One* 2018; 13:e0197492.
- 85. Simons N, Mitchell P, Dowling R, Gonzales M, Yan B. Thrombus composition in acute ischemic stroke: a histopathological study of thrombus extracted by endovascular retrieval. *J Neuroradiol* 2015;42:86–92.
- 86. Singh P, Doostkam S, Reinhard M, Ivanovas V, Taschner CA. Immunohistochemical analysis of thrombi retrieved during treatment of acute ischemic stroke: does stent-retriever cause intimal damage? *Stroke* 2013;44:1720-1722.
- Darcourt J, Garcia C, Phuong DM, Michelozzi C, Bellanger G, Adam G, et al. Absence of susceptibility vessel sign is associated with aspiration-resistant fibrin/platelet-rich thrombi. *Int J Stroke* 2021 Jan 12 [Epub]. https://doi.org/10.1177/1747493020986626.
- Hanning U, Sporns PB, Psychogios MN, Jeibmann A, Minnerup J, Gelderblom M, et al. Imaging-based prediction of histological clot composition from admission CT imaging. *J Neurointerv Surg* 2021 Jan 22 [Epub]. https://doi.org/10.1136/neurintsurg-2020-016774.
- Boeckh-Behrens T, Schubert M, Förschler A, Prothmann S, Kreiser K, Zimmer C, et al. The impact of histological clot composition in embolic stroke. *Clin Neuroradiol* 2016;26:189–197.
- 90. Dargazanli C, Rigau V, Eker O, Riquelme Bareiro C, Machi P, Gascou G, et al. High CD3+ cells in intracranial thrombi represent a biomarker of atherothrombotic stroke. *PLoS One* 2016;11:e0154945.
- 91. Donnerstag F, Götz F, Dadak M, Raab P, Iglesias EC, Werlein C, et al. Interventional stroke treatment: is it also safe for arteries?: looking at thrombectomy wall damage through clot histology. *Interv Neuroradiol* 2021;27:404–410.
- Kaesmacher J, Boeckh-Behrens T, Simon S, Maegerlein C, Kleine JF, Zimmer C, et al. Risk of thrombus fragmentation during endovascular stroke treatment. *AJNR Am J Neuroradiol* 2017;38:991–998.
- Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H, et al. Neutrophil extracellular traps in ischemic stroke thrombi. *Ann Neurol* 2017;82:223–232.
- 94. Deng J, Zhao F, Zhang Y, Zhou Y, Xu X, Zhang X, et al. Neutrophil extracellular traps increased by hyperglycemia exacerbate ischemic brain damage. *Neurosci Lett* 2020;738:135383.
- Ducroux C, Di Meglio L, Loyau S, Delbosc S, Boisseau W, Deschildre C, et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. *Stroke* 2018;49:754–757.

- Sporns PB, Hanning U, Schwindt W, Velasco A, Minnerup J, Zoubi T, et al. Ischemic stroke: what does the histological composition tell us about the origin of the thrombus? *Stroke* 2017;48:2206-2210.
- Prochazka V, Jonszta T, Czerny D, Krajca J, Roubec M, Macak J, et al. The role of von Willebrand factor, ADAMTS13, and cerebral artery thrombus composition in patient outcome following mechanical thrombectomy for acute ischemic stroke. *Med Sci Monit* 2018;24:3929–3945.
- Krajičková D, Krajina A, Šteiner I, Vyšata O, Herzig R, Lojík M, et al. Fibrin clot architecture in acute ischemic stroke treated with mechanical thrombectomy with stent-retrievers: cohort study. *Circ J* 2018;82:866–873.
- 99. Chen SH, Scott XO, Ferrer Marcelo Y, Almeida VW, Blackwelder PL, Yavagal DR, et al. Netosis and inflammasomes in large vessel occlusion thrombi. *Front Pharmacol* 2021;11:607287.
- Mereuta OM, Fitzgerald S, Abbasi M, Dai D, Kadirvel R, Kallmes DF, et al. Von Willebrand factor expression in various subtypes of acute ischemic stroke. *Stroke* 2020;51(Suppl 1):AWP268.
- 101. Funatsu N, Hayakawa M, Hashimoto T, Yamagami H, Satow T, Takahashi JC, et al. Vascular wall components in thrombi obtained by acute stroke thrombectomy: clinical significance and related factors. *J Neurointerv Surg* 2019;11:232-236.
- Bhaskar S, Saab J, Cappelen-Smith C, Killingsworth M, Wu XJ, Cheung A, et al. Clot histopathology in ischemic stroke with infective endocarditis. *Can J Neurol Sci* 2019;46:331-336.
- 103. Mehta RI, Rai AT, Vos JA, Solis OE, Mehta RI. Intrathrombus polymer coating deposition: a pilot study of 91 patients undergoing endovascular therapy for acute large vessel stroke. Part I: Histologic frequency. *J Neurointerv Surg* 2019;11:1191-1196.
- 104. Hund HM, Taha A, Ramlal SA, Hansen D, Autar ASA, van de Lugt A, et al. Foreign bodies are present in thrombi mechanically extracted from patients suffering acute ischemic stroke and who underwent endovascular treatment. *J Cereb Blood Flow Metab* 2019;39:261.
- 105. Sallustio F, Arnò N, Di Legge S, Koch G, Martorana A, Rossi C, et al. Histological features of intracranial thrombo-emboli predict response to endovascular therapy for acute ischemic stroke. J Neurol Disord Stroke 2015;3:1105.
- Cline B, Vos J, Carpenter J, Rai A. Pathological analysis of extracted clots in embolectomy patients with acute ischaemic stroke. *J NeuroInterv Surg* 2013;5(Suppl 2):A15–A16.
- 107. Li Y, Wang H, Zhao L, Jian Y, Dang M, Jiang Y, et al. A case report of thrombolysis resistance: thrombus ultrastructure in an ischemic stroke patient. *BMC Neurol* 2020;20:135.
- 108. Khashim Z, Fitzgerald S, Kadirvel R, Dai D, Doyle KM, Brinjikji

W, et al. Clots retrieved by mechanical thrombectomy from acute ischemic stroke patients show no evidence of bacteria. *Interv Neuroradiol* 2019;25:502–507.

- 109. Hernández-Fernández F, Rojas-Bartolomé L, García-García J, Ayo-Martín Ó, Molina-Nuevo JD, Barbella-Aponte RA, et al. Histopathological and bacteriological analysis of thrombus material extracted during mechanical thrombectomy in acute stroke patients. *Cardiovasc Intervent Radiol* 2017;40:1851-1860.
- 110. Patrakka O, Pienimäki JP, Tuomisto S, Ollikainen J, Lehtimäki T, Karhunen PJ, et al. Oral bacterial signatures in cerebral thrombi of patients with acute ischemic stroke treated with thrombectomy. *J Am Heart Assoc* 2019;8:e012330.
- 111. Vajpeyee A, Chauhan PS, Pandey S, Tiwari S, Yadav LB, Shroti AK, et al. Metagenomics analysis of thrombus samples retrieved from mechanical thrombectomy. *Neurointervention* 2021;16:39-45.
- Baek BH, Kim HS, Yoon W, Lee YY, Baek JM, Kim EH, et al. Inflammatory mediator expression within retrieved clots in acute ischemic stroke. *Ann Clin Transl Neurol* 2018;5:273–279.
- Rao NM, Capri J, Cohn W, Abdaljaleel M, Restrepo L, Gornbein JA, et al. Peptide composition of stroke causing emboli correlate with serum markers of atherosclerosis and inflammation. *Front Neurol* 2017;8:427.
- 114. Muñoz R, Santamaría E, Rubio I, Ausín K, Ostolaza A, Labarga A, et al. Mass spectrometry-based proteomic profiling of thrombotic material obtained by endovascular thrombectomy in patients with ischemic stroke. *Int J Mol Sci* 2018;19:498.
- 115. Dargazanli C, Zub E, Deverdun J, Decourcelle M, de Bock F, Labreuche J, et al. Machine learning analysis of the cerebrovascular thrombi proteome in human ischemic stroke: an exploratory study. *Front Neurol* 2020;11:575376.
- 116. Lopez-Pedrera C, Ibañez-Costa A, Perez-Sanchez C, Luque-Tevar M, Patiño-Trives AM, Abalos-Aguilera MDC, et al. Characterization of the protein profile in thrombi of patients with ischemic stroke and identification of potential biomarkers as predictors of negative clinical evolution. *Res Pract Thromb Haemost* 2020;4(Suppl 1):0C08.5.
- 117. Suissa L, Guigonis JM, Graslin F, Doche E, Osman O, Chau Y, et al. Metabolome of cerebral thrombi reveals an association between high glycemia at stroke onset and good clinical outcome. *Metabolites* 2020;10:483.
- 118. Di Meglio L, Desilles JP, Solonomenjanahary M, Labreuche J, Ollivier V, Dupont S, et al. DNA content in ischemic stroke thrombi can help identify cardioembolic strokes among strokes of undetermined cause. *Stroke* 2020;51:2810-2816.
- 119. Di Meglio L, Derraz I, Solonomenjanahary M, Daly D, Chodraui Filho S, Ben Maacha M, et al. Two-layered susceptibility ves-

sel sign is associated with biochemically quantified thrombus red blood cell content. *Eur J Neurol* 2020;27:1264–1271.

- 120. Juega J, Pagola J, Palacio C, Camacho J, Cardona P, Quesada H, et al. Etiology of stroke based on early analysis of clot cytometry obtained through first pass technique for mechanical thrombectomy. *Stroke* 2019;50(Suppl 1):AWMP70.
- 121. Itsekson Hayosh Z, Abu Bandora E, Shelestovich N, Nulman M, Bakon M, Yaniv G, et al. In-thrombus thrombin secretion: a new diagnostic marker of atrial fibrillation in cryptogenic stroke. J Neurointerv Surg 2021;13:799–804.
- 122. Boeckh-Behrens T, Kleine JF, Zimmer C, Neff F, Scheipl F, Pelisek J, et al. Thrombus histology suggests cardioembolic cause in cryptogenic stroke. *Stroke* 2016;47:1864–1871.
- 123. Liao Y, Guan M, Liang D, Shi Y, Liu J, Zeng X, et al. Differences in pathological composition among large artery occlusion cerebral thrombi, valvular heart disease atrial thrombi and carotid endarterectomy plaques. *Front Neurol* 2020;11:811.
- 124. Xue Y, Zhao Y, Cao J, Zhu XC, Shao HM, Chen RH, et al. Exploration of thrombus histological composition and clinical effect in mechanical thrombectomy of acute ischemic stroke. *Zhonghua Yi Xue Za Zhi* 2018;98:3697–3700.
- 125. Gong L, Zheng X, Feng L, Zhang X, Dong Q, Zhou X, et al. Bridging therapy versus direct mechanical thrombectomy in patients with acute ischemic stroke due to middle cerebral artery occlusion: a clinical- histological analysis of retrieved thrombi. *Cell Transplant* 2019;28:684–690.
- 126. Berndt M, Prothmann S, Maegerlein C, Oberdieck P, Zimmer C, Hegge B, et al. Artificial stroke clots: how wide is the gap to the real world? *World Neurosurg* 2018;110:e90–e99.
- 127. Bhaskar S, Saab J, Cappelen-Smith C, Cordato D, Cheung A, Manning N, et al. Cryptogenic stroke is linked to cardioembolic aetiology: a histopathological study of thrombus retrieved after endovascular thrombectomy. *Eur J Neurol* 2019; 26:20.
- 128. Meng L, Wang H, Yang H, Zhang X, Zhang Q, Dong Q, et al. Nomogram to predict poor outcome after mechanical thrombectomy at older age and histological analysis of thrombus composition. Oxid Med Cell Longev 2020;2020:8823283.
- 129. Wolpert F, Kulcsár Z, Hänsel M, Rushing E, Seystahl K, Schweizer J, et al. Embolization of tumor cells is rare in patients with systemic cancer and cerebral large vessel occlusion. *Eur J Neurol* 2020;27:2041–2046.
- 130. Hinman JD, Rao NM, Yallapragada A, Capri J, Souda P, Whitelegge J, et al. Drip, ship, and grip, then slice and dice: comprehensive stroke center management of cervical and intracranial emboli. *Front Neurol* 2013;4:104.
- 131. Ambrosioni J, Urra X, Hernández-Meneses M, Almela M, Falces C, Tellez A, et al. Mechanical thrombectomy for acute

ischemic stroke secondary to infective endocarditis. *Clin Infect Dis* 2018;66:1286-1289.

- 132. Bain MD, Hussain MS, Gonugunta V, Katzan I, Gupta R. Successful recanalization of a septic embolus with a balloon mounted stent after failed mechanical thrombectomy. *J Neuroimaging* 2011;21:170-172.
- Distefano M, Calandrelli R, Arena V, Pedicelli A, Della Marca G, Pilato F. A puzzling case of cryptogenic stroke. *J Stroke Cerebrovasc Dis* 2019;28:e33-e35.
- Nakanishi K, Kawano H, Amano T, Omori Y, Kanma H, Hirano T. Stroke due to infective endocarditis diagnosed by the retrieved thrombus: a case report. *Rinsho Shinkeigaku* 2018; 58:35-40.
- 135. Sukumaran S, Jayadevan ER, Mandilya A, Sreedharan SE, Harikrishnan S, Radhakrishnan N, et al. Successful mechanical thrombectomy of acute middle cerebral artery occlusion due to vegetation from infective endocarditis. *Neurol India* 2012; 60:239-240.
- 136. Sgreccia A, Carità G, Coskun O, Maria FD, Benamer H, Tisserand M, et al. Acute ischemic stroke treated with mechanical thrombectomy and fungal endocarditis: a case report and systematic review of the literature. *J Neuroradiol* 2020;47: 386-392.
- 137. Katano T, Sakamoto Y, Kunugi S, Nishiyama Y, Shimizu A, Kimura K. A fungus in a thrombus by mechanical thrombectomy in acute cerebral infarction: a case report. *Rinsho Shinkeigaku* 2020;60:340-345.
- 138. Scharf EL, Cloft HJ, Wijdicks E. Mucor thrombus. *Neurocrit Care* 2016;24:268–272.
- 139. Matsumoto N, Takahashi M, Katano T, Kutsuna A, Kanamaru T, Sakamoto Y, et al. Cholesterol crystal in thrombus removed by mechanical thrombectomy should be a strong marker for aortogenic embolic stroke. *J Stroke Cerebrovasc Dis* 2020;29: 105178.
- 140. Usui G, Hashimoto H, Sugiura Y, Nishi Y, Kusakabe M, Horiuchi H, et al. Aortogenic embolic stroke diagnosed by a pathological examination of endovascularly removed thrombus: an autopsy report. *Intern Med* 2019;58:2851–2855.
- 141. Koneru S, Nogueira RG, Osehobo E, Oprea-Ilies G, Al-Bayati AR, Brinjikji W, et al. Clot composition in retrieved thrombi after mechanical thrombectomy in strokes due to carotid web. *J Neurointerv Surg* 2021;13:530–533.
- 142. Mönch S, Boeckh-Behrens T, Berndt M, Maegerlein C, Wunderlich S, Zimmer C, et al. Angiographic baseline proximal thrombus appearance of M1/M2 occlusions in mechanical thrombectomy. *Clin Neuroradiol* 2021;31:189–196.
- 143. Wei L, Zhu Y, Deng J, Li Y, Li M, Lu H, et al. Visualization of thrombus enhancement on thin-slab maximum intensity pro-

jection of CT angiography: an imaging sign for predicting stroke source and thrombus compositions. *Radiology* 2021;298:374–381.

- 144. Patel TR, Fricano S, Waqas M, Tso M, Dmytriw AA, Mokin M, et al. Increased perviousness on CT for acute ischemic stroke is associated with fibrin/platelet-rich clots. *AJNR Am J Neuroradiol* 2021;42:57–64.
- 145. Berndt M, Poppert H, Steiger K, Pelisek J, Oberdieck P, Maegerlein C, et al. Thrombus histology of basilar artery occlusions : are there differences to the anterior circulation? *Clin Neuroradiol* 2021;31:753–761.
- 146. Berndt M, Friedrich B, Maegerlein C, Moench S, Hedderich D, Lehm M, et al. Thrombus permeability in admission computed tomographic imaging indicates stroke pathogenesis based on thrombus histology. *Stroke* 2018;49:2674–2682.
- 147. Brinjikji W, Nogueira RG, Kvamme P, Layton KF, Delgado Almandoz JE, Hanel RA, et al. Association between clot composition and stroke origin in mechanical thrombectomy patients: analysis of the Stroke Thromboembolism Registry of Imaging and Pathology. J Neurointerv Surg 2021;13:594-598.
- 148. Smith WS, Furlan AJ. Brief history of endovascular acute isch-

emic stroke treatment. *Stroke* 2016;47:e23-e26.

- 149. Saver JL. Clinical practice: cryptogenic stroke. *N Engl J Med* 2016;374:2065-2074.
- 150. Roessler FC, Kalms N, Jann F, Kemmling A, Ribbat-Idel J, Stellmacher F, et al. First approach to distinguish between cardiac and arteriosclerotic emboli of individual stroke patients applying the histological THROMBEX-classification rule. *Sci Rep* 2021;11:8433.
- 151. Kim JM, Byun JS, Kim J, Park MS, Hong SA, Nam TK, et al. Analysis of microRNA signatures in ischemic stroke thrombus. *J Neurointerv Surg* 2021 Jul 8 [Epub]. https://doi.org/10.1136/ neurintsurg-2021-017597.
- 152. Abbasi M, Fitzgerald S, Ayers-Ringler J, Espina V, Mueller C, Rucker S, et al. Proteomic analysis of cardioembolic and large artery atherosclerotic clots using reverse phase protein array technology reveals key cellular interactions within clot microenvironments. *Cureus* 2021;13:e13499.
- 153. Suissa L, Guigonis JM, Graslin F, Robinet-Borgomano E, Chau Y, Sedat J, et al. Combined omic analyzes of cerebral thrombi: a new molecular approach to identify cardioembolic stroke origin. *Stroke* 2021;52:2892-2901.

Supplementary Table 1. Studies included in the qualitative synthesis

Study	Туре	Sample size	Physical analysis	Histopathology	Biological analysis	Microbiology	Diagnostic
Abdel-Wahed et al. (2019) Am J Med ¹⁴	Case report	1	Yes	Yes	No	Yes	Atypical etiology; Underlying pathology
Ahn et al. (2016) Int J Stroke ⁵⁷	Cohort	36	No	Yes	No	No	TOAST
Almekhlafi et al. (2008) Ann Neurol43	Case series	5	Yes	Yes	No	No	None
Ambrosioni et al. (2018) Clin Infect Dis ¹³¹	Case series	6	No	No	No	Yes	Atypical etiology; Underlying pathology
Anuwatworn et al. (2015) JACC Cardiovasc Interv ²⁴	Case report	1	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Baek et al. (2018) Ann Clin Transl Neurol ¹¹²	Cohort	82	No	No	Yes	No	TOAST
Bain et al. (2011) J Neuroimaging ¹³²	Case report	1	No	Yes	No	Yes	Atypical etiology; Underlying pathology
Benson et al. (2020) J NeuroIntervent Surg ⁵⁸	Cohort	57	No	Yes	No	No	None
Berndt et al. (2018) World Neurosurg ¹²⁶	Cohort	137	No	Yes	No	No	TOAST
Berndt et al. (2018) Stroke ¹⁴⁶	Cohort	32	No	Yes	No	No	None
Berndt et al. (2021) Clin Neuroradiol ¹⁴⁵	Cohort	59	No	Yes	No	No	None
Bhaskar et al. (2019) Eur J Neurol ¹²⁷	Cohort	85	No	Yes	No	No	TOAST
Bhaskar et al. (2019) Can J Neurol Sci ¹⁰²	Case series	4	No	Yes	No	Yes	Atypical etiology; Underlying pathology
Biraschi et al. (2016) J Stroke Cerebrovasc Dis ¹⁵	Case report	1	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Boeckh-Behrens et al. (2016) Clin Neuroradiol ⁸⁹	Cohort	34	No	Yes	No	No	TOAST
Boeckh-Behrens et al. (2016) Stroke ¹²²	Cohort	137	No	Yes	No	No	TOAST
Bourcier et al. (2020) J Stroke Cerebrovasc Dis ³⁵	Cohort	139	Yes	No	No	No	None
Brinjikji et al. (2020) Stroke59	Cohort	1,022	No	Yes	No	No	TOAST
Chapot et al. (2006) Am J Neuroradiol ²⁵	Case report	1	Yes	Yes	No	No	Atypical etiology
Chen et al. (2021) Front Pharmacol ⁹⁹	Cohort	30	No	Yes	Yes	No	None
Choi et al. (2018) Stroke ³⁷	Cohort	52	Yes	Yes	No	No	None
Chueh et al. (2011) Am J Neuroradiol ⁴⁴	Cohort	4	Yes	Yes	No	No	None
Cline et al. (2013) J NeuroIntervent Surg ¹⁰⁶	Cohort	16	No	Yes	No	No	None
Darcourt et al. (2021) Int J Stroke ⁸⁷	Cohort	102	No	Yes	No	No	None
Dargazanli et al. (2016) PLoS ONE90	Cohort	54	No	Yes	No	No	TOAST
Dargazanli et al. (2020) Front Neurol ¹¹⁵	Cohort	60	No	No	Yes	No	TOAST
Deng et al. (2020) Neurosci Lett ⁹⁴	Cohort	46	No	Yes	No	No	Underlying pathology
Di Meglio et al. (2020) Eur J Neurol ¹¹⁹	Cohort	84	No	No	Yes	No	None
Di Meglio et al. (2020) Stroke ¹¹⁸	Cohort	250	No	No	Yes	No	TOAST
Di Meglio et al. (2019) Neurology ⁶³	Cohort	199	No	Yes	No	No	None
Distefano et al. (2019) J Stroke Cerebrovasc Dis ¹³³	Case report	1	No	Yes	No	Yes	Atypical etiology; Underlying pathology
Donnerstag et al. (2021) Intervent Neuroradiol ⁹¹	Cohort	302	No	Yes	No	No	None
Douglas et al. (2020) J NeuroIntervent Surg ⁶⁰	Cohort	91	No	Yes	No	No	None
Ducroux et al. (2018) Stroke ⁹⁵	Cohort	108	No	Yes	Yes	No	None
Duffy et al. (2019) Stroke ⁶¹	Cohort	106	No	Yes	No	No	None
Elijovich et al. (2018) Stroke ⁷⁵	Cohort	25	No	Yes	Yes	No	None
Elodie et al. (2019) J Neurol Sci ²⁶	Case report	1	Yes	No	No	Yes	Atypical etiology; Underlying pathology
Essig et al. (2020) Int J Mol Sci ⁷⁶	Cohort	37	No	Yes	No	No	TOAST
Fassa et al. (2014) Circ Cardiovasc Interv ²⁷	Case report	1	Yes	Yes	No	No	Atypical etiology

Supplementary Table 1. Continued

Study	Туре	Sample size	Physical analysis	Histopathology	Biological analysis	Microbiology	Diagnostic
Fitzgerald et al. (2019) Stroke ⁵⁰	Cohort	105	No	Yes	No	No	TOAST
Fitzgerald et al. (2021) J Stroke Cerebrovase Dis ⁴⁰	Cohort	550	Yes	No	No	No	TOAST
Fitzgerald et al. (2019) PLoS ONE48	Cohort	50	No	Yes	No	No	None
Fitzgerald et al. (2020) J NeuroIntervent Surg ³⁹	Cohort	612	Yes	Yes	No	No	TOAST
Fitzgerald et al. (2019) J NeuroIntervent Surg ⁴⁹	Cohort	85	No	Yes	No	No	None
Fitzpatrick et al. (2018) J NeuroIntervent Surg ²⁸	Case series	3	Yes	Yes	No	No	Atypical etiology
Fu et al. (2020) Stroke ³⁸	Cohort	152	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Funatsu et al. (2019) J NeuroIntervent Surg ¹⁰¹	Cohort	150	No	Yes	No	No	None
Garcia-Ptacek et al. (2014) J NeuroIntervent Surg ²⁹	Case report	2	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Genchi et al. (2020) J Neurol Sci ³⁰	Case report	1	Yes	Yes	No	No	Atypical etiology
Goebel et al. (2020) Am J Neuroradiol ⁶⁷	Cohort	85	No	Yes	No	No	TOAST
Gong et al. (2019) Cell Transplant ¹²⁵	Cohort	45	No	Yes	No	No	TOAST
Gurkas et al. (2019) Stroke ⁷⁷	Cohort	111	No	Yes	No	No	None
Hanning et al. (2021) J NeuroIntervent Surg ⁸⁸	Cohort	112	No	Yes	No	No	None
Hashimoto et al. (2016) Stroke ⁷⁸	Cohort	83	No	Yes	No	No	None
Hernández-Fernández et al. (2017) Cardiovase Intervent Radiol ¹⁰⁹	Cohort	65	No	Yes	No	Yes	Atypical etiology; Underlying pathology
Hinman et al. (2013) Front Neurol ¹³⁰	Case report	1	No	Yes	Yes	No	Atypical etiology
Horie et al. (2019) World Neurosurg ⁴²	Cohort	65	No	Yes	No	No	None
Hund et al. (2019) J Cereb Blood Flow Metab ¹⁰⁴	Cohort	281	No	Yes	No	No	None
Itsekson Hayosh et al. (2020) J NeuroIntervent Surg ¹²¹	Cohort	68	No	No	Yes	No	TOAST
Juega et al. (2019) Stroke ¹²⁰	Cohort	40	No	No	Yes	No	TOAST
Kaesmacher et al. (2017) Am J Neuroradiol ⁹²	Cohort	85	No	Yes	No	No	None
Kan et al. (2012) World Neurosurg ³¹	Case report	1	Yes	No	No	Yes	Atypical etiology; Underlying pathology
Katano et al. (2020) Clin Neurol ¹³⁷	Case report	1	No	Yes	No	Yes	Atypical etiology; Underlying pathology
Khashim et al. (2019) Interv Neuroradiol ¹⁰⁸	Cohort	20	No	No	No	Yes	None
Khismatullin et al. (2020) BioNanoScience62	Case series	3	No	Yes	No	No	None
Kim et al. (2020) J Clin Neurosci⁵¹	Cohort	52	No	Yes	No	No	TOAST
Kim et al. (2014) Neurointervention ³²	Case report	1	Yes	Yes	No	Yes	Atypical etiology; Underlying pathology
Kim et al. (2015) Am J Neuroradiol ⁷²	Cohort	37	No	Yes	No	No	TOAST
Koneru et al. (2021) J NeuroIntervent Surg ¹⁴¹	Case series	3	No	Yes	No	No	Atypical etiology; Underlying pathology
Krajíčková et al. (2018) Circ J ⁹⁸	Cohort	80	No	Yes	No	No	None
Laridan et al. (2017) Ann Neurol ⁹³	Cohort	68	No	Yes	No	No	TOAST
Li et al. (2020) BMC Neurology ¹⁰⁷	Case report	2	No	Yes	No	No	None
Liao et al. (2020) Front Neurol ¹²³	Cohort	88	No	Yes	No	No	TOAST
Liebeskind et al. (2011) Stroke ⁷⁹	Cohort	50	No	Yes	No	No	None
Liu et al. (2020) J Neurosurg ⁴⁵	Cohort	16	Yes	Yes	No	No	None
Liu et al. (2020) Thromb Res ⁸⁰	Cohort	84	No	Yes	No	No	None
López-Cancio et al. (2013) Cerebrovasc Dis ⁷⁴	Cohort	15	No	Yes	No	No	None
Lopez-Pedrera et al. (2020) Res Pract Thromb Haemost ¹¹⁶	Cohort	50	No	No	Yes	No	None

Supplementary Table 1. Continued

Study	Туре	Sample size	Physical analysis	Histopathology	Biological analysis	Microbiology	Diagnostic
Maegerlein et al. (2018) Intervent Neuroradiol ⁸¹	Cohort	64	No	Yes	No	No	None
Maekawa et al. (2018) Cerebrovasc Dis Extra ⁸²	Cohort	43	No	Yes	No	No	TOAST
Marder et al. (2006) Stroke ⁷	Cohort	25	No	Yes	No	Yes	Atypical etiology; None; Underlying pathology
Matsumoto et al. (2016) J Stroke Cerebrovasc Dis ³³	Case report	2	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Matsumoto et al. (2020) J Stroke Cerebrovasc Dis ¹³⁹	Case report	1	No	Yes	No	No	Atypical etiology
Meher et al. (2018) Int J Stroke47	Cohort	19	Yes	Yes	No	No	None
Mehta et al. (2019) J NeuroIntervent Surg ¹⁰³	Cohort	92	No	Yes	No	No	None
Meng et al. (2020) Oxid Med Cell Longev ¹²⁸	Cohort	147	No	Yes	No	No	None
Mereuta et al. (2020) Stroke ¹⁰⁰	Cohort	79	No	Yes	No	No	TOAST
Mereuta et al. (2021) J NeuroIntervent Surg ⁵⁶	Cohort	10	No	Yes	No	No	None
Mönch et al. (2021) Clin Neuroradiol ¹⁴²	Cohort	69	No	Yes	No	No	None
Muñoz et al. (2018) Int J Mol Sci ¹¹⁴	Cohort	4	No	No	Yes	No	None
Nakanishi et al. (2018) Clin Neurol ¹³⁴	Case report	1	No	No	No	Yes	Atypical etiology; Underlying pathology
Niesten et al. (2014) PLoS ONE64	Cohort	22	No	Yes	No	No	TOAST
Nouh et al. (2020) BMC Neurology ⁷³	Cohort	33	No	Yes	No	No	TOAST
Novotny et al. (2020) Neurology ⁶⁶	Cohort	71	No	Yes	No	No	TOAST
Park et al. (2019) Ann Neurol ⁶⁵	Cohort	48	No	Yes	No	No	Atypical etiology; Underlying pathology
Patel et al. (2021) Am J Neuroradiol ¹⁴⁴	Cohort	40	No	Yes	No	No	None
Patrakka et al. (2019) J Am Heart Assoc ¹¹⁰	Cohort	75	No	No	No	Yes	None
Peña-Martínez et al. (2019) Stroke ⁷¹	Cohort	10	No	Yes	Yes	No	None
Pisano et al. (2020) J Stroke Cerebrovasc Dis ³⁴	Case report	1	Yes	No	No	No	Atypical etiology; Underlying pathology
Prochazka et al. (2018) Med Sci Monit ⁹⁷	Cohort	90	No	Yes	No	No	None
Qureshi et al. (2016) J Vasc Intervent Neurol ⁸³	Cohort	18	No	Yes	No	No	None
Rao et al. (2017) Front Neurol ¹¹³	Cohort	20	No	No	Yes	No	None
Rossi et al. (2021) J Thromb Thrombolysis ⁴¹	Cohort	550	Yes	No	No	No	None
Salam et al. (2018) J Stroke Cerebrovasc Dis ¹⁶	Case report	1	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Salinas et al. (2013) JACC Cardiovasc Interv ¹⁷	Case report	1	Yes	No	No	No	Atypical etiology
Sallustio et al. (2015) J Neurol Disord Stroke ¹⁰⁵	Cohort	28	No	Yes	No	No	None
Scharf et al. (2017) J NeuroIntervent Surg ¹⁸	Case report	1	Yes	Yes	No	Yes	Atypical etiology; Underlying pathology
Scharf et al. (2016) Neurocrit Care ¹³⁸	Case report	1	No	No	No	Yes	Atypical etiology; Underlying pathology
Schuhmann et al. (2016) Int J Mol Sci ⁵²	Cohort	37	No	Yes	No	No	None
Semerano et al. (2019) J Neurol ¹⁹	Case report	1	Yes	Yes	No	No	TOAST
Sgreccia et al. (2020) J Neuroradiol ¹³⁶	Case report	1	No	No	No	Yes	Atypical etiology; Underlying pathology
Sgreccia et al. (2019) J NeuroIntervent Surg ³⁶	Cohort	255	Yes	No	No	No	Atypical etiology; Underlying pathology
Shin et al. (2018) PLoS ONE ⁸⁴	Cohort	93	No	Yes	No	No	TOAST
Simons et al. (2015) J Neuroradiol ⁸⁵	Cohort	40	No	Yes	No	No	None
Singh et al. (2013) Stroke ⁸⁶	Cohort	48	No	Yes	No	No	None

Study	Туре	Sample size	Physical analysis	Histopathology	Biological analysis	Microbiology	Diagnostic
Sporns et al. (2021) J NeuroIntervent Surg68	Cohort	163	No	Yes	No	No	None
Sporns et al. (2017) Stroke ⁹⁶	Cohort	187	No	Yes	No	No	TOAST
Sporns et al. (2017) Cerebrovasc Dis ⁷⁰	Cohort	180	No	Yes	No	No	None
Sporns et al. (2019) Stroke69	Cohort	163	No	Yes	No	No	None
Staessens et al. (2020) Haematologica53	Cohort	177	No	Yes	No	No	None
Suissa et al. (2020) Metabolites ¹¹⁷	Cohort	41	No	No	Yes	No	None
Sukumaran et al. (2012) Neurol India ¹³⁵	Case report	1	No	Yes	No	Yes	Atypical etiology; Underlying pathology
Tejada et al. (2014) J NeuroIntervent Surg ²⁰	Case report	1	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Thomas et al. (2017) J NeuroIntervent Surg ²¹	Case report	1	Yes	Yes	No	No	Atypical etiology; Underlying pathology
Usui et al. (2019) Intern Med ¹⁴⁰	Case report	1	No	Yes	No	No	Atypical etiology
Vajpeyee et al. (2021) Neurointervention ¹¹¹	Cohort	4	No	No	No	Yes	TOAST
Valente et al. (2019) J Clin Neurosci ²²	Case report	1	Yes	Yes	No	Yes	Atypical etiology; Underlying pathology
Vidmar et al. (2019) Radiol Oncol ⁴⁶	Cohort	17	Yes	No	No	No	None
Wei et al. (2021) Radiology ¹⁴³	Cohort	77	No	Yes	No	No	None
Wollenweber et al. (2016) Neurology ²³	Case report	1	Yes	Yes	No	No	Atypical etiology
Wolpert et al. (2020) Eur J Neurol ¹²⁹	Cohort	32	No	Yes	No	No	Atypical etiology; Underlying pathology
Xue et al. (2018) Natl Med J China ¹²⁴	Cohort	58	No	Yes	No	No	TOAST
Ye et al. (2020) Interv Neuroradiol ⁵⁵	Cohort	52	No	Yes	No	No	Underlying pathology
Ye et al. (2020) Clin Neurol Neurosurg ⁵⁴	Cohort	54	No	Yes	No	No	None

Supplementary Table 1. Continued

TOAST, Trial of ORG 10172 in Acute Stroke Treatment.

Supplementary Table 2. Cohort studies: thrombus composition and TOAST stroke etiology or underlying pathology

Study	Sample size (clots/ patients)	Analysis	Thrombus composition items	Etiology groups (patients)	Association composition-etiology or underlying pathology
Ahn et al. (2016) Int J Stroke ⁵⁷	36	Histopathology	RBC and FBR proportions	LAA (8), CE (22), and CRY (6)	RBCs most abundant (56.9% \pm 12.2%) in LAA, higher than CE. FBR most abundant (39.5% \pm 13.5%) in CE, higher than LAA. Similar composition in CRY and CE
Baek et al. (2018) Ann Clin Transl Neurol ¹¹²	82	Biomolecular RTqPCR	Expression of inflammatory mediators	LAA (9), CE (51), and CRY (22)	Higher IL-1 β expression in LAA than in both CE and CRY. Similar expression in CRY and CE
Berndt et al. (2018) World Neurosurg ¹²⁶	137	Histopathology	FP/RBC ratio	LAA (22), CE (67), ODC (11), and CRY (36)	Higher FP/RBC in CE+CRY than non-CE (LAA+ODC)
Bhaskar et al. (2019) Eur J Neurol ¹²⁷	85	Histopathology	RBC, FP, and WBC proportions	CE, non-CE, and CRY	RBC (26%), FP (61%) and WBC (11%) proportions in CE similar to RBC (28%), FP (64%) and WBC (9%) proportions in CRY. Different proportions in non-CE
Boeckh-Behrens et al. (2016) Clin Neuroradiol ⁸⁹	34	Histopathology	RBC, FP, and WBC proportions	LAA (3), CE (16), ODC (6), and CRY (9)	Higher proportion of WBCs in CE than in LAA or CRY
Boeckh-Behrens et al. (2016) Stroke ¹²²	137	Histopathology	RBC, FP, and WBC proportions	LAA (22), CE (67), ODC (11), and CRY (36)	Different composition in CE (RBC 38.3%±20.0%, FP 52.6%±18.6% and WBC 9.1%±6.4%) and in non- CE (LAA+ODE) (RBC 52.7%±25.2%, FP 40.9%±23.3%, and WBC 6.5%±3.8%). Similar composition in CRY (RBC 42.0%±21.4%, FP 50.8%±20.8%, and WBC 7.1%±4.5%) and in CE
Brinjikji et al. (2020) Stroke ⁵⁹	1,022	Histopathology	PLT proportion	LAA and CE	Higher PLT content in LAA (PLT-rich clots [55.0%], PLT- area [22.1%]) than in CE (PLT-rich clots [21.2%], PLT- area [13.9%])
Dargazanli et al. (2016) PLOS One ⁹⁰	54	Histopathology	CD3+ T-cell count	LAA (10), CE (25), and other causes (ODC+CRY, 19)	Higher T-cell count in LAA (53.60 ± 28.78) than in both CE (20.08 ± 15.66) or other causes (21.77 ± 18.31)
Dargazanli et al. (2020) Front Neurol ¹¹⁵	60	Biomolecular Proteomics	Relative protein	LAA (28) and CE (32)	Coagulation factor XIII associated with CE
Deng et al. (2020) Neurosci Lett ⁹⁴	46	Histopathology	NETs (H3Cit) proportion	NG (28), AHG (9), and DM (9)	Higher NETs proportion in both AHG and DM than in NG
Di Meglio et al. (2020) Stroke ¹¹⁸	250	Biochemical	GP (glycoprotein) VI, heme, and DNA contents	CE (142), non-CE (33), and ESUS (75)	CE richer in DNA (35.8 ng/mg), i.e., more leukocytes, and poorer in GP VI (0.104 ng/mg), i.e., less PLTs, than non- CE (DNA 13.8 ng/mg; GP VI 0.117 ng/mg)
Essig et al. (2020) Int J Mol Sci ⁷⁶	37	Histopathology	Neutrophil count and FBR proportion	CE (21), non-CE (7), and CRY (9)	Higher neutrophil counts in both CE (799.1 \pm 477.6 cells/ mm ²) and CRY (734.1 \pm 329.1 cells/mm ²) compared to non-CE (376 \pm 128.5 cells/mm ²). Higher FBR proportion in both CE (46.1% \pm 29.9%) and CRY (46.6% \pm 21.8%) compared to non-CE (25.9% \pm 12.1%)
Fitzgerald et al. (2019) Stroke ⁵⁰	105	Histopathology	RBC, WBC, FBR, and PLTs+other proportions	LAA (20), CE (52), ODC (12), and CRY (21)	Higher PLT content in LAA (PLT-rich clots [55.0%], PLT- area [$22.1\%\pm18.6\%$]) than in CE (PLT-rich clots [21.2%], PLT-area [$13.9\%\pm14.3\%$]). More PLT-rich clots in both LAA (55.0%) and CRY (50.0%) than in CE (21.2%)
Fitzgerald et al. (2020) J NeuroInterv Surg ³⁹	612 / 441	Histopathology	ECA; RBC, WBC, FBR, PLTs+other, and collagen proportions	LAA (115), CE (209), ODC (16), and CRY (101)	Larger ECA in LAA (54.96 mm ²) than in CE (33.64 mm ²), ODC (39.60 mm ²), and CRY (32.28 mm ²). Higher RBC proportion in LAA (48.89%) than in CE (35.57%), ODC (42.82%), and CRY (39.08%). Highest proportion of both FBR (33.3%) and PLTs+other (28.53%) in CE
Fitzgerald et al. (2021) J Stroke Cerebrovasc Dis ⁴⁰	550	Histopathology	ECA. Number of clot fragments	LAA (110), CE (197), ODC (33), and CRY (143). Excluded (67)	Larger ECA in LAA (109 mm ²) than in CE (52 mm ²), ODC (52 mm ²), and CRY (47 mm ²). Greater number of fragments in LAA (5.36) than in CE (3.72), ODC (3.73), and CRY (3.52)

Supplementary Table 2. Continued

Study	Sample size (clots/ patients)	Analysis	Thrombus composition items	Etiology groups (patients)	Association composition-etiology or underlying pathology
Fu et al. (2020) Stroke ³⁸	152	Macroscopic. Histopathology	RBC, FP, and WBC proportions	AC (19), LAA (26), and CE (107)	White gross appearance in AC vs. darker/reddish in LAA or CE. Higher FP proportion in AC (85.7%) than in LAA (42.5%) or CE (43.9%). Lower RBC proportion in AC (8.1%) than in LAA (51.7%) or CE (52.2%). Lower WBC proportion in AC (1.9%) than in LAA (3.1%) or CE (3.7%)
Goebel et al. (2020) Am J Neuroradiol ⁶⁷	85	Histopathology	RBC, WBC (macrophages, lymphocytes, granulocytes), FBR, and PLTs proportions	LAA (16), CE (51), ODC (1), and ESUS (17)	Higher proportion (range) of macrophages in CE (0.9% [$0.1\%-3.3\%$]) than in LAA (0.3% [$0.1\%-3.8\%$]) or ESUS (0.4% [$0.0\%-5.2\%$]). Higher proportion of PLTs in CE (19.1% [$3.6\%-81.1\%$]) than LAA (10.3% [$2.3\%-25.1\%$])
Gong et al. (2019) Cell Transplant ¹²⁵	45	Histopathology	RBC and FBR proportions	LAA (9) and CE (36)	Higher RBC proportion in CE (69%) than in LAA (55.5%). Lower FBR proportion in CE (31%) than in LAA (44.5%)
Hernández-Fernández et al. (2017) Cardiovasc Intervent Radiol ¹⁰⁹	65	Histopathology. Bacteriological	Distribution of RBCs, PLTs, and WBCs. Bacteria presence	CE (38), non-CE or CRY (27)	Gram-positive bacteria in four thrombi: infective endocarditis (2), urinary tract infection (1), and pneumonia (1)
Itsekson Hayosh et al. (2020) J NeuroInterv Surg ¹²¹	68	Biochemical	Eluted thrombin activity (ETA)	LAA (15), CE (18), ODC (18), and CRY (17)	Temporal profile of ETA similar in CRY and CE, and different from LAA
Juega et al. (2019) Stroke ¹²⁰	40	Flow cytometry	Leukocyte populations	LAA, CE, and ODC	Higher proportion of CD4 T lymphocytes in LAA (24.85%) than in CE (15.83%). Higher proportion of natural killer (NK) cells in LAA (21.08%) than in CE (17.04%). Lower proportion of CD8 T lymphocytes in LAA (13.56%) than in CE (20.24%)
Kim et al. (2020) J Clin Neurosci⁵¹	52	Histopathology	RBC, FBR, and PLTs proportions. PLT distribution pattern (PDP)	LAA (10), CE (31), and CRY (11)	Mostly peripheral PDP in LAA (70%). Mostly clustering PDP in CE (77.4%). Similar PDPs in CE and CRY.
Kim et al. (2015) Am J Neuroradiol ⁷²	37	Histopathology	RBC, FBR, PLTs, and WBC proportions	LAA (8), CE (22), and CRY (7)	Higher RBC proportion in CE (37.8%) than in LAA (16.9%). Lower FBR proportion in CE (32.3%) than in LAA (48.5%)
Laridan et al. (2017) Ann Neurol ⁹³	68	Histopathology	NETs (H3Cit) proportion	LAA (7), CE (40), ODC (6), and CRY (15)	Nearly double amount of NETs in CE ($3.07\% \pm 2.21\%$) than non-CE (LAA+ODC; $1.57\% \pm 1.23\%$)
Liao et al (2020) Front Neurol ¹²³	88	Histopathology	RBC, FBR, and PLTs proportions. WBC count	LAA (25), CE (46), ODC (6), and CRY (11)	Higher RBC proportion (range) in LAA (53.44% [49.91%–56.97%]) than in CE (35.70% [32.04%– 39.36%]) or CRY (38.18% [31.01%–45.35%]). Higher FBR proportion in both CE (35.91% [31.44%–40.39%]) and CRY (39.73% [27.97%–51.49%]) than in LAA (22.96% [17.81%–28.11%]) or ODC (26.33% [12.31%– 40.36%]).
Maekawa et al. (2018) Cerebrovasc Dis Extra ⁸²	43	Histopathology	RBC, FBR, and WBC proportions	LAA (5), CE (30), ODC (1), and CRY (7)	Lower RBC proportion in CE (29.5%±26.2%) than in non-CE (49.6%±26.1%). Higher FBR proportion in CE (66.2%±25.8%) than in non-CE (46.4%±25.5%).
Marder et al. (2006) Stroke ⁷	25	Histopathology	Distribution of RBCs, PLTs, and WBCs. Fungi presence	LAA (4), CE (16), ODC (3), and CRY (2)	One mycotic thrombus. Aortic valve infective endocarditis
Mereuta et al. (2020) Stroke ¹⁰⁰	79	Histopathology	VWF proportion	LAA (13), CE (39), ODC (12), and CRY (15)	Higher VWF proportion in CRY when compared to CE

Supplementary Table 2. Continued

Study	Sample size (clots/ patients)	Analysis	Thrombus composition items	Etiology groups (patients)	Association composition-etiology or underlying pathology
Niesten et al. (2014) PLOS One ⁶⁴	22	Histopathology	RBC, FBR, and PLTs proportions	LAA (8), CE (6), ODC (3), and CRY (5)	Higher RBC proportion (range) in both LAA (50% [35%– 90%]) and ODC (35% [20%–40%]), than in CE (35% [5%–45%]) or CRY (25% [2%–40%])
Nouh et al. (2020) BMC Neurology ⁷³	33	Histopathology	RBC and PLTs proportions. RBC/ PLTs ratio	LAA (9), CE (14), ODC (4), and ESUS (6)	RBC/PLTs ratio in ESUS (0.36 ± 0.33) similar to CE (0.78 ± 0.65), and different from LAA (1.73 ± 2.38) or ODC (1.44 ± 0.70)
Novotny et al. (2020) Neurology ⁶⁶	71	Histopathology	FBR and PLTs proportions. WBC subtypes counts. NETs and H3Cit counts	LAA (15), CE (35), and CRY (21)	Lower NETs count and netting neutrophils rate in LAA than in CE or CRY.
Park et al. (2019) Ann Neurol ⁶⁵	48	Histopathology	RBC, FBR, and PLTs proportions. Neutrophil and NETs counts	Control (16), AC (16), and IC (16)	Higher PLT proportion in AC (43.2%) than in IC (12.9%) or control (14.1%). Lower RBC proportion in AC (3.4%) than in IC (43.5%) or control (40.7%)
Sgreccia et al. (2019) J NeuroIntervent Surg ³⁶	255	Macroscopic	Visual aspect: red/black or white	LAA (53), CE (127), ODC (13), CRY (45), and atypical (17)	Atypical etiologies (AC, IE, etc.) more frequent in white clots (27.3%) than red/black clots (4.7%)
Shin et al. (2018) PLOS One ⁸⁴	93 / 37	Histopathology	RBC, FP, and WBC proportions	LAA (7), CE (22), and CRY (8)	Higher RBC proportion in CE (38%) than in LAA (23%) or CRY (26%). Lower WBC proportion in CE (3%) than in LAA (6%) or CRY (5%)
Sporns et al. (2017) Stroke ⁹⁶	187	Histopathology	RBC, FBR, and WBC proportions	LAA (35), CE (77), ODC (11), and CRY (64)	Composition (range) in both CE (RBC 28.0% [11.0%– 53.0%], FBR 60.0% [40.0%–80.0%], and WBC 8.0% [5.0%–12.5%]) and CRY (RBC 26.0% [10.5%–43.5%], FBR 63.5% [45.5%–77.8%], and WBC 10.0% [5.0%–14.5%]) different from non-CE (LAA+ODE) (RBC 42.0% [20.9%– 71.8%], FBR 51.5% [19.5%–68.5%], and WBC 5.0% [4.0%–10.0%]). Similar composition in and in CE and CRY
Wolpert et al. (2020) Eur J Neurol ¹²⁹	32	Histopathology	Tumor cell presence	AC: LAA (4), CE (8), ODC (1), and CRY (19)	Tumor cells in one out of 32 with AC (3.1%)
Xue et al. (2018) Natl Med J China ¹²⁴	58	Histopathology	RBC and FBR proportions	LAA (17), CE (31), and CRY (10)	Higher RBC proportion in LAA (58%) than in CE (46%), and higher FBR proportion in CE (54%) than in LAA (42%). Similar composition in CE (RBC 46%, FBR 54%) and CRY (RBC 47%, FBR 53%)
Ye et al. (2020) Interv Neuroradiol ⁵⁵	52	Histopathology	RBC, FBR, and PLT proportions. VWF content	LAA (12), CE (34), and CRY (6). NG (26) and DM (26)	Lower RBC proportion in DM (26.0%) than in NG (42.9%). Higher FBR proportion in DM (44.2%) than in NG (28.3%)

TOAST, Trial of Org 10172 in Acute Stroke Treatment; RBC, red blood cell; FBR, fibrin; LAA, large-artery atherosclerosis (TOAST 1); CE, cardioembolism (TOAST 2); CRY, cryptogenic stroke of undetermined etiology (TOAST 5); RTqPCR, reverse transcriptase quantitative polymerase chain reaction; IL-1 β , interleukin-1 β ; FP, fibrin+platelet; ODC, stroke of other determined cause (TOAST 4); WBC, white blood cell; PLT, platelet; NET, neutrophil extracellular trap; NG, normoglycemia; H3Cit, citrullinated histone H3; AHG, acute hyperglycemia; DM, diabetes mellitus; ESUS, embolic stroke of undetermined cause; ECA, extracted clot area; AC, active cancer; IE, infective endocarditis.

	-		-		
Study	Case(s) presentation	Thrombus/ embolus analysis	Thrombus/ embolus composition	Further diagnostic work-up	Stroke cause/ underlying pathology
Abdel-Wahed et al. (2019) Am J Med ¹⁴	A 72-year-old woman. Bioprosthetic aortic valve. Suspected urosepsis	Histopathology	Gram-positive cocci in chains	Streptococcus viridans in blood cultures. Klebsiella in urine cultures. Vegetations on the prosthetic aortic valve	Septic embolus. Infective endocarditis
Ambrosioni et al. (2018) Clin Infect Dis ¹³¹	Six cases. Pre- or post-stroke infective endocarditis. Prosthetic or native valves	Molecular biology	Streptococcus	Staphylococcus or Streptococcus in blood cultures in four cases	Septic embolus. Infective endocarditis
Anuwatworn et al. (2015) JACC Cardiovasc Interv ²⁴	A 78-year-old man. Transcatheter aortic valve replacement (TAVR)	Macroscopic. Histopathology	Heart valve tissue	Aortic valve echo-dense mobile mass disappearing after TAVR	Cardiac valve tissue embolization
Bain et al. (2011) J Neuroimaging ¹³²	A 24-year-old female. Left ventricular assist device (LVAD). Epidermidis, septicemia and persistent infections of the LVAD	Histopathology	Gram-positive cocci and bacilli		Septic embolus. Infective endocarditis
Bhaskar et al. (2019) Can J Neurol Sci ¹⁰²	Four cases. Prosthetic valves. History of infective endocarditis in two cases	Histopathology	Fibrinoid material with clusters of bacterial cocci	Prosthetic valve vegetations. Enterococcus faecalis and Staphylococcus aureus in blood culture in two cases	Septic embolus. Infective endocarditis
Biraschi et al. (2016) J Stroke Cerebrovasc Dis ¹⁵	A 75-year-old man. Hypertension and atrial fibrillation	Macroscopic. Histopathology	White-pink hard tissue-like material. Papillary fronds, endothelium and elastic fibers		Cardiac embolic papillary fibroelastoma
Chapot et al. (2006) Am J Neuroradiol ²⁵	A 43-year-old woman. Endovascular intracranial aneurysm treatment	Macroscopic. Histopathology	Cotton-like synthetic fibers		Inadvertent embolization of foreign bodies
Distefano et al. (2019) J Stroke Cerebrovasc Dis ¹³³	A 75-year-old man. Hypertension. Suspected infection	Histopathology	Necrotic material and bacterial colonies	Vegetation in aortic valve. <i>E</i> <i>nterococcus faecalis</i> in blood cultures	Septic embolus. Infective endocarditis
Elodie et al. (2019) J Neurol Sci ²⁶	A 70-year-old woman. Mitral stenosis and atrial fibrillation	Macroscopic. Histopathology. Molecular biology	Tropheryma whipplei DNA sequences	Negative blood culture. Cleared previous suspected small aortic vegetation	Septic embolus. Whipple's endocarditis
Fassa et al. (2014) Circ Cardiovasc Interv ²⁷	A 90-year-old woman. TAVR	Macroscopic. Histopathology	Calcific		Detached aortic valve or aortic wall calcification
Fitzpatrick et al. (2018) J NeuroInterv Surg ²⁸	Three cases. History of deep vein thrombosis	Macroscopic. Histopathology	Elongated, pale- colored clot	Carotid free-floating thrombus (FFT)	FFT embolism
Garcia-Ptacek et al. (2014) J NeuroInterv Surg ²⁹	Two cases. Concomitant peripheral thrombi	Histopathology	Myxomatous material	Echocardiographic mobile mass	Cardiac myxoma embolism
Genchi et al. (2020) J Neurol Sci ³⁰	An 84-year-old man. Atrial fibrillation and uncomplicated carotid plaques	Macroscopic. Histopathology	Reddish tissue with white inclusions. Organized calcified thrombus	Hyperechoic aortic valve calcification	Dislodged aortic valve calcification
Hinman et al. (2013) Front Neurol ¹³⁰	A 28-year-old male. Retinal surgery and post-operative neck compression	Macroscopic. Proteomics	96% Common proteins	Tandem cervical and intracranial occlusions	Traumatic carotid thrombosis and embolization
Kan et al. (2012) World Neurosurg ³¹	A 78-year-old woman. Mitral valve prolapse. Suspected infection	Macroscopic. Bacteriological	Positive for viridans streptococci	Large, mobile vegetation on the aortic valve. Positive blood cultures	Septic embolus. Infective endocarditis
Katano et al. (2020) Clin Neurol ¹³⁷	An 88-year-old man	Histopathology	Aspergillus fungus	Paranasal sinus invasion	Septic embolus. Sinusitis

Supplementary Table 3. Case reports: thrombus/embolus composition and stroke etiologies or underlying pathologies

Supplementary Table 3. Continued

Study	Case(s) presentation	Thrombus/ embolus analysis	Thrombus/ embolus composition	Further diagnostic work-up	Stroke cause/ underlying pathology
Kim et al. (2014) Neurointervention ³²	A 40-year-old woman. Fever, malaise and systolic murmur	Histopathology	Gram-positive cocci	Mitral valve vegetation. Blood cultures positive for Streptococcus mitis	Septic embolus. Infective endocarditis
Koneru et al. (2021) J NeuroInterv Surg ¹⁴¹	Three cases. Aged 41–55 years. Few to no vascular risk factors	Histopathology	Fresh appearance. Usual RBC, FBR, and WBC contents	Ipsilateral angiographic carotid web (CaW). No superimposed thrombus	Embolization from CaW
Matsumoto et al. (2016) J Stroke Cerebrovasc Dis ³³	Two cases. Active cancer	Macroscopic. Histopathology	White and solid. Fibrin >90%. No tumor cells	Cancer-related hypercoagulation	Trousseau syndrome- related thromboembolism
Matsumoto et al. (2020) J Stroke Cerebrovasc Dis ¹³⁹	A 67-year-old man. History of dyslipidemia, taking statins, and smoking	Histopathology	Small calcification and a cholesterol crystal cleft	Atheromatous lesion at the aortic arch	Aortogenic embolic stroke
Nakanishi et al. (2018) Clin Neurol ¹³⁴	An 80-year-old woman. Suspected infection	Macroscopic. Histopathology	White thrombus. Gram-positive cocci	Negative blood culture and echocardiogram	Septic embolus. Infective endocarditis
Pisano et al. (2020) J Stroke Cerebrovasc Dis ³⁴	A 33-year-old. Exposure to a COVID-19 positive relative	Macroscopic	Over 50 mm in length	SARS-CoV-2 positive. Hypercoagulability	Thromboembolism secondary to COVID-19
Salam et al. (2018) J Stroke Cerebrovasc Dis ¹⁶	A 25-year-old woman. No vascular risk factors.	Macroscopic. Histopathology	Pale, white soft material. Papillary neoplasm with hyalinized cores lined by endothelium		Cardiac embolic papillary fibroelastoma
Salinas et al. (2013) JACC Cardiovasc Interv ¹⁷	An 88-year-old woman. Transcatheter aortic valve implantation (TAVI)	Macroscopic	Red-dark	Ventricular echo-dense mobile mass disappearing after TAVI	Catheter-related thromboembolism
Scharf et al. (2016) Neurocrit Care ¹³⁸	A 56-year-old man. Immunocompromised	Histopathology	Fungal hyphae of Zygomycetes species	Fungal culture of sphenoid sinus biopsy positive for <i>Rhizomucor</i> species	Angioinvasive mucormycosis
Scharf et al. (2017) J NeuroIntervent Surg ¹⁸	A middle-aged adult. Mitral valve replacement and infective endocarditis	Macroscopic. Histopathology	Firm and rigid texture. Hyaline and coccal forms	Vegetation on both the mitral valve prosthesis and native aortic valve	Septic embolus. Infective endocarditis
Semerano et al. (2019) J Neurol ¹⁹	An 86-year-old man. Arterial hypertension	Macroscopic. Histopathology	Solid, yellow with red spot. Intima layer, foamy macrophages, lymphocytes, extracellular matrix, smooth muscle cells, cholesterol clefts, focal hemorrhage and outer fibrin cap	Angiographic focal truncal-type occlusion with distal anterograde repermeability in the cerebral vessel	Intracranial atherosclerotic plaque
Sgreccia et al. (2020) J Neuroradiol ¹³⁶	A 31-year-old male. Suspected infection. Aortic murmur	Macroscopic. Molecular biology	White-colored. <i>Candida</i> parapsilosis	Vegetation in bicuspid aortic valve. <i>C. parapsilosis</i> confirmed in blood culture	Septic embolus. Fungal endocarditis
Sukumaran et al. (2012) Neurol India ¹³⁵	A 33-year-old male. Fever and malaise. Cardiac murmur	Histopathology	Clusters of gram-positive cocci	Mobile mass in mitral valve. Alpha hemolytic streptococci in blood culture	Septic embolus. Infective endocarditis
Tejada et al. (2014) J NeuroIntervent Surg ²⁰	A 64-year-old woman. No vascular risk factors	Macroscopic. Histopathology	White soft aspect. Branching papillary lesions, lined by endothelium		Cardiac embolic papillary fibroelastoma

Study	Case(s) presentation	Thrombus/ embolus analysis	Thrombus/ embolus composition	Further diagnostic work-up	Stroke cause/ underlying pathology
Thomas et al. (2017) J NeuroInterv Surg ²¹	A 69-year-old woman. Mitral valve replacement surgery	Macroscopic. Histopathology	Tan rubbery object. Collagen, elastin and endothelial cells		Cardiac chordae tendineae embolization
Usui et al. (2019) Intern Med ¹⁴⁰	A 91-year-old man. Hypertension and atrial fibrillation	Histopathology	Foamy cells	Atherosclerotic lesion with ulceration in the aortic arch	Aortogenic embolic stroke
Valente et al. (2019) J Clin Neurosci ²²	A 38-year-old male. Systemic lupus erythematosus	Macroscopic. Histopathology	Firm, pale to tan. Collagenous. IgG, C1q, C3, and IgA positive	Antiphospholipid syndrome	Embolism of a Libman-Sacks vegetation
Wollenweber et al. (2016) Neurology ²³	An 80-year-old woman. TAVI	Macroscopic. Histopathology	Solid tissue. Endothelialized, atherosclerotic arterial vessel wall		Aortic wall fragment embolization

Supplementary Table 3. Continued

RBC, red blood cell; FBR, fibrin; WBC, white blood cell; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; lg, immunoglobulin.