
RESEARCH ARTICLE

TLR9-mediated dendritic cell activation

uncovers mammalian ganglioside species

with specific ceramide backbones that

activate invariant natural killer T cells

Christophe PagetID
1,2,3,4,5,6☯*, Shenglou Deng7,8☯, Daphnée Soulard1,2,3,4,5, David

A. PriestmanID
9, Silvia Speca10, Johanna von Gerichten11,12, Anneliese O. Speak9,

Ashish Saroha13, Yael Pewzner-Jung13, Anthony H. Futerman13, Thierry Mallevaey14,15,

Christelle Faveeuw1,2,3,4,5, Xiaobo GuID
7, Frances M. PlattID

10‡, Roger Sandhoff11‡,

François Trottein1,2,3,4,5
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Abstract

CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population

of lipid-reactive T cells that are involved in many immune responses, mediated through T-

cell receptor (TCR)–dependent and/or independent activation. Although numerous micro-

bial lipid antigens (Ags) have been identified, several lines of evidence have suggested the

existence of relevant Ags of endogenous origin. However, the identification of their precise

nature as well as the molecular mechanisms involved in their generation are still highly con-

troversial and ill defined. Here, we identified two mammalian gangliosides—namely mono-

sialoganglioside GM3 and disialoganglioside GD3—as endogenous activators for mouse

iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic

cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly,

their ability to activate iNKT cells is highly dependent on the ceramide backbone structure.

Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were

able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly rec-

ognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to

reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond
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to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing

cells. Moreover, these gangliosides conferred partial protection in the context of bacterial

infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells.

Author summary

Invariant natural killer T (iNKT) cells are a population of unconventional T lymphocytes

that activate rapidly during inflammation due to their innate-like features. They are

unconventional since they do not react to peptidic antigens (Ags) presented by classical

major histocompatibility complex (MHC) molecules; instead, they recognize lipid-based

Ags in the context of the MHC class I-like molecule CD1d. While numerous Ags of

microbial origins have been described, their endogenous Ags are far less understood and

remain a matter of strong debate. Here, we report that engagement of an innate receptor

on the Ag-presenting cells leads to modulation of their lipid metabolism. This results in

an enrichment of particular glycosphingolipid species that differ in both the nonpolar tail

and polar head structures. Among those, two species have the potential to activate iNKT

cells in a CD1d-dependent manner after further intracellular modifications. Based on

these data, we propose a concept that iNKT cells can rapidly respond to pre-existing self-

molecules after stress-induced changes in CD1d-expressing cells. Given the presence of

closely related molecules in some pathological conditions such as cancer, it will be inter-

esting to evaluate the biological relevance of these Ags in disease states.

Introduction

Type I or invariant natural killer T (iNKT) cells are a subset of “innate-like” αβ T lymphocytes

that rapidly produce large amounts of cytokines and chemokines and orchestrate the ensuing

innate and adaptive immune responses during infection, inflammatory disorders, and cancer

[1]. iNKT cells recognize self and exogenous lipid antigens (Ags) presented by the quasimono-

morphic CD1d molecule expressed by Ag-presenting cells [2]. In contrast to the highly diverse

T-cell receptor (TCR) repertoire of peptide-specific/major histocompatibility complex

(MHC)-restricted conventional αβ T cells, iNKT cells express a semiconserved TCR composed

of a unique and invariant TCRα chain, using TCR TRAV11 to TRAJ18 rearrangement in mice

(TRAV10 to TRAJ18 in humans), paired with a limited array of Vβ chains [1].

Accordingly, the antigenic diversity and specificity of iNKT cells was intuitively believed to

be limited. Over the last decade, numerous studies have attempted to identify cognate Ags

involved in iNKT cell thymic selection and/or in their activation during infection and stressful

conditions in the periphery (for reviews, [2,3]). To date, several candidates have been proposed

to act as self-Ags for iNKT cells, including β-linked glycosphingolipids (GSLs) (isoglobotrihex-

osylceramide [iGb3] [4,5], gangliosides [6,7] and β-glucosylceramide [β-GlcCer] [8]), and

phospholipids [9]. However, the physiological activity of these compounds has either been

called into question or demonstrated to have weak and/or subset-specific activity. For example,

iGb3 activates some mouse and human iNKT [4] and has been proposed to be responsible for

iNKT cell development [5]. However, mice deficient for the enzyme involved in direct iGb3

anabolism (A3galt2) present no iNKT cell defect [10]. In addition, iGb3 is virtually undetect-

able in mouse peripheral tissues [11], and the human gene encoding iGb3 synthase appears to

be nonfunctional [12]. β-GlcCer was also proposed as a self-Ag for both human and mouse
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iNKT cells [8]. However, it was subsequently reported that this activity was restricted to mam-

malian α-linked monoglycosylceramides contaminants [13,14]. Initially thought to be absent

in mammals, small quantities of α-linked monoglycosylceramides (e.g., α-galactosylceramide

[α-GalCer]) that may act as iNKT cell self-Ags have been identified [14]. Although the origin

of mammalian α-GalCer is currently uncertain, further evidence suggests that some bacterial

communities from the gut microbiota, including Bacteroides fragilis, can produce this particu-

lar hexosylceramide [15,16]. In addition, diet could also provide a source of these Ags, as

recently demonstrated by the presence of α-linked monohexosylceramides in bovine milk

[17]. Thus, the repertoire of self-lipids for iNKT cells lacks consensus and is incompletely

characterized.

The possibility that the precise structure of the lipid chain of iNKT self-Ags could be impor-

tant for their reactivity to the TCR has only been partially investigated. Nevertheless, some

GSLs with particular ceramide structures have been shown to carry variable antigenic capacity

[8,14]. Ceramide metabolism is tightly regulated by multiple enzyme families, including cer-

amide synthases (de novo synthesis) [18] and ceramidases (degradation) [19]. The impact of

inflammation on the regulation of these enzymes is currently unknown, as well as their poten-

tial involvement in iNKT cell biology.

We and others have demonstrated that Toll-like receptor (TLR) engagement on/in Ag-pre-

senting cells resulted in lipid metabolism perturbations uncovering self-Ag(s) for iNKT cells

[20,21]. Specifically, we observed that TLR7/9-mediated activation of dendritic cells (DCs)

resulted in the accumulation of charged β-linked GSLs able to activate mouse iNKT cells in a

CD1d-dependent manner [21], but the precise nature of these activating compounds remained

unknown.

Here, we highlighted two particular ganglioside species found in TLR-stimulated DCs that

act as iNKT cell activators. Importantly, reactivity of the iNKT cells to gangliosides is highly

dependent on the specific structure of the ceramide backbone, particularly the N-acyl fatty

acid chain length and its geometry. Both synthetic d18:1-C24:1 GM3 and d18:1-C24:1 GD3

gangliosides activate iNKT cells in vitro and in vivo in a dose- and CD1d-dependent manner.

These synthetic gangliosides are unlikely to engage iNKT TCR in their native forms and

require unidentified intracellular molecular changes to become antigenic. Thus, we propose a

new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after

stress-induced structural changes in CD1d-expressing cells. Collectively, our data bring to

light a class of self-lipid Ags that can activate iNKT cells and that may be relevant during

inflammatory and/or pathological settings.

Results

Self-derived simple sialylated ganglioside(s) activate(s) iNKT cells

We previously reported that the activating iNKT cell Ag(s) that are present in DCs following

TLR9 triggering was/were charged β-GlcCer derivative(s) [21]. Amongst the four biosynthetic

pathways in vertebrates that stem from β-GlcCer, the ganglioside family contains most of the

charged GSLs [22] (Fig 1A). In order to determine whether this class of GSLs was responsible

for iNKT cell activation in our system, we used DCs generated from mice deficient in GA2/

GM2/GD2/GT2 synthase (B4galnt1) or GM3 synthase (St3gal5), two key enzymes involved in

ganglioside anabolism (Fig 1A). Cytosine-phosphate-guanine oligodinucleotide (CpG ODN)-

stimulated DCs were used as a source of lipids for in vitro testing. Remarkably, while the lipid

fraction from B4galnt1−/− DCs, which lack all complex gangliosides, retained its capacity to

activate iNKT cells, the lipid extract from St3gal5−/− DCs failed to do so (Fig 1B). Normal-

phase high-pressure liquid chromatography (NP-HPLC) analysis revealed that the activating

GD3 and GM3 as iNKT cell activators
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Fig 1. Endogenous ligand(s) for iNKT cells in CpG ODN-stimulated DC is/are simple sialylated gangliosides. (A) Ganglioside

anabolic pathway including species and key enzymes involved is depicted. (B) Base-treated charged lipids extracted from unstimulated or

CpG ODN-stimulated DCs derived from WT, B4galnt1−/−, or St3gal5−/− mice were exposed to DCs (1/500 in DMSO; 100,000 DCs) for 16

h and, after extensive washes, were cocultured with iNKT cell-enriched liver MNCs (500,000 cells) for 24 h. In this setting, IFNγ secretion

is measured as a read-out for iNKT cell activity, although we cannot exclude that it can also be produced by other innate lymphocytes (e.g.,

NK cells) through bystander effect. Data represent the mean ± SEM of three independent experiments performed in duplicates. (C)

Glycosphingolipids were extracted and isolated from CpG ODN-stimulated B4galnt1−/− and St3gal5−/− DCs, as described in the methods.

Charged species were then separated from neutral species using DEAE ion-exchange chromatography prior to NP-HPLC. (D) Sialidase A-

treated or untreated base-treated charged lipids extracted from CpG ODN-stimulated DCs were tested for iNKT cell antigenicity as in Fig

1B. Data represent the mean ± SEM of two independent experiments performed in triplicates. ��P< 0.01; �P< 0.05. Underlying data used

in the generation of this figure can be found in S1 Data. CpG, cytosine-phosphate-guanine; DC, dendritic cell; DEAE, diethylaminoethyl;

GD3 and GM3 as iNKT cell activators
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fraction (CpG ODN-stimulated B4galnt1−/− DCs) contains only two detectable species corre-

sponding to the gangliosides GM3 (95%) and GD3 (5%), which are absent from the fraction

isolated from CpG ODN-stimulated St3gal5−/− DCs (Fig 1C). This suggested that the charged

activating lipid(s) in CpG ODN-stimulated DCs is/are simple ganglioside(s). Since ganglio-

sides are charged through incorporation of N-acetyl-neuraminic acid, we next tested the

impact of sialidase treatment on the activity of the lipid(s). Interestingly, this treatment led to a

significant reduction of its biological activity (Fig 1D). Altogether, these results indicate that

the activating GSL(s) in TLR9-stimulated DCs include(s) simple sialylated ganglioside(s).

TLR9 stimulation in DCs modulates ceramide moiety of simple ganglioside

species

In line with earlier studies [23], we previously suggested that TLR9 triggering in DCs resulted

in metabolic changes in the general GSL pathway [21]. For instance, TLR9 engagement in DCs

induced a modulation of gene expression in the GSL biosynthetic pathway, especially in key

enzymes involved in the anabolism of simple gangliosides [21]. Accordingly, NP-HPLC analy-

sis indicated that CpG ODN treatment led to a subtle increase of GM3 and GD3 in DCs (Fig

2A). Since the precise structure of the ceramide moiety is important for the antigenic proper-

ties of GSLs [8,14,24], we evaluated the composition of the lipid backbone of GM3 and GD3

contained in resting versus TLR9-stimulated wild-type (WT) DCs. As ceramide anabolism

and catabolism is dependent, among others, on ceramide synthases (CerS) and ceramidases,

respectively [19,25], we assessed the expression of these enzymes in DCs at the transcriptional

level. The transcripts of two ceramidases (Asah1 and Naaa) were detected in resting DCs. Of

note, CpG ODN stimulation did not affect Asah1 transcript expression, whereas it led to a sig-

nificant reduction for Naaa expression (Fig 2B). In addition, we detected the mRNA expres-

sion of three ceramide synthases (Cers2/5/6) in resting DCs (Fig 2B) specialized in the

synthesis of C16 (Cers5 and Cers6) and C22/C24 (Cers2) ceramides [25]. Importantly, TLR9

triggering in DCs led to Cers2 and Cers6 up-regulation but Cers5 down-regulation (Fig 2B). In

line with this gene expression profile, identification of the N-acyl chain heterogeneity of GM3

and GD3 by mass spectrometry in resting DCs revealed the presence of various species differ-

ing in length and degree of unsaturation (Fig 2C). We detected the presence of at least six

(assuming d18:1 sphingosine: C16:0, C18:0, C20:0, C22:0, C24:0, and C24:1) and three (C18:0,

C24:0, and C24:1) species for GM3 and GD3, respectively, with variable abundance (Fig 2C).

In line with our transcriptional analysis, TLR9 triggering led to a modulation in the proportion

of specific ceramide forms. Specifically, CpG ODN stimulation preferentially favored C24:1

and C16:0 acyl chains in GM3, while reducing C22:0 and C24:0 species (Fig 2C). Meanwhile,

CpG ODN led to an increased proportion of C24:1 acyl chain in GD3, paralleled with a reduc-

tion in C16:0 and C24:0 species (Fig 2C). Importantly, commercial gangliosides from bovine

buttermilk, which have been widely used to test GSL antigenicity to iNKT cells, differ greatly

in their N-acyl chain length composition compared to DC-derived GSLs (Fig 2D and S1

Table). For instance, C16:0 and C24:1 that are the main ganglioside species in mouse DCs are

barely found in bovine buttermilk. On the other hand, C22:0, C23:0, and C24:0 gangliosides

were abundant in bovine buttermilk, while they were minimally represented or undetectable

in mouse DCs. Taken together, these results show that TLR9 stimulation induces not only

increased production of GM3 and GD3 in DCs but also leads to an exquisite tuning of

MNC, mononuclear cell; IFNγ, interferon gamma; iNKT, invariant natural killer T; NK, natural killer; NP-HPLC, normal-phase high-

pressure liquid chromatography; ODN, oligodinucleotide; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000169.g001
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their ceramide backbone composition, both of which may have important biological

consequences.

Chemical synthesis of the C16:0 and C24:1 ganglioside species

Based on these observations, we synthesized GM3 and GD3 with either a d18:1-C16:0 or a

d18:1-C24:1 ceramide backbone (Fig 3A). The structures and synthetic schemes of the four

gangliosides are illustrated in Supporting information (S1 Fig and S11–S14 Figs). With respect

Fig 2. Modulation of ceramide and ganglioside metabolisms in DCs following CpG ODN treatment. (A) Increase

of ES(-)-LC-MS/MS detected gangliosides GM3 and GD3 in CpG ODN-stimulated DCs shown as fold change relative

to unstimulated cells (medium). Two sets of DCs were measured, and data are means ± SD. (B) RNAs from

unstimulated or CpG ODN-stimulated DCs were harvested after 16 h stimulation, and Asah1, Naaa, and Cers1-6
mRNA expression was measured by quantitative real-time PCR. Data represent paired individual values from six

independent experiments. (C) Heatmap for DC N-acyl chain composition of GM3 and GD3 in unstimulated versus

CpG ODN-stimulated cells measured by ES(-)-LC-MS/MS. Color code represents fractions of the total amount (1.0) of

detected gangliosides, respectively. Two sets of DCs were measured and plotted as mean values. ��P< 0.01; �P< 0.05.

(D) ES(-)-LC-MS/MS analysis of the acyl chain composition of GM3 commercial bovine buttermilk and from mouse

unstimulated DCs. Profiles of one experiment out of two are shown. Underlying data used in the generation of this

figure can be found in S1 Data. Cers, ceramide synthase; CpG, cytosine-phosphate-guanine; DC, dendritic cell; ES

(-)-LC-MS/MS, electrospray(-)-liquid chromatography-mass spectrometry/mass spectrometry, ns, not significant;

ODN, oligodinucleotide.

https://doi.org/10.1371/journal.pbio.3000169.g002
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to the stereo-controlled construction of GM3 and GD3, we first produced a stereo-controlled

β-GlcCer (Fig 3B and S15 Fig), which was then used as a building block for gangliosides assem-

bly. β-GlcCer from commercial sources usually comes with α-contaminants (13, 14). On the

contrary, NP-HPLC and hydrophilic interaction liquid chromatography-tandem mass spec-

trometry (HILIC-MS2) analyses indicate that there are no such contaminants in our stereo-

controlled β-GlcCer compound (Fig 3C and S2 Fig), as compared to a synthetic mixture con-

taining α anomers (S2 Fig). To demonstrate further the absence of α-hexosylceramide contam-

inants in our products, we probed, in a cell-free system, the structure of CD1d/synthetic GSL

complexes using the L363 monoclonal antibody (mAb) that specifically recognizes CD1d/α-

glycosylceramide interactions [14]. While it allowed detection of CD1d/α-GalCer and CD1d/

commercial β-GlcCer complexes, L363 failed to bind to CD1d/ganglioside and CD1d/stereo-

controlled β-GlcCer complexes (Fig 3D). Thus, we demonstrated the synthesis of β-linked gan-

glioside species for further iNKT antigenicity assessment.

Fig 3. Structure and quality control of ganglioside species. (A) Structures and formulas of synthetic GM3 and GD3 gangliosides. (B) Structure and formula of

synthetic β-glucosylceramide (C24:1). (C) HPLC-ELSD of stereo-controlled β-GlcCer. (D) Plate-bound CD1d dimers loaded with various glycolipids were incubated

with the PE-conjugated L363 mAb. Fluorescence at 575 nm was measured using a microplate reader. One representative experiment out of two performed in triplicates

is shown. Underlying data used in the generation of this figure can be found in S1 Data. β-GlcCer, β-glucosylceramide; CD1d, cluster of differentiation 1d; HPLC-ELSD,

high-performance liquid chromatography-evaporative light scattering detector; mAb, monoclonal antibody; PE, phycoerythrin.

https://doi.org/10.1371/journal.pbio.3000169.g003

GD3 and GM3 as iNKT cell activators
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C24:1 gangliosides bind to CD1d

Since previous crystallographic studies suggested that the length of the fatty acid chain influ-

ences the binding of lipids into the A0 and C0 pockets of CD1d molecules [26], we evaluated

the capacity of synthetic GM3 and GD3 to bind to mouse CD1d molecules using microscale

thermophoresis [27]. Surprisingly, d18:1-C16:0 GM3 and d18:1-C16:0 GD3 showed limited or

no interaction with CD1d (Fig 4A and 4B). In contrast, C24:1 GM3 and C24:1 GD3 bound to

CD1d with affinities of 102.5 ± 2.3 μM and 69.1 ± 1.5 μM, respectively (Fig 4C and 4D), which

are approximately 70–100-fold weaker compared to CD1d/α-GalCer (C26:0) interactions. Of

note, the neutral C24:1 β-GlcCer weakly interacted with CD1d (KD = 2.54 mM) (S3 Fig) com-

pared to C24:1 gangliosides, suggesting that additional hexose residues and/or charged resi-

dues significantly influenced the binding capacity of C24:1 GSLs into the CD1d groove. Taken

Fig 4. Thermophoretic analysis of NT647-labeled mouse CD1d-ganglioside interaction. Changes in thermophoresis of a titration of 125 nM NT647-labeled mouse

CD1d with increasing concentrations of C16:0 GM3 (A), C16:0 GD3 (B), C24:1 GM3 (C), and C24:1 GD3 (D) are expressed as change of the normalized fluorescence

(ΔFnorm = FHot/Fcold) and plotted. Line is a fit with Michaelis–Menten kinetics of ΔFnorm mean ± SD for each ligand concentration of three independent

measurements. Underlying data used in the generation of this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3000169.g004

GD3 and GM3 as iNKT cell activators
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together, our results demonstrate that C24:1 GM3 and C24:1 GD3 gangliosides are able to sta-

bly bind to mouse CD1d molecules.

C24:1 gangliosides induce CD1d-dependent iNKT cell activation in vitro

To assess ganglioside antigenicity, we cocultured DCs and iNKT cell hybridomas in the pres-

ence of synthetic GM3 and GD3. Both C24:1 GM3 and GD3 activated iNKT hybridomas in a

CD1d- and dose-dependent manner, as measured by interleukin 2 (IL-2) production (Fig 5A

and S4 Fig). In line with our affinity measurements, gangliosides bearing a C16:0 ceramide

backbone showed little to no biological activity (Fig 5A). Consistent with a previous report

[14], C24:1 β-GlcCer failed to activate iNKT cell hybridomas. Of note, iNKT cell hybridomas

failed to respond to commercial gangliosides extracted from bovine buttermilk (S5 Fig). In

addition, C24:1 gangliosides induced the proliferation of splenic iNKT cells (Fig 5B) but not

conventional T cells in vitro (S6 Fig).

Since C24:1 ceramide biosynthesis is largely dependent on the activity of CerS2[28], we

tested the ability of CpG ODN to uncover iNKT cell endogenous ligands in Cers2-deficient

DCs. Interestingly, while CpG ODN-stimulated Cers2-competent DCs activated the iNKT cell

hybridoma DN32.D3, Cers2-deficient DCs failed to do so (Fig 5C). As previously reported

[29], it is noteworthy to mention that DCs from CerS2-null mice expressed reduced amounts

of surface CD1d (approximately 50%) (S7A Fig). However, this only minimally affected their

ability to present exogenous α-GalCer and C24:1 gangliosides to iNKT cell hybridomas (Fig

Fig 5. In vitro activity of gangliosides on iNKT cells. (A) DCs derived from WT or CD1d1−/− mice were cultured with the mouse iNKT hybridoma DN32.D3 in

presence of purified glycolipids at the indicated concentrations or vehicle in complete RPMI media for 24 h. IL-2 production was quantified by ELISA. Means ± SEM of

one representative experiment out of three performed in triplicates are shown. (B) Cell Trace Violet-labeled spleen cells from C57BL/6 mice were cultured in absence or

presence of α-GalCer (100 ng/ml), C24:1 GM3 (6.5 μM), or GD3 (6.5 μM) in complete RPMI plus recombinant IL-2. After 72 h, cells were harvested and analyzed by

flow cytometry for CTV detection in live iNKT cells. Dot plots are representative of one experiment out of three. (C) DCs derived from Cers2+/+ or Cers2−/− mice were

cultured with DN32.D3 in presence of α-GalCer (20 ng/ml), CpG ODN (2 μg/ml), or vehicle in complete RPMI media for 24 h. Means ± SEM of IL-2 concentrations of

one representative out of three experiments performed in duplicates are shown. ��P< 0.01. Underlying data used in the generation of this figure can be found in S1

Data. α-GalCer, α-galactosylceramide; Cers, ceramide synthase; CpG, cytosine-phosphate-guanine; CTV, cell trace violet; DC, dendritic cell; IL-2, interleukin 2; iNKT,

invariant natural killer T; ODN, oligodinucleotide; RPMI, Roswell Park Memorial Institute medium; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000169.g005
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5C and S7B Fig). Collectively, these results indicate that C24:1 GM3 and C24:1 GD3 ganglio-

sides are activating molecules for mouse iNKT cells in a CD1d-dependent manner.

C24:1 ganglioside antigenicity requires intracellular machinery and is

partially blocked by the L363 mAb

As some GSLs require endosomal lipid transfer factors to be efficiently loaded onto CD1d

[30,31], the importance of the intracellular pathway in antigenic capacity of C24:1 gangliosides

was investigated. Glutaraldehyde fixation of DCs prior to culture severely impaired the capac-

ity of gangliosides to activate DN32.D3, whereas α-GalCer partially retained its stimulating

properties (Fig 6A). The response to α-Gal(α1–2)GalCer, a glycolipid that requires intracellu-

lar processing to reveal its antigenicity [24], was completely abolished by DC fixation (Fig 6A).

In addition, the preincubation time of DCs with gangliosides strongly influenced their activat-

ing properties (S8 Fig). In the same vein, pretreatment of DCs with bafilomicyn A or concana-

mycin, two lysosomal acidification inhibitors, prior to ganglioside addition also abrogated

iNKT cell activation in response to gangliosides (Fig 6B).

To test whether C24:1 gangliosides could be recognized in their native form by the iNKT TCR,

DN32.D3 were cultured in presence of immobilized CD1d:ganglioside complexes. In this setting,

we failed to detect any iNKT cell activation, as judged by cytokine release (Fig 6C). Moreover,

mouse CD1d tetramers loaded with either GM3 or GD3 did not bind to iNKT cell hybridomas

(Fig 6D), suggesting that the native compounds are not directly recognized by the iNKT TCR.

To assess whether intracellular processes such as hydrolysis and/or putative anomerization

could convert β-linked gangliosides to α-linked GSLs, resulting in iNKT cell activation, we

used L363 mAb in our assay. L363 mAb dose-dependently abolished DN32.D3 reactivity

toward α-GalCer but only partly inhibited activity of gangliosides (approximately 50%–60%

with the highest dose) (Fig 6E). Albeit at lower levels, it is noteworthy that iGb3, a self-GSL

that activates iNKT cells when presented by CD1d in a β-conformation [32], was also signifi-

cantly inhibited (approximately 20%) in the presence of high concentrations of L363 mAb (Fig

6E). Moreover, L363 binds to approximately 7% of resting DCs, suggesting the presence of

small amounts of α-hexosylceramide:CD1d complexes at cell surface (Fig 6F). While α-GalCer

loading increased L363 binding to DCs, gangliosides did not (Fig 6F). In conclusion, we sug-

gest that gangliosides do not activate iNKT cells in their native forms and require the intracel-

lular machinery to be presented into their antigenic conformation to the iNKT TCR.

C24:1 gangliosides activate lung iNKT cells and partially protect mice

against lethal pneumococcal infection

Activation of lung iNKT cells by intranasal inhalation of α-GalCer was shown to promote host

defense mechanisms against respiratory bacterial (including pneumococcal) infections [33].

To evaluate ganglioside biological activity in vivo, we administered C24:1 GM3 and C24:1

GD3 intranasally. Interestingly, both lipids dose-dependently activated lung iNKT cells to pro-

duce interferon gamma (IFNγ) and IL-17A (Fig 7A). Unlike α-GalCer, ganglioside administra-

tion did not result in a strong T-helper (Th1)-biased response by iNKT cells, as assessed by

IFNγ/IL-17A ratio (Fig 7A). Similar to α-GalCer, iNKT cell activation was accompanied by the

transactivation of gamma delta (γδ)T cells and NK cells as well as the recruitment of neutro-

phils (Fig 7B–7D). In line with in vitro experiments, C16:0 ganglioside species’ inhalation

failed to activate lung iNKT cells (S9 Fig). Importantly, CD1d blockade abrogated lung iNKT

cell activation in response to C24:1 gangliosides (S10 Fig). Analysis of cytokine release in lung

homogenates from WT and Cd1d1−/− mice indicated that C24:1 ganglioside-induced immune

response was dependent on the CD1d molecule (Fig 7E).
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Fig 6. Influence of the DC intracellular pathway on the recognition of gangliosides by the iNKT TCR. (A) Fixed or unfixed DCs were cultured with the

mouse iNKT hybridoma DN32.D3 in presence of purified glycolipids (23 pM for α-GalCer and 6.5 μM for gangliosides) or vehicle for 24 h. (B) Lysosomal

acidification inhibitor–pretreated or not DCs were cultured with DN32.D3 in presence of glycolipids or vehicle. (C) Plate-bound CD1d dimers loaded with

various glycolipids were cultured with DN32.D3 hybridoma for 24 h. (A–C) iNKT cell activity was evaluated as in Fig 5A. Data represent the means ± SEM

of two experiments performed in triplicates. (D) DN32.D3 hybridoma was stained with PE-conjugated CD1d tetramers loaded or not with various

glycolipids. Dot plots are representative of one experiment out of two. (E) DCs were cultured with DN32.D3 in presence of purified glycolipids (23 pM for

α-GalCer, 1.5 μM for iGb3, and 6.5 μM for gangliosides) or vehicle for 24 h with increasing concentrations of L363 mAb or isotype control. NKT cell

activity was evaluated as in Fig 5A. The dose-dependent L363 inhibition normalized to isotype control for each glycolipid is represented. Means ± SEM of

two experiments performed in triplicates are shown. (F) Unloaded or glycolipid-loaded DCs were subjected to L363 mAb or Ig-control staining. Dot plots

are representative of one experiment out of two for each condition. ��P< 0.01; �P< 0.05. Underlying data used in the generation of this figure can be found

in S1 Data. α-GalCer, α-galactosylceramide; CD1d, cluster of differentiation 1d; DC, dendritic cell; Ig, immunoglobulin; iGb3, isoglobotrihexosylceramide;

iNKT, invariant natural killer T; mAb, monoclonal antibody; NKT, type I natural killer T cell; ns, not significant; PE, phycoerythrin; TCR, T-cell receptor.

https://doi.org/10.1371/journal.pbio.3000169.g006
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Finally, we investigated the effects of ganglioside inoculation on the host protective

response against Streptococcus pneumoniae. As depicted in Fig 7F, all vehicle-treated mice died

within 5–6 days following pneumococcal infection. In agreement with our previous findings

[33], mice pretreated with α-GalCer did not present any observable clinical signs of disease

and survived the infection. Interestingly, inoculation of synthetic GM3 or GD3 partially pro-

tected mice (around 50%) against lethal S. pneumoniae-induced pneumonia (Fig 7F). In sum,

exogenous administration of C24:1 GM3 and C24:1 GD3 activates iNKT cells in vivo and pro-

tects against lethal respiratory bacterial infection.

Discussion

Despite strong evidence suggesting the existence of self-lipid Ags for TCR-dependent iNKT

cell selection and activation during inflammation, their precise nature remains unclear. Here,

we have identified two particular species of the ganglioside family, which can be detected in

TLR9-stimulated DCs, as molecules endowed with “indirect” antigenic capacities for iNKT

cells. Synthetic d18:1-C24:1 β-linked GM3 and GD3 gangliosides can activate mouse iNKT

cells in vitro and in vivo in a CD1d-dependent fashion. However, our data indicate that these

molecules are not recognized in their native forms but require further intracellular changes to

engage iNKT TCRs.

The contribution of the lipid moiety for iNKT cell antigenicity has mainly been explored

with synthetic α-linked glycolipids. Nevertheless, some mammalian GSLs with particular cer-

amide structures present variable antigenic properties. For instance, mammalian α-GalCer,

GlcCer, and sulfatide with a ceramide d18:1-C24:1 backbone have greater antigenic properties

compared to other subspecies [8,14]. Similarly, despite sharing a similar polar head group, we

observed that d18:1-C24:1 gangliosides activate iNKT cells, while their d18:1-C16:0 counter-

parts failed to do so, an effect which may be due to their low capacity to bind to mouse CD1d

molecule. Our data also highlighted the importance of sialic acid residues for binding to

CD1d. While both C24:1 GM3 and GD3 interact with CD1d with a KD of μM range, the neu-

tral C24:1 GlcCer presents a 10-fold lower affinity. Thus, the negative charge conferred by the

sialic acids is likely to facilitate the loading into CD1d. At this stage, it remains unclear whether

the sialic acid residue(s) participate(s) directly in the antigenicity of the compounds; however,

we mainly observed in vitro and in vivo that GD3 had a higher activity on iNKT cells com-

pared to GM3. While the use of B4galnt1- and St3gal5-deficient mice allowed us to suggest the

activating capacity of GM3 and GD3, the existence of multiple charged ganglioside subspecies

that may act as iNKT activators such as GM1, GM2, or GD1a cannot be definitely excluded.

It has been shown that some cancer cells contain gangliosides (GD3 and N-glycolyl-GM3)

that can modulate iNKT cell activity [6,7,34]. In this context, the tumor Ag N-glycolyl-GM3

has been shown to interact with CD1d to induce moderate human iNKT cell proliferation[6].

GD3 antigenicity toward iNKT cells was only observed in preimmunized mice and was subset

specific [7]. However, other studies have demonstrated that GD3 had inhibitory effects on

Fig 7. iNKT cell-dependent protective activity of C24:1 gangliosides on respiratory bacterial infection. (A) Lung iNKT cells from α-GalCer-

or ganglioside-treated mice (12 h) were screened for intracellular IFNγ and IL-17 production. The ratio IFNγ-:IL-17A-producing iNKT cells is

shown in the right panel. Lung γδT (B) and NK (C) cells were evaluated for intracellular IFNγ and IL-17 production as in Fig 7A. (D) Frequency

of lung neutrophils (Live CD45+ Siglec F- CD11b+ Ly6G+) in treated or untreated animals is shown. Individual values and means ± SEM of two

independent experiments are shown (6–15 mice/group) for panel (A–D). (E) Levels of cytokines in response to C24:1 GM3 were measured in

lung homogenates from WT or Cd1d1−/− mice. Means ± SEM of two experiments are shown (4 mice/group). (F) Mice were pretreated with α-

GalCer or gangliosides by the IN route one day prior to S. pneumoniae infection and monitored daily for survival (7–10 mice/group).
���P< 0.001; ��P< 0.01; �P< 0.05. Underlying data used in the generation of this figure can be found in S1 Data. α-GalCer, α-

galactosylceramide; γδT, gamma delta T; IFNγ, interferon gamma; IL-17, interleukin-17; IN, intranasal; iNKT, invariant natural killer T; NK,

natural killer; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000169.g007
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TCR-dependent iNKT cell activation although confirming its binding to CD1d [35,36]. In

these studies, authors have used bulk gangliosides (either purified or commercial), which may

contain contaminants as well as various ceramide species, resulting in a potential competition

between inhibitory and activating molecules. Moreover, we observed that C24:1 gangliosides

are almost absent in commercial bovine buttermilk–derived GM3.

Amongst the high diversity of molecules bound to the CD1d molecules under steady state,

it is interesting to note that GM3 could be eluted from both human and mouse CD1d, whereas

GD3 was virtually undetectable [37,38]. However, the authors were only able to determine the

structure for up to 25% of the total pool [37], which may explain the absence of GD3.

In line with previous studies [23,38], we observed that TLR triggering on DCs influences

GSL abundance and diversity, including gangliosides. However, TLR-signaling ability to gen-

erate CD1d-restricted endogenous Ags is unlikely to be solely attributed to the neosynthesis of

activating ligands. In fact, the time needed to generate new glycosphingolipids does not fit

with the rapid response of iNKT cells. Here, we propose a concept in which TLR9 signaling

affects ceramide metabolism to favor a pool of preexisting iNKT cell Ag precursors. Decipher-

ing the respective contribution of C24:1 ceramide synthesis (de novo or salvage) versus catabo-

lism of other species that may represent competitors for CD1d binding (C20:0-C24:0) in

TLR9-dependent mechanism will be of the utmost importance. In addition, whether or not

the triggering of other TLR members points to a similar mechanism will also need further

investigation.

Our data also indicate a critical contribution for the intracellular machinery to efficiently

present ganglioside to iNKT cell TCRs. Surprisingly, despite the lack of detectable α-GSL con-

taminants in our synthetic lipids, we observed that when used at high concentrations (μg/ml),

the L363 mAb partially inhibited the antigenicity of both GM3 and GD3, suggesting a require-

ment for DC-derived α-glycosylceramides in these settings. Therefore, we can envision several

nonmutually exclusive scenarios, including i) the involvement of putative specific endogenous

anomerases, ii) the synergistic activity of endogenous α-glycosylceramides [14] with the C24:1

β-gangliosides, iii) the catabolism of gangliosides to simpler structure(s) with direct antigenic

properties [39], or iv) that the iNKT TCRs reshape the primary β-linked sugar of the ganglio-

sides into a new conformation that mimics α-linked glycolipids, as previously described for

iGb3 [32]. The presence of traces of α-contaminants (below the threshold of our analytic pro-

cedures) in our synthetic lipids could also explain some of our findings, i.e., the inhibitory

effect of L363 on ganglioside activity in our biological assay. However, while L363 is strongly

active on α-GalCer at concentrations as little as 10 ng/ml, its effect on gangliosides is only

observable with 100-fold higher concentrations. In addition, iGb3 activity is also partially

inhibited with highest doses of L363 mAb. Interestingly, this observation can only be made in

the coculture setting since L363 was neither able to bind immobilized CD1d:ganglioside com-

plexes or ganglioside-pulsed DCs. Moreover, loading of CD1d tetramers with gangliosides did

not allow detection of iNKT cells. Based on this, we believe that this finding is unlikely due to

contamination but rather to a certain degree of nonspecificity for the L363 mAb against β-

GSLs or to a yet-to-be-defined biological phenomenon, as stated above.

Can GM3 and/or GD3 represent self-Ags during iNKT cell development? Porubsky and

colleagues demonstrated that St3gal5−/− and St8sia1−/− mice present a normal iNKT cell com-

partment [40]. Thus, simple gangliosides do not appear to be critical in iNKT cell positive

selection or maturation/differentiation. However, in line with its involvement in iNKT cell

antigenicity, we recently demonstrated the critical involvement of CerS2, an enzyme involved

in the generation of very long–chain sphingolipids, including d18:1-C24:1 GSLs in iNKT cell

development and survival [29]. Globally, ceramide synthases and ceramidases have been

shown to display variable substrate specificity. In this context, a tight regulation of ceramide
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metabolism could be critical in either favoring or hindering self-iNKT cell Ag formation.

Thus, a better characterization of the role of enzymes of the ceramide metabolism including

other families such as β-Glucocerebrosidase, sphingomyelinases, and hexosaminidases in

iNKT cell development and/or activation is warranted.

Since the level of expression of endogenous Ags must be low and tightly controlled under

homeostatic conditions to prevent iNKT cell autoreactivity and development of autoinflam-

matory processes, the uncovering of gangliosides as iNKT cell activators makes sense. Indeed,

while native gangliosides do not present direct antigenic properties on iNKT cells, this preex-

isting pool could be rapidly converted into bioactive Ags, resulting in rapid response of iNKT

cells upon stressful conditions. Furthermore, gangliosides do not have a strictly host origin.

Lipid-enriched diet might represent an exogenous source of gangliosides. Given the role of

iNKT cells in diet-induced obesity and insulin resistance [41,42], the contribution of dietary

gangliosides in these diseases should be considered. In line with this, GM3 has been proposed

to participate in insulin resistance in genetic models of diabetes [43]. Gut microbiota has been

proposed to negatively regulate iNKT cell number and functions [44], questioning the putative

involvement of gangliosides in this mechanism. Since gangliosides have never been reported

to be synthesized/produced by commensals, they are unlikely to directly contribute to this phe-

nomenon. It is also worth noting that gangliosides are overexpressed in human milk with

GM3/GD3 as major species in colostrum and GM3 in mature milk [45]. Since human iNKT

cells developing during fetal life can mature in the small intestine [46], encounters with milk-

derived gangliosides shortly after birth may provide positive signals required in this process. A

recent study elegantly demonstrated the presence of active α-linked monohexosylceramides

Ags in bovine milk that could also play a part in these mechanisms [17]. Hence, the putative

presence of active α-linked gangliosides would also be worth investigating. Finally, since we

and others [45] observed that bovine and human milk have strong differences in ganglioside

species, a comparative analysis of the iNKT cell compartment in breast-fed versus bottle-fed

infants would be worthy of study.

In conclusion, our study reinforces the current concept that “innate-like” T lymphocytes

are able to sense fine modulation in cellular metabolism to become activated. We demonstrate

how an innate signal can be detected by iNKT cells through subtle alterations of the ceramide

and/or ganglioside metabolism and the generation of specific antigenic self-lipids.

Methods

Ethics statement

All experiments were conducted on C57BL/6J genetic background mice, and the performance

was in compliance with current national and institutional regulations and ethical guidelines

(B59-350009) and approved by the Comité d’Ethique en Experimentation Animale Nord-Pas

de Calais (C2EA-75) under the protocol number 2015121722376405. All efforts were taken to

minimize mouse usage to maximize necessary results; provide the best veterinary care; and

minimize discomfort, distress, and surgery with anesthetic procedures and euthanasia. Eutha-

nasia was performed using a lethal injection of pentobarbital. In survival experiments, mice

were euthanized when reaching one of these endpoints: dehydration, loss of ability to ambu-

late, labored respiration, or weight loss (>20%).

Mice

8- to 12-week-old male WT C57BL/6J mice were purchased from Janvier (Le Genest-St-Isle,

France). The generation of Cd1d1−/− C57BL/6J mice has been previously described [47]. Mice

deficient of B4galnt1 (EC 2.4.1.92) and St3gal5 (EC 2.4.99.9) were provided by R. Proia
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(National Institutes of Health, Bethesda, MD, United States of America). The generation of

CerS2 null mice has been described in [28]. Mice were bred in our own facility in specific path-

ogen-free conditions. For S. pneumoniae infection, mice were maintained in a biosafety level 2

facility.

Reagents and abs

Type B CpG ODN (ODN 1826) was from Cayla (Toulouse, France). α-GalCer was produced

in house. Glyko Sialidase A was from PROzyme (Hayward, CA, USA). mCD1d protein was

purchased from Interchim (Montluçon, France). Recombinant Soluble Mouse CD1d:Ig Fusion

Protein (CD1d dimer XI) was from BD Biosciences (Le Pont de Claix, France). Cell Trace Vio-

let Cell Proliferation Kit was from ThermoFischer scientific. Anti-CD1d (19G11) and its iso-

type control (LTF-2, Rat IgG2b) were from Bio X Cell (West Lebanon, NH, USA). Bovine

buttermilk GM3 and GD3 were from Biovalley (Nanterre, France). The commercial d18:1-

C24:1 β-GlcCer was from Interchim. The commercial α/β-GlcCer-mix (15/85) was from

Avanti Polar Lipids. α-GalGalCer and iGb3 were kindly provided by Dr. Steven Porcelli

(Albert Einstein College of Medicine, New York City, NY, USA). L363 (IgG2a) mAb (purified

or PE-conjugated) and isotype control were from eBiosciences (San Diego, CA, USA). PBS-57

glycolipid-loaded and unloaded control CD1d tetramers (APC- or PE-conjugated) were from

the National Institute of Allergy and Infectious Diseases Tetramer Facility (Emory University,

Atlanta, GA, USA). Monoclonal antibodies against mouse CD45 (APC-Cy7-conjugated), CD3

(Pacific Blue- or PerCP-Cy5.5–conjugated), TCRδ (PerCP-Cy5.5-conjugated), NK1.1

(PE-Cy7- or FITC-conjugated), Ly6G (FITC-conjugated), CD11b (PerCP-Cy5.5–conjugated),

IFNγ (AF647-conjugated), IL-17A (PE-conjugated), and appropriated isotype controls were

purchased from BioLegend (San Diego, CA, USA) and BD Pharmingen. Mouse ELISA kits are

from R&D systems (Minneapolis, MN, USA) and eBioscience.

Generation of BMDCs, lipid extraction/purification, sialidase treatment,

and glycolipid analysis

Briefly, bone marrow (BM) precursors from various gene-targeted mice were cultured in com-

plete IMDM medium supplemented with 10% FCS and 1% of supernatant from a granulocyte-

macrophage colony-stimulating factor (GM-CSF)–expressing cell line (J558-GM-CSF) for 14

days. BMDCs (>90% purity) were stimulated or not with CpG ODN (2 μg/ml) for 16 h.

BMDCs were then collected and dry pellets were frozen (−20˚C) until further treatment/

analysis.

Lipids were extracted from resting or CpG ODN-stimulated DCs, as previously described

[21]. To remove all terminal sialic acid residues, lipids were dried under nitrogen and resus-

pended in 50 mM sodium acetate, 1 mg/ml sodium taurodeoxycholate, pH 5.5. N-acetylneura-

minate glycohydrolase (sialidase, EC 3.2.1.18, Arthrobacter ureafaciens recombinant expressed

in E. coli), 50 mU, was added for 48 h in a total volume of 20 μl. All lipid fractions were

desalted over C18 cartridges (pre-equilibrated with 2 x 1 ml methanol and 2 x 1 ml water). The

volume of digest was made up to 100 μl with water and then the sample was applied to the car-

tridge; the sample tube was washed in 2 x 100 μl chloroform: methanol: water 1:2.2:1 (v/v/v)

and applied to the cartridge. The cartridge was then washed with 3 x 1 ml water and the lipids

were eluted with 1 x 1 ml chloroform: methanol 98:2 (v/v), 2 x 1 ml chloroform: methanol 1:3

(v/v), and 1 x 1 ml methanol and mixed thoroughly. Purified lipid fractions were dried under

nitrogen for in vitro testing after validating the digestion by subjecting 0.5% of the lipid frac-

tion to ceramide glycanase digestion, anthranilic acid labeling, and NP-HPLC analysis, as pre-

viously described [48].
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RNA extraction, cDNA synthesis, and real-time PCR

Total RNA from resting or CpG ODN-treated DCs were isolated with the Nucleospin RNA

Plus extraction kit (Macherey-Nagel, Hoerdt, France), and cDNA were synthesized from 1 mg

of total RNA with random hexamer primers and Superscript III (Invitrogen, Cergy Pontoise,

France) according to standard procedures. cDNAs were used as templates for PCR amplifica-

tion with the SYBR Green PCR Master Mix (Molecular Probes, Leiden, the Netherlands) and

the ABI PRISM 7700 Sequence Detector (Applied Biosystems, Foster City, CA). Primers,

which are listed in S2 Table, were designed by the Primer Express Program (Applied Biosys-

tems) and used for amplification in triplicate assays. PCR amplification of Gapdh was per-

formed to control for sample loading and to allow normalization between samples. ΔCt values

were obtained by deducting the raw cycle threshold (Ct values) obtained for Gapdh mRNA,

the internal standard, from the Ct values obtained for investigated genes. For graphical repre-

sentation, data are expressed as relative expression of mRNA levels.

Analysis of the structure of GM3 and GD3 ceramide tail

Aliquots corresponding to 20,000 BMDCs/μL were mixed with internal lipid standards for

analysis by LC MS/MS using an Aquity I-class UPLC and a Xevo TQ-S “triple-quadrupole”

instrument, both from Waters. Using a CORTECS HILIC column (2.1 mm x 100 mm; 1.7 μm,

Waters), gangliosides were measured in negative mode with a gradient between 80% solvent A

(90% acetonitrile) and 100% solvent B (50% acetonitrile), both containing 10 mM ammonium

formate as additive. Gangliosides were analyzed with the MS/MS-transitions [GM3 − H]−>
[NeuAc − H]− and [GD3 − 2H]2−> [NeuAc − H]− by multireaction monitoring (MRM) at

optimized collision energies of 50 eV and 30 eV, respectively. Transitions reflect by majority

GM3/GD3 species with d18:1 long chain base (C18-sphingosine) and C16 to C24 fatty acyl

chain length, as C18-sphingosine is the dominant sphingoid base. GM3 (d18:1; C19:0) was

used as internal standard. Qualitative measurements in positive mode were performed with

the MS/MS-transitions [GM3 + H]+> [Sph(d18:1 + H − 2H2O]+ and [GM3 + H]+> [Sph

(d20:1 + H − 2H2O]+ by multireaction monitoring (MRM).

Chemical synthesis of glycosphingolipids

The general synthesis of GM3 and GD3 are based on the strategies reported by Akira Hasegawa

[49] and Tomoya Ogawa [50]. Synthesis of GD3 (S11 Fig) began with regioselective glycosyla-

tion of lactosyl diol (2) with dimeric thioglycoside (1) using N-iodo-succinimide (NIS) and trif-

lic acid (TfOH) as promoter at −25˚C, affording sole tetrasaccharide (3) containing α-sialyl-

(2!8)-sialic acid unit α-glycosidically linked to O-3 of D-galactose residue in the oligosaccha-

ride chains. The tetrasaccharide (3), after palladium on carbon catalyzed hydrogenation and O-

acetylation, was converted into tetrasaccharide (4). Further desilylation and anomeric hemiace-

tal activation gave trichloroacetimidate (5), which was coupled with either d18:1-C16:0 cer-

amide (6) or d18:1-C24:1 Ceramide (7), giving glycosyl ceramides (8a) or (8b), respectively.

Theses glycosides were then transformed via global deacetylation and hydrolysis of methyl

esters into GD3. The general synthesis of GM3 followed a similar strategy (S12 Fig). Briefly,

thioglycoside (9) was regioselectively coupled with lactosyl diol (2) to generate trisacchride (10).

Sequential hydrogenation and O-acetylation of (10) gave peracylated compound (11), which

was further subject to desilylation to afford hemiacetal in proximal sugar. By treatment with tri-

chloroacetonitrile, the obtained hemiacetal was converted into Schmidt donor (12), which was

then coupled with either d18:1-C16:0 Cer (6a) or d18:1-C24:1 Cer (7a) to afford (13a) or (13b),

respectively. These protected triglycosylceramides were each transformed into the targeted gan-

gliosides GM3 via O-deacetylation and saponification of the methyl ester.
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A stereo-controlled synthetic route was adopted for the production of GD3 and GM3 (S13 and

S14 Figs) in pure β form according to the report by Shunichi Hashimoto [51]. This strategy fea-

tures coupling of trisaccharide (22) or disaccharide (27) with a stereocontrolled building block

(17), which excludes possibility of α isomer contamination. In this regard, a disarmed donor (14)

was chosen in the glycosylation reaction to form β-glycoside in terms of neighboring participation

effect, and β-glycosylceramide was thus prepared (S15 Fig). Removal of chloroacetyl protecting

group of 16 gave acceptor (17), which was used as generic acceptor for the assembly of GD3 and

GM3 subsequently. Compound 17 was further subject to saponification and Birch reduction to

afford pure βGlcCer. Assembly of stereo-controlled GD3 tetrasaccharide was implemented by

coupling of (17) with (22), followed by global deprotection and reduction. The stereo-controlled

synthesis of GM3 was completed in the same fashion as stereo-controlled GD3. The stereo-con-

trolled GD3 and GM3 matched up with GD3 and GM3 synthesized with general method by
1HNMR spectra comparison (S16 and S17 Figs). Comparison of controlled GD3 or GM3 with

GD3 or GM3 made with conventional method in biological assays using type I natural killer T cell

(NKT) hybridomas indicated no differences in their antigenic capacities. Separation and identifi-

cation of α- and β-GlcCers was conducted with the recently published HILIC-MS2 method [15].
1H NMR, HPLCs, and LC-MS profiles of synthesized GD3 and GM3 are included in (S18–S21

Figs). Synthetic chemistry of gangliosides will be published separately.

Microscale thermophoresis

Quantitative analysis of the interaction between mCD1d and glycolipids was performed by

Microscale Thermophoresis (MST) using a Monolith NT115 instrument (NanoTemper Tech-

nology GmbH Munich, Germany). Recombinant mCD1d protein (MW = 33.7 kDa) was

labeled with a reactive RED dye (NT-647) by N-hydroxysuccinimide (NHS) coupling (Nano-

Temper red-NHS kit) following the manufacturer’s protocol. Briefly, mCD1d (15 μM) was

mixed with the dye (45 μM) and incubated for 30 min in the labeling buffer (130 mM

NaHCO3, 50 mM NaCl, pH 8.2) at room temperature. Unincorporated dye was removed by

gel filtration with a Sephadex G-25 column, and mCD1d was finally collected in PBS 25 mM,

0.05% Tyloxapol to a final concentration of 2.5 μM. The thermodynamic affinity constant

characterizing the molecular interaction of mCD1d with each analyzed glycolipid was deter-

mined by performing a titration of the corresponding nonfluorescent glycolipids against a

constant concentration of NT-647-labeled mCD1d (125 nM). Briefly, C16:0 GM3, C24:1

GM3, C16:0 GD3, C24:1 GD3, and C24:1 β-GlcCer were solubilized in DMSO. A 10-fold fac-

tor dilution of these stock solutions was performed in PBS 25 mM, 0.05% Tyloxapol to reach a

final maximal proportion of DMSO equal to 5%. Thus, titration of each glycolipid was per-

formed by serial dilutions of these solutions in PBS 25 mM, 0.05% Tyloxapol to which an

equal volume of NT-647-labeled mCD1d was added. Then, reaction mixture was loaded into

Premium capillaries and subsequently analyzed by MST using 60% MST power with a laser-on

time of 30 sec per samples and an intensity of the light-emitting diode (LED) of 20%. Fluores-

cence time trace for each glycolipid concentration was recorded for each interaction. All analy-

sis was performed in triplicate by using the NanoTemper MO.affinity analysis software

version 2.1 and thermodynamic dissociation constant (KD) characterizing the molecular inter-

action between mCD1d, and each glycolipid was determined by plotting the temperature-

dependent change of the normalized fluorescence (ΔFnorm = FHot/Fcold, with Fcold = fluores-

cence intensity before the IR-Laser is on [area marked in blue], and Fhot = fluorescence inten-

sity 1 sec before the laser is off [area marked in red]) with the corresponding concentration of

each unlabeled glycolipid. The resulting binding curves were fitted using a 1:1 binding model

to determine the average KD values.
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iNKT cell activation assays

To investigate iNKT cell reactivity, 1 x 105 BMDCs were cultured with 1 x 105 mouse iNKT

hybridomas DN32.D3 and/or 2C12 in presence of CpG ODN, purified glycolipids or vehicle

in complete RPMI media supplemented with 5% FCS for 24 h. In some cases, neutralizing or

control Abs were added during the coculture. To fix DCs, cells were exposed to glutaraldehyde

(0.05% in PBS) for 3 min and then extensively washed. To investigate the activity of lipids

extracted from DCs, 1 x 105 DCs were exposed to lipid fractions (1/500 of total extracts from 5

x 107 BMDCs) or vehicle alone for 16 h, washed, and then cocultured with liver MNCs (5 x

105) in the presence or absence of recombinant mIFNβ (1000 U/ml). Coculture supernatants

were collected, and cytokine production was measured by ELISA (R&D Systems).

Identification of α-monohexosylceramide: CD1d complexes

To probe the presence of α-monohexosylceramides in our synthetic compounds, glycolipids

were loaded on CD1d dimers for 16 h (at a 200 molar excess of lipids except for α-GalCer that

was loaded at a 20 molar excess) in presence of 0.5% of Tyloxapol. Then, CD1d:glycolipid

complexes were coated on a flat bottom 96-well plate for 4 h in presence of PE-labelled L363

mAb or appropriate Ig control. Fluorescence at 578 nM was measured on a microplate reader

TECAN infinite (Männedorf, Switzerland). To test the presence of α-monohexosylceramide:

CD1d complexes in ganglioside-loaded DCs, WT-derived BMDCs were loaded for 16 h with

the various synthetic gangliosides (6.5 μM), extensively washed, and labeled with the L363

mAb or Ig control. α-GalCer (0.2 nM) was used as a positive control.

Loading of CD1d tetramers with synthetic glycolipids

Unloaded CD1d tetramers were loaded for 16 h with a 5 (α-GalCer) or 50 (gangliosides) molar

excess of glycolipids in presence of 0.5% of Tyloxapol. Unloaded or loaded CD1d tetramers

were then probed against NKT hybridomas.

Preparation of lung leukocytes and flow cytometry

Mice were IN injected with α-GalCer (500 ng/mouse) or ganglioside species (5 or 25 μg/

mouse) in 50 μl of saline. In some cases, mice were IP pretreated (4 h) with an anti-CD1d mAb

(19G11; 500 μg/mouse) or its isotype control (LTF-2). Twelve hours later, lungs were har-

vested, and leukocyte suspensions were prepared by classical procedures. Briefly, perfused

lungs were harvested and finely minced in a Petri dish. Then, lung pieces were enzymatically

digested (20 min at 37˚C) in saline containing 1 mg/ml of collagenase type VIII (Sigma-

Aldrich) and 1 μg/ml of DNase type I (Roche). After washes, pellets were resuspended in a

20% Percoll gradient and centrifuged (2,000 rpm at RT for 15 min). Cells in pellet were col-

lected and washed in PBS containing 2% FCS. Erythrocytes were removed using a red blood

cell lysis buffer (Sigma-Aldrich). Lung mononuclear cells were incubated in complete RPMI

1,640 medium in presence of Golgi Plug/Golgi Stop (BD Biosciences) (2 h at 37˚C). After

washes, cells were labelled with the appropriate dilutions of the various mAbs (30 min at 4˚C)

in PBS containing 2% FCS. Cells were then washed, and fixed using an intracellular fixation

buffer (eBioscience, CliniSciences, Montrouge, France). Next, fixed lung mononuclear cells

were treated with a permeabilization buffer (eBioscience) according to the manufacturer’s

instructions. Cells were stained with anti-IFNγ and anti-IL-17A mAbs or corresponding iso-

type controls and acquired on a Fortessa (Becton Dickinson, Rungis, France) cytometer. Anal-

yses were performed using the FlowJo software (Treestar, OR, USA).
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Inoculation of glycolipids and infection with S. pneumoniae

S. pneumoniae serotype 1 clinical isolate E1586 sequence type ST304 has been described else-

where [33]. Mice were anesthetized and administered IN with 50 μl PBS containing live bacte-

ria (1 x 106 cfu). Twelve hours prior infection, mice were IN injected with 500 ng of α-GalCer

(0.58 nmol) or 25 μg of gangliosides (20 nmol for GM3 and 16 nmol for GD3) in 40 μl of

saline. Then, mice were monitored daily for illness and mortality for a period of 9 days.

Statistical analysis

Results are expressed as the mean ± SEM. All statistical analysis was performed using Graph-

Pad Prism software (San Diego, CA, USA). The statistical significance was evaluated using

nonparametric (paired or unpaired) Mann–Whitney U or Kruskal–Wallis (followed by a

Dunn’s post-test) tests to compare the means of biological replicates in each experimental

group. Survival rates after S. pneumoniae challenge were analyzed using a log-rank test. Results

with a P value of less than 0.05 were considered significant. ns, not significant; �P< 0.05;
��P< 0.01; ���P< 0.001.

Supporting information

S1 Fig. Structures of gangliosides.

(TIF)

S2 Fig. HILIC-MS2 analyses of stereo-controlled β-GlcCer. HILIC-MS2 of stereo-controlled

β-GlcCer and an α/β-GlcCer mixture. α/β-GlcCer, α/β-glucosylceramide; HILIC-MS2, hydro-

philic interaction liquid chromatography-tandem mass spectrometry.

(TIF)

S3 Fig. Thermophoretic analysis of NT647-labelled mCD1d-β-GlcCer interaction. Changes

in thermophoresis of a titration of 125 nM NT647-labeled mCD1d with increasing concentra-

tions of C24:1 β-GlcCer are expressed as change of the normalized fluorescence

(ΔFnorm = FHot/Fcold) and plotted. Line is a fit with Michaelis–Menten kinetics of ΔFnorm

mean ± SD for each ligand concentration of three independent measurements (n = 3). β-

GlcCer, β-glucosylceramide.

(TIF)

S4 Fig. Reactivity of the 2C12 iNKT cell hybridoma towards synthetic gangliosides. DCs

derived from WT mice were cultured with the mouse iNKT hybridoma 2C12 in presence of

purified glycolipids at the indicated concentrations or vehicle in complete RPMI media sup-

plemented with 5% FCS for 24 h. iNKT cell response was judged based on IL-2 production.

Means ± SEM of one representative experiment out of two performed in triplicates are shown

(n = 2). DC, dendritic cell; FCS, fetal calf serum; IL-2, interleukin 2; iNKT, invariant natural

killer T; RPMI, Roswell Park Memorial Institute medium; WT, wild-type.

(TIF)

S5 Fig. Bovine buttermilk-derived gangliosides do not activate iNKT cells. DCs derived

from WT mice were cultured with the mouse iNKT hybridoma DN32.D3 in presence of α-

GalCer (20 ng/ml), bovine buttermilk GM3 (10 μM) and bovine buttermilk GD3 (10μM), or

vehicle in complete RPMI media supplemented with 5% FCS for 24 h. iNKT cell response was

measured based on IL-2 production. Means ± SEM of one representative experiment out of

three performed in triplicates are shown. α-GalCer, α-galactosylceramide; DC, dendritic cell;

FCS, fetal calf serum; IL-2, interleukin 2; iNKT, invariant natural killer T; RPMI, Roswell Park
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Memorial Institute medium; WT, wild-type.

(TIF)

S6 Fig. C24:1 GM3 and C24:1 GD3 do not induce splenic conventional T cell proliferation.

CTV-labeled spleen cells from C57BL/6 mice were cultured in absence or presence of α-Gal-

Cer (100 ng/ml), C24:1 GM3 (6.5μM), or GD3 (6.5μM) in complete RPMI plus IL-2. After 72

h, cells were harvested and analyzed by flow cytometry for CTV detection in live conventional

αβT cells (CD45+ TCRβ+ CD1d tetramer−). Dot plots are representative of one experiment out

of three. α-GalCer, α-galactosylceramide; CTV, cell trace violet; IL-2, interleukin 2; RPMI,

Roswell Park Memorial Institute medium; TCR, T-cell receptor.

(TIF)

S7 Fig. Expression and Ag presentation capacity of CD1d on DCs from Cers2 null mice.

(A) Representative FACS plot of BMDCs from Cers2+/+ and Cers2−/− mice (gated on live

CD45+ cells) is shown in the left panel. Histogram for CD1d surface expression on DCs of

Cers2+/+ and Cers2−/− mice is shown in the right panel. Isotype controls for CerS2+/+ and

CerS2−/− are shown in red and blue, respectively. These data are representative of three inde-

pendent experiments. (B) DCs derived from Cers2+/+ or Cers2−/− mice were cultured with the

mouse iNKT hybridoma DN32.D3 in presence of glycolipids at the indicated concentrations

or vehicle for 24 h. iNKT cell response was judged based on IL-2 production. Means ± SEM of

three experiments are shown. BMDC, bone marrow-derived dendritic cell; Cers, ceramide

synthase; DC, dendritic cell; FACS, fluorescence-activated cell sorting; IL-2, interleukin 2;

iNKT, invariant natural killer T.

(TIF)

S8 Fig. Pulse timing on DCs influences ganglioside activity on iNKT cell hybridomas. DCs

derived from WT mice were pulsed with C24:1 GM3, C24:1 GD3, or vehicle for the indicated

amount of time. Then, cells were extensively washed and cultured with the iNKT cell hybrid-

oma DN32.D3 for 24 h. iNKT cell response was judged based on IL-2 production.

Means ± SEM of two experiments performed in triplicates are shown. DC, dendritic cell; IL-2,

interleukin 2; iNKT, invariant natural killer T; WT, wild-type.

(TIF)

S9 Fig. Instillation of C16:0 GD3 does not lead to lung iNKT cell activation. Lung iNKT

cells from vehicle- or C16:0 GD3-treated mice (12 h) were screened for intracellular IFNγ and

IL-17A production. Individual values and means ± SEM from two independent experiments

are shown (5 mice/group) for panel. Underlying data used in the generation of this figure can

be found in S1 Data. IFNγ, interferon gamma; IL-17A, interleukin-17A; iNKT, invariant natu-

ral killer T.

(TIF)

S10 Fig. CD1d blockade abrogates lung iNKT cell activation upon C24:1 ganglioside instil-

lation. Lung iNKT cells from vehicle-, α-GalCer- or C24:1 GM3-treated mice (12 h) were

screened for intracellular IFNγ production. Mice were intraperitoneally pretreated (4 h prior

glycolipid instillation) with either an isotype control mAb (LTF2, 500 μg/mouse) or an anti-

CD1d mAb (19G11, 500 μg/mouse). Means ± SEM are shown (n = 3/group). α-GalCer, α-

galactosylceramide; IFNγ, interferon gamma; iNKT, invariant natural killer T.

(TIF)

S11 Fig. General synthesis of GD3.

(TIF)
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S12 Fig. General synthesis of GM3.

(TIF)

S13 Fig. Stereo-controlled synthesis of GD3 (C24:1).

(TIF)

S14 Fig. Stereo-controlled synthesis of GM3 (C24:1).

(TIF)

S15 Fig. Synthesis of β-GlcCer. β-GlcCer, β-glucosylceramide.

(TIF)

S16 Fig. Comparison of 1H NMR spectra of GD3 (C24:1, stereo-controlled versus general).
1H NMR, proton nuclear magnetic resonance.

(TIF)

S17 Fig. Comparison of 1H NMR spectra of GM3 (C24:1, stereo-controlled versus general).
1H NMR, proton nuclear magnetic resonance.

(TIF)

S18 Fig. HPLC of stereo-controlled GD3 (C24:1). HPLC, high-pressure liquid chromatography.

(TIF)

S19 Fig. LC-MS of stereo-controlled GD3 (C24:1). LC-MS, liquid chromatography-mass

spectrometry.

(TIF)

S20 Fig. HPLC of stereo-controlled GM3 (C24:1). HPLC, high-pressure liquid chromatogra-

phy.

(TIF)

S21 Fig. LC-MS of stereo-controlled GM3 (C24:1). LC-MS, liquid chromatography-mass

spectrometry.

(TIF)

S1 Table. N-acyl chain analysis of DC-derived versus buttermilk-derived GM3. The acyl

chain composition of GM3 from mouse unstimulated DCs or commercial bovine buttermilk

was measured and compared by ES(-)-LC-MS/MS. Two sets of samples were measured and

indicated as mean values. DC, dendritic cell; ES(-)-LC-MS/MS, electrospray(-)-liquid chroma-

tography-mass spectrometry/mass spectrometry.

(XLSX)

S2 Table. Primers used in this study.

(XLSX)

S1 Data. Numerical data used in this study. Numeric data shown in separate excel spread-

sheets.

(XLSX)
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